
Supplemental Material for:
SHRED: 3D Shape Region Decomposition with
Learned Local Operations
R. KENNY JONES, Brown University, USA
AALIA HABIB, Brown University, USA
DANIEL RITCHIE, Brown University, USA

ACM Reference Format:
R. Kenny Jones, Aalia Habib, and Daniel Ritchie. 2022. Supplemental Material
for: SHRED: 3D Shape Region Decomposition with Learned Local Operations.
ACM Trans. Graph. 41, 4, Article 186 (July 2022), 5 pages. https://doi.org/10.
1145/3550454.3555440

A SHRED IMPLEMENTATION DETAILS

A.1 Synthetic Data Creation
Fix Network. To generate an input-output training example for the

fix network, we employ the following procedure. From our training
dataset, we first sample a random region from a random shape,
using the ground-truth fine-grained part annotations to define a
region. We increase the size of the region by Y% (Y between 5 and 25)
with a 75% chance: this involves sampling a random point about the
regions center, finding the Y% closest points currently outside the
region, and flipping their sign. By a similar procedure we randomly
remove between 10 and 50% of the inside region points with a 75%
chance. Next we up or down sample the inside region points, and
nearby outside points (within a 0.1 extended radius of the region’s
center + radius) to form two 2048 point clouds. Each point in this
point cloud has its label flipped with some Z% (Z randomly set to
be between 0.0 and 0.3). To offset data imbalance that causes more
inside labels to flip to outside, we finally randomly flip any extra
inside points (those down-sampled in the previous step) to become
outside points with a 10% probability. This allows the network to
see more cases where outside points become inside points during
training. To decide whether to keep or reject the entire sample, we
calculate the percentage of input inside points that have inside as
their target label, and the percentage of inside label points that are
associated with an inside input point: if either of these percentages
is below 40%, we skip the example.

Merge Network. To generate training data for the merge network,
we employ the following procedure. First we sample a random
shape from the training dataset. Then we use FPS to split the shape
into M regions (M randomly chosen from 16, 32, 64, 128). For each
region, we first identify all ground-truth part instances that appear
in the region. We split each of these regions into K sub-regions,
where K is sampled between 1 and 10 according the probability
distribution proportional to 0.5𝐾 . To execute this split, we sample K
Authors’ addresses: R. Kenny Jones, Brown University, USA; Aalia Habib, Brown
University, USA; Daniel Ritchie, Brown University, USA.

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3550454.3555440.

points randomly distributed about the center of the region, and then
assign each point in the region to the randomly sampled point it is
closest to. Each sub-part is then assigned to some cluster of regions
randomly: with 1/3 chance it is merged into a default group with
other sub-parts in the same FPS defined region, with 1/3 chance it
is merged into one of K groups with other sub-parts in the same
FPS defined region, and with 1/3 chance it is merged into one of K
groups with other sub-parts in the same FPS defined region from
the same GT part instance.
At this point, we are ready to start gathering merge examples.

We first find all neighboring regions from our above synthetic split
procedure. We then randomly sample a pair of neighboring regions,
and check which ground-truth parts they most heavily overlap
with. If they overlap most with the same ground-truth part, then
we record the pair as an example where a split should happen,
otherwise we record the pair as an example where a split should not
happen. To produce merge examples at different granularities, we
also modify the regions during this procedure; every time a merge
should happen, we actually perform the merge 75% of the time,
and every time a merge should not happen, we actually perform
the merge 25% of the time. We continue collecting merge examples
until we run out of neighbor pairs that have not been previously
considered.

B SHRED METHOD ABLATIONS

B.1 Modified Hungarian Matching Algorithm
The split network is trained with a cross entropy loss between
predicted instances and target instances. Unlike most settings where
cross entropy is used, for the instance segmentation task there
is not a canonical mapping from prediction slots to target slots.
For this reason, a typical approach has been to dynamically use
the Hungarian matching algorithm to find a one-to-one mapping
between prediction slots and target slots that would minimize the
cross entropy loss. For an example, see [Mo et al. 2019].
While this matching scheme is optimal when an exact instance-

segmentation is desired, we would prefer that the split network
removes all under-segmentation, even if this comes at the cost of
producing more regions. As our merge module will later figure
out how to combine different over-segments, we want the split
network to solve an over-instance segmentation task. To this end,
we modify the matching procedure between prediction slots and
target slots to greedily search for opportunities to reward network
over-segmentation predictions.

