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...
def chair_2_base():
bbox = Cuboid(.9, .7, .8)
leg1 = Cuboid(.25, .7, .25)
squeeze(bbox, bbox, top, .15, .15)
reflect(X)
leg2 = Cuboid(.25, .67, .25)
squeeze(bbox, bbox, top, .15, .85)
reflect(X)

...

def reflection_group(A, B):
leg = Cuboid(A, bbox_height, A)
squeeze(bbox, bbox, bot, .6 * A, B)
reflect(X)

def four_leg_base(A, B):
leg1 = reflection_group(A, B)
leg2 = reflection_group(A, 1 - B)
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Generative 
Model

...
def chair_1_base():
bbox = Cuboid(1.2, .2, 1.2)
leg1 = Cuboid(.05, .2, .05)
squeeze(bbox, bbox, top, .03, .02)
reflect(X)
leg2 = Cuboid(.05, .2, .05)
squeeze(bbox, bbox, top, .03, .98)
reflect(X)

...

four_leg_base (            ,            ) four_leg_base (            ,            ) four_leg_base (            ,            )

...

def gen_chair_1(…):
…
four_leg_base(A, B)
…

def gen_chair_2(…):
…
four_leg_base(A, B)
…

def gen_chair_3(…):
…
four_leg_base(A, B)
…

Fig. 1. We propose ShapeMOD, an algorithm which takes as input a collection of 3D shape programs and makes them more compact by automatically
discovering common macros which can be re-used across the collection. We apply ShapeMOD to datasets of ShapeAssembly programs and find that generative
models which train on refactored programs containing these macros produce more plausible output shapes than those trained on the original programs. The
discovered macros also facilitate shape editing by exposing only a small number of meaningful parameters for manipulating shape attributes. For example, the
four_leg_base macro exposes two parameters (visualized as sliders with red handles); one parameter controls leg size, while the other controls leg spacing.

A popular way to create detailed yet easily controllable 3D shapes is via pro-
cedural modeling, i.e. generating geometry using programs. Such programs
consist of a series of instructions along with their associated parameter
values. To fully realize the benefits of this representation, a shape program
should be compact and only expose degrees of freedom that allow for mean-
ingful manipulation of output geometry. One way to achieve this goal is
to design higher-level macro operators that, when executed, expand into
a series of commands from the base shape modeling language. However,
manually authoring such macros, much like shape programs themselves, is
difficult and largely restricted to domain experts. In this paper, we present
ShapeMOD, an algorithm for automatically discovering macros that are
useful across large datasets of 3D shape programs. ShapeMOD operates
on shape programs expressed in an imperative, statement-based language.
It is designed to discover macros that make programs more compact by
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1 INTRODUCTION
3D data is important for many applications in graphics, vision, and
artificial intelligence: creating content for games and AR/VR experi-
ences, synthetic training data for autonomous agents, etc. Unlike 2D
image data, which has a standard representation as a regular grid of
pixels, 3D data can be expressed in a variety of representations, each
with their own strengths and weaknesses. Point clouds are easy to
obtain from the real world via depth sensors, but they lose surface
connectivity and detail; meshes are well-supported by rendering and
simulation packages, but they are harder to train machine learning
models on; implicit functions provide excellent surface detail but
are harder to inspect and reason about.
One interesting way to represent a 3D shape is with a program

that generates its geometry, or at least its high-level structure. This
is particularly appealing for manufactured objects, as such shapes
typically originate as CAD programs of some form (e.g., connected
assemblies of parts, the geometry of which may be specified by
lower-level instructions). In computer graphics, the procedural mod-
eling literature offers a rich history demonstrating the value of
programs for shape modeling. By using simple domain-specific lan-
guages (DSLs) that combine geometric elements, programs (such as
shape grammars) can model shapes from a variety of domains, such
as plants [Prusinkiewicz and Lindenmayer 1996], buildings [Müller
et al. 2006], cities [Parish and Müller 2001], and furniture [Lau et al.
2011]. In addition to enabling rapid creation of a variety of content,
programs offer the benefit of being more readable and editable (via
the free parameters they expose) than other shape representations.