ACM Trans. Graph., Vol. 41, No. 4, Article 186. Publication date: July 2022.

https://doi.org/10.1145/3550454.3555440
https://doi.org/10.1145/3550454.3555440
https://doi.org/10.1145/3550454.3555440


186:2 • R. Kenny Jones, Aalia Habib, and Daniel Ritchie

The procedure takes as input a logit prediction over N points with
K slots 𝑃 , a (𝑁 𝑥 𝐾) matrix, and a ground-truth instance segmen-
tation 𝑇 , a (𝑁 𝑥 𝐾) matrix where each column is a one-hot vector.
To begin, we employ the typical Hungarian matching approach to
find a one-to-one assignment𝑀 between prediction and target slots.
We identify all unassigned prediction and target slots (e.g. those
that correspond to empty instances). Then for each paired unused
prediction slot,𝑈𝑃 , and unused target slot,𝑈𝑇 , we find all indices in
𝑃 where𝑈𝑃 was the argmax prediction. We then index into 𝑇 with
these indices, and find the mode region in T that best aligns with
𝑈𝑃 , call this region 𝐴. Next, we find the slot of 𝑃 that was assigned
to 𝐴 under𝑀 , call this slot 𝑃𝐴 . We find the index rows of 𝑇 where
𝐴 is set to 1.0, call these 𝑇𝐴 . Then we use the logit predictions of
𝑃𝐴 and𝑈𝑃 to split 𝑇𝐴 into two parts, 𝑇𝑃𝐴 and 𝑇𝑈𝑃 , with an argmax
operation.

At this point we have identified a possible over-segmentation: we
could modify𝑇𝐴 to become split into two parts,𝑇𝑃𝐴 and𝑇𝑈𝑃 , where
prediction slot 𝑃𝐴 would be re-assigned to the region 𝑇𝑃𝐴 in slot 𝐴
and unused prediction slot𝑈𝑃 would be assigned to region 𝑇𝑈𝑃 in
slot𝑈𝑇 . If𝑇𝑃𝐴 and𝑇𝑈𝑃 both contain more than 10 indices each, and
𝐴 was the argmax prediction for more than 50% of the indices under
𝑈𝑃 , then we accept this over-segmentation with modifications to 𝑇
and𝑀 . This procedure is repeated for ever pair of unused slot.

B.2 Naive Synthetic Data Creation
In Section 4.6 of the main paper, we present results of SHRED when
learned local operators are replaced with versions trained under
naive synthetic data creation (SDC) procedures. In this section, we
describe the naive SDC procedures used for the split, align and
merge modules for each ablation condition.

Naive split SDC. To generate naive training data for the split
network we employ the following procedure. Given a training shape,
we first generate a region decomposition by iteratively: (1) sampling
a random point from the shape, (2) sampling a random radius r, from
a beta distribution with alpha as 1.5 and beta as 4.0, (3) assigning
all points within r radius of the randomly sampled point to a new
region (with a limit of up to half of the remaining unassigned points).
If we want to produce K regions, we run this iterative procedure
K-1 times, then throw all unassigned points into the Kth region
(we set K=64). Once a region decomposition has been produced,
we follow the logic of the default SDC, where each region in the
naive decomposition contributes one input point cloud for training,
and ground truth target instances are supplied by the fine-grained
annotated labels.

Naive fix SDC. To generate naive training data for the fix network
we employ the following procedure. From our training dataset, we
first sample a random surface point from a random shape. Then we
sample a random radius r from the same distribution as in the Naive
split SDC case. All points with r radius of the randomly sampled
point are then set to be within the target region (up to 25% of the
points in the shape). Following the default procedure, we then up
or down sample the inside region points, and nearby outside points
(within a 0.1 extended radius of the region’s center + radius) to form
two 2048 point clouds. We then randomly flip the label of each point,

Fig. 6. Trade-off between region granularity and region quality for addi-
tional baseline conditions. WOPL and L2G contain intermediary stages that
correspond with SHRED’s split stage, so we plot the results of these stages
as separate conditions (WOPL Prior and L2G Split). Our attempt to retrain
L2G on our training dataset failed to converge to good performance (brown
dot).

with a probability of 15%. The target inside-outside values of this
example are then computed by finding the region in the ground-
truth labeling that has the maximum overlap with the inside points
of the example.

Naive merge SDC. To generate naive training data for the merge
network we employ the following procedure. First a naive region
decomposition is produced in the same manner as described in the
Naive split SDC paragraph (where K is randomly chosen from the set
of 16, 32, 64, 128). Then, we generate merge examples following the
default SDC logic, sampling randommerges, recording whether they
should happen with respect to the ground-truth region annotations,
and randomly actualizing themerge (full details in the last paragraph
of Section A.1).

C BASELINE IMPLEMENTATION DETAILS

C.1 ACD
We use the VHACD implementation from [Mamou 2016]. This im-
plementation is widely used by a multitude of applications, and has
been used by related work to formulate self-supervised training
objectives [Gadelha et al. 2020]. We found this ACD implementation
works best when input meshes are manifold; as such we do not
directly apply it to PartNet meshes, as many are double-sided or
contain inconsistent normal orientations. Instead, we first send each
PartNet mesh through a manifold procedure [Huang et al. 2018],
and run the VHACD algorithm on the manifold scipt output. ACD
generated convexes are then used to partition a high-resolution
point cloud (100k points) into segments by sampling the surface of
each convex and finding the nearest neighbor from each point in
the high-resolution point cloud to the point cloud of convexes.

ACM Trans. Graph., Vol. 41, No. 4, Article 186. Publication date: July 2022.



Supplemental Material for: SHRED: 3D Shape Region Decomposition with Learned Local Operations • 186:3

C.2 PN Seg
We retrain Partnet’s instance segmentation model using our training
data and the author’s publicly released code at
https://github.com/daerduoCarey/partnet_seg_exps .
Following [Luo et al. 2020], we remove the semantic label pre-

diction head and semantic label loss, as we train over multiple
categories at once. We follow all other default hyper-parameters
as found in the code. We write a procedure to export our training
data into the h5 file format that their method expects, and then start
training runs through their released script.

C.3 L2G
L2G trains a version of their method on the same in-domain cate-
gories that SHRED uses, but uses slightly more data for each cat-
egory [Luo et al. 2020]. For all experiments in the main paper, we
use the author’s released models from
https://github.com/tiangeluo/Learning-to-Group . While this causes
the training distribution between SHRED and L2G to differ slightly,
if anything we believe this hurts SHRED, as it has access to less data.
The L2G method has an initial step before merging where a simple
model produces a shape over-segmentation; we show how this stage
fairs on the trade-off graph between decomposition granularity and
purity in Figure 6 (dark pink points).

Using the released code, we attempted to retrain a version of L2G
on the subset of chair, lamp, and storage data used to train SHRED.
We converted our data into the same h5 file as we used for PN Seg,
and then initiated L2G training with their specified scripts, keeping
all method hyper-parameters unchanged. Interestingly, we found
that this version of L2G converged to much worse performance, we
plot this retrained version of L2G on Figure 6 (brown points).

C.4 WOPL
The WOPL method has no publicly available code and we were
unable to gain access to an implementation by contacting the au-
thors. To this end, we attempted to implement the algorithm as
described in the paper [Wang et al. 2021]. We include our imple-
mentation of the WOPL method in the released code, where in all
cases we tried to follow the paper’s description as closely as possible.
The WOPL method has an analogous stage to SHRED’s split stage,
termed the prior stage, that creates a region decomposition before
a global merge step. In Figure 6 we show the trade-off the WOPL
prior makes between decomposition granularity and quality (light
green points).

D SEMANTIC SEGMENTATION EXPERIMENT DETAILS
Our experiments in Section 4.5 demonstrate how SHRED can benefit
fine-grained semantic segmentation methods when training data
with semantic labels is limited. We use SHRED to generate region
decompositions that are passed into NGSP: an approach that learns
to assign semantic labels from a fine-grained grammar to regions of
a 3D shape.

We evaluate SHRED (and other region decomposition approaches,
see PN Seg, L2G, and ACD rows of Table 2 in the main paper)
under two limited labeled data paradigms: when 10 or 40 shapes
with semantic labels are provided to train a semantic segmentation

method. We first use the region decomposition methods (trained on
all in-domain categories as described in sections 4.1 and 4.2) to find
a region decomposition for the 10 or 40 training shapes that have
semantic label annotations. With a training dataset of these shapes
that contain both semantic annotations and region decompositions,
we then have the data needed to train NGSP for a given category.