To maximally realize these benefits, a good shape program should
be compact and expressed at a high level while still exposing im-
portant degrees of freedom for editing. One way to create such
programs is to introduce higher-level functions, or macros, into the
shape DSL. We define a macro to be a function that, when executed,
expands into a series of commands from the base DSL.

In urban procedural modeling, a macro might capture how prim-
itives combine to make a particular class of railing; in furniture
modeling, a macro might be used to model a shelving pattern that
could be instantiated within different types and sizes of furniture;
in plant modeling, a macro might be used to instantiate examples
of petal structures across a family of flowers. In past work on mod-
eling 3D shape structures, rudimentary macros proved to be helpful
for downstream tasks of interest, such as shape editing and gen-
erative modeling [Jones et al. 2020]. However, these macros were
carefully (manually) designed by experts and may not generalize to
or be useful for other shape modeling domains for which they were
not designed. One question naturally follows: Can useful macros
for a given shape modeling domain be designed automatically by an
algorithm?

In this paper, we present ShapeMOD, an algorithm for automati-
cally discovering such macros from a collection of shape programs.
ShapeMOD operates on any imperative, statement-based language
whose commands are parameterized by discrete and continuous pa-
rameters. It is designed around the principle of discovering macros
that make programs more compact, where compactness is measured
by the number of function calls and number of free parameters
required to represent the input shape collection.

In pursuit of compactness, one must consider the cost incurred by
adding more functions (i.e., macros) to the DSL. At one extreme, one
could use no macros, which results in the maximum number of free
parameters (i.e., minimal compactness). At the other extreme, one
could define amacro for each shape program in the input collection—
this is maximally compact, but makes applications such as shape
manipulation or learning to generate novel shape programs impos-
sible. Our insight is that the trade-off space between these extremes
can be navigated via optimization to find a middle-ground where a
small set of macros explain a high percentage of variations across
the input collection of shape programs. Critically, these frequently-
used macros expose sufficient degrees of freedom to allow for shape
manipulation and exploration across a shape collection.
We run ShapeMOD on multiple collections of shape programs

expressed in the ShapeAssembly DSL [Jones et al. 2020] to discover
new libraries of macros. For example, in Figure 1, starting from a
set of chair shape programs, ShapeMOD discovers a reusable macro
for four leg chair bases which exposes a compact set of associated
control sliders. We demonstrate the benefits of working with these
discovered macros, by evaluating how adding the discovered macros
into the language affects performance on downstream tasks: learn-
ing a generative model for shape programs, learning to infer shape
programs from unstructured geometry, and goal-directed editing of
shapes via their programs. In all cases, task performance is improved
by using automatically discovered macros. Finally, we show that
ShapeMOD can find useful macros even when trained on a set of
ShapeAssembly programs from multiple categories.

In summary, our contributions are:
(i) An algorithm that takes as input a collection of programs ex-

pressed in a DSL with imperative functions that may contain
continuous parameters, and automatically discovers a concise
set of macros that abstract out common structural and para-
metric patterns within the input programs that generalize over
a shape collection.

(ii) Demonstrations on collections of manufactured objects that
using discovered macros leads to better performance on im-
portant downstream tasks such as novel shape generation,
directed shape manipulation, and inferring shape structures
from unstructured geometry (i.e., point clouds).

Code can be found at https://github.com/rkjones4/ShapeMOD .
Our implementation is not specific to ShapeAssembly, making it
possible to apply ShapeMOD to collections of programs in other
imperative languages with real-valued parameters.

2 BACKGROUND & RELATED WORK
Our work is related to prior work in program synthesis, automatic
program abstraction, shape abstraction, and 3D shape generative
modeling. We also build heavily upon the ShapeAssembly shape
structure modeling DSL [Jones et al. 2020], so we briefly describe
its salient features in this section as well.

2.1 Related Prior Work
Finding common abstractions over a set of programs. Our macro-

discovery goal is one instance of a more general class of problems:
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finding common abstractions within a set of programs. Context-
free grammars have been a common class of programs used in
prior work on procedural modeling, and grammar induction is one
example of common abstraction finding. Prior work has designed
induction algorithms for building facade grammars [Martinovic
and Van Gool 2013], more general grammars [Talton et al. 2012],
and even grammar-like functional programs [Hwang et al. 2011].
One more recent system even supports programs with continuous
parameters [Ritchie et al. 2018]. However, these approaches are all
limited to context-free languages.

Recently, another line of work has investigated common abstrac-
tion discovery for general functional programs: the Exploration-
Compression (EC) algorithm [Dechter et al. 2013] and its successor,
DreamCoder [Ellis et al. 2020]. Both operate by repeatedly invoking
two algorithm phases. In EC, the two phases are “exploration” (try-
ing to find programs that solve input problems) and “compression”
(finding abstractions common to these programs). In DreamCoder,
these two phases are respectively called “wake” and “sleep.” Our
method, ShapeMOD, also uses a two-phase approach: “proposal”
(finding candidate abstractions) and “integration” (choosing can-
didate abstractions to add to the language). EC and DreamCoder
operate on functional programs, and while they do provide some
support for real-valued free parameters, they are unable to discover
parametric relationships between continuous variables.
To the best of our knowledge, ShapeMOD is the first approach

that discovers macro operations capturing parametric relationships
between continuous parameters across a collection of imperative
programs. While specialized data structures such as version spaces
and E-graphs can efficiently reason about rewrites of functional pro-
grams, they cannot efficiently reason over semantic line re-orderings
of imperative programs (i.e. maintaining correct execution behavior)
and thus are not applicable to languages such as ShapeAssembly.

Rewriting a single program. ShapeMOD discovers macros which
are common to a collection of programs. A related, but different,
problem is that of finding modifications that improve a single pro-
gram of interest. There has been prior work on this problem in
the realm of shape modeling languages. The Szalinski system takes
a low-level CAD program as input and searches for a more com-
pact, higher-level program which produces the same output ge-
ometry [Nandi et al. 2020]. The Carpentry Compiler is a program
optimizer that finds rewrites of low-level instructions to maintain
high-level semantics while optimizing to reduce manufacturing
cost [Wu et al. 2019]. Our approach can also be seen as related to
systems for more general program-rewriting, such as optimizing
compilers [Tate et al. 2009].

Shape abstraction. ShapeMOD discovers macros by abstracting
out common patterns in shape programs. Prior work has investi-
gated how to abstract shapes themselves, either by simplifying the
geometry of individual shapes [Mehra et al. 2009], finding common
abstractions for collections of shapes [Yumer and Kara 2012], or
learning to represent shapes via a union of simple primitives [Deng
et al. 2020; Genova et al. 2019; Sun et al. 2019; Tulsiani et al. 2017;
Zou et al. 2017]. These methods attempt to abstract the geometry of
shapes, whereas as we are interested in abstracting the procedural
structures of programs that generate shape geometry.

Generative Models of 3D Shapes. One of the major downstream
applications we target is learning generative models of 3D shapes.
Many such models have been proposed. One category of models
learns to generate entire objects as unstructured geometry, rep-
resenting shapes with occupancy grids [Wu et al. 2016], surface
patches [Groueix et al. 2018], point clouds [Achlioptas et al. 2018],
or implicit functions [Chen and Zhang 2019]. In contrast, structure-
aware models learn to generate objects as arrangements of their
component parts [Chaudhuri et al. 2020; Gao et al. 2019; Jones et al.
2020; Li et al. 2017; Mitra et al. 2013; Mo et al. 2019a; Yang et al. 2020].
In our results, we show that training a structure-aware generative
model on ShapeAssembly programs, refactored with discovered
macros, improves novel shape generation.

Visual Program Induction. Another downstream application we
target is visual program induction: inferring a program represen-
tation of an object given only unstructured sensor input (e.g., an
image or a point cloud). Prior work in this area has targeted custom
DSLs [Ellis et al. 2018b; Tian et al. 2019], constructive solid geometry
(CSG) [Du et al. 2018; Ellis et al. 2019; Sharma et al. 2018; Walke et al.
2020] or other CAD representations [Willis et al. 2020]. We show
that when inferring ShapeAssembly programs from point clouds,
targeting a macro-enhanced version of the language leads to better
reconstruction quality.

2.2 Background: ShapeAssembly
To demonstrate the benefits of ShapeMOD, in this paper we apply
it to collections of ShapeAssembly programs [Jones et al. 2020]. Sha-
peAssembly is a domain-specific language that creates 3D shape
structures by defining parts and attaching them together. It is ex-
ecuted imperatively, and its functions use both continuous and
discrete parameters. To discover more useful macros, we modify the
grammar of ShapeAssembly slightly, as described in Appendix A.

In its original form, ShapeAssembly contains two base functions
and three macro functions. The base functions are Cuboid, which
creates an cuboid part proxy, and attach, which moves a Cuboid
to satisfy the described spatial relationship. The squeeze, reflect
and translate commands are expert-defined macros that abstract
common patterns of structural and geometric variation. Each of
these macros expands into a sequence of lower-level Cuboid and
attach commands. ShapeAssembly contains both discrete parame-
ters (cuboid IDs, cuboid faces, symmetry axes, etc.) and continuous
parameters (cuboid dimensions, attachment points, etc.). Please refer
to the original ShapeAssembly paper [Jones et al. 2020] for further
details of the language specification.

3 MACRO OPERATOR DISCOVERY
ShapeMOD’s goal is to take a dataset of programs D and the

library of DSL functions used to express them L, and return a
new library (with additional macros) which is able to express the
programs in D with fewer free parameters. The motivation here
is that macros should remove free parameters that correspond to
extraneous degrees of freedom, i.e. degrees of freedom that can
create implausible output shapes, such as independently changing
the length of each leg of a table. At the same time, we want to keep
the number of functions in our library relatively small, so as not to
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Fig. 2. ShapeMOD consists of two alternating phases: proposing new can-
didate macros (top) and refactoring programs to use some of the proposed
macros (bottom).

Algorithm 1 ShapeMOD

Input: Library of functions L, Program dataset D, Objective 𝑓
Output: Updated L with macros, best programs P∗ (D,L)
1: for num_rounds do
2: candidate_macros← Set() {Proposal Phase}
3: for num_proposal_steps do
4: 𝑃 , 𝑜 ← sampleProgAndOrder(D) {Sec 4.1}
5: Pmatches ← findMatchingProgs(D, 𝑃 , 𝑜)
6: Pcluster ← sampleByParamSim(Pmatches)
7: 𝑃abs ← findAbstractProg(Pcluster,L) {Sec 4.2}
8: M ← proposeMacrosForProg(𝑃abs) {Sec 4.3}
9: M ← generalize(M) {Sec 4.4}
10: candidate_macros +=M
11: D̃ ← subsample(D) {Integration Phase}
12: for num_integration_steps do
13: 𝑀 ← getTopRankedMacro(candidate_macros) {Sec 5.1}
14: L′ ← optimize(𝑓 , L, L + {𝑀}, D̃) {Sec 5.2}
15: L ← L′; continue
16: Minfreq ← findInfrequentMacros(D̃, L, L + {𝑀})
17: continue
18: L′ ← optimize(𝑓 , L, L + {𝑀} −Minfreq, D̃)
19: L ← L′
20: for𝑀 ∈ Minfreq do
21: L ← optimize(𝑓 , L, L + {𝑀}, D̃)
22: for𝑀 ∈ L do
23: L ← optimize(𝑓 , L, L − {