NGSP trains separate networks for each category, as semantic
labeling is specific to a category. We follow NGSP’s procedure to
train a guide network and likelihood networks for each category
[Jones et al. 2022]. For our experiments in Table 2 of the main
paper, we use the 5 categories studied by both SHRED and NGSP:
chairs, lamps, storage, tables, and knives. Guide network training is
relatively inexpensive. A guide network can be trained in less than
10 minutes when the number of labeled shapes is low (the settings
we are interested in), so we retrain a separate guide network for each
category and for each region decomposition method (e.g PN Seg,
L2G, ACD, SHRED). Likelihood network training is more involved,
as it requires training multiple networks for each node in a fine-
grained semantic grammar (as reference, the chair grammar has
over 30 nodes). Therefore, we train a single collection of likelihood
networks that are shared by all region decomposition methods; the
likelihood networks use ground-truth region annotations during
training (as we assume each shape with semantic annotations also
has part instance annotations).
Once the guide and likelihood networks have been trained, we

populate the values of Table 2 with the following procedure. A input
shape for category C is first decomposed into a set of regions with
region decomposition method M. The guide network specialized
for the (C, M) pair is then used to propose a set of 10000 label as-
signments over the region decomposition. The likelihood network
specialized for C then evaluates all proposed label assignments, and
chooses the label assignment that maximizes equation 1 from the
NGSP paper. Note that we also include the guide network likeli-
hood into this equation, finding it regularizes the predictions of the
likelihood networks that have never seen region decompositions
produced by M. Per-region semantic label predictions can then be
propagated to the points within each region using the chosen label
assignment. Finally, the semantic mIoU can be calculated by finding
the intersection over union between predicted and ground-truth
per-point labels, and averaging this value over the labels of the
grammar across the test-set shapes of each category.

The No Reg rows in Table 2 and 3 in the main paper correspond
with predictions from the fine-grained semantic segmentation net-
work proposed by [Mo et al. 2019]. This network operates globally,
and learns to label individual points instead of shape regions.

E ADDITIONAL QUALITATIVE RESULTS
We provide additional qualitative comparisons between the region
decompositions produced by various methods in Figure 7. Columns
6-8 show how SHRED’s predictions change as the merge-threshold
hyper-parameter is modified (we look at the values of 0.2, 0.5, and
0.8).

REFERENCES
Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Lian-

gliang Cao, Erik Learned-Miller, RuiWang, and SubhransuMaji. 2020. Label-Efficient

ACM Trans. Graph., Vol. 41, No. 4, Article 186. Publication date: July 2022.



186:4 • R. Kenny Jones, Aalia Habib, and Daniel Ritchie

FPS WOPL ACD PN SEG L2G SHRED (.2) SHRED (.5) SHRED (.8) GT Parts

Fig. 7. Additional qualitative region decomposition comparisons between SHRED and baseline methods. In columns 6-8, we show how varying SHRED’s
merge-threshold changes the granularity of the output decomposition.

ACM Trans. Graph., Vol. 41, No. 4, Article 186. Publication date: July 2022.



Supplemental Material for: SHRED: 3D Shape Region Decomposition with Learned Local Operations • 186:5

Learning on Point Clouds using Approximate Convex Decompositions. In European
Conference on Computer Vision (ECCV).

Jingwei Huang, Hao Su, and Leonidas Guibas. 2018. RobustWatertight Manifold Surface
Generation Method for ShapeNet Models. arXiv preprint arXiv:1802.01698 (2018).

R. Kenny Jones, Aalia Habib, Rana Hanocka, and Daniel Ritchie. 2022. The Neurally-
Guided Shape Parser: Grammar-based Labeling of 3D Shape Regions with Approxi-
mate Inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Tiange Luo, Kaichun Mo, Zhiao Huang, Jiarui Xu, Siyu Hu, Liwei Wang, and Hao
Su. 2020. Learning to Group: A Bottom-Up Framework for 3D Part Discovery in
Unseen Categories. In International Conference on Learning Representations. https:

//openreview.net/forum?id=rkl8dlHYvB
Khaled Mamou. 2016. Volumetric Hierarchical Approximate Convex Decomposition.

In Game Engine Gems 3, Eric Lengyel (Ed.). A K Peters, 141–158.
KaichunMo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and

Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Xiaogang Wang, Xun Sun, Xinyu Cao, Kai Xu, and Bin Zhou. 2021. Learning Fine-
Grained Segmentation of 3D Shapes Without Part Labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10276–
10285.

ACM Trans. Graph., Vol. 41, No. 4, Article 186. Publication date: July 2022.

https://openreview.net/forum?id=rkl8dlHYvB
https://openreview.net/forum?id=rkl8dlHYvB

	A SHRED Implementation Details
	A.1 Synthetic Data Creation

	B SHRED Method Ablations
	B.1 Modified Hungarian Matching Algorithm
	B.2 Naive Synthetic Data Creation

	C Baseline Implementation Details
	C.1 ACD
	C.2 PN Seg
	C.3 L2G
	C.4 WOPL

	D Semantic Segmentation Experiment Details
	E Additional Qualitative Results
	References

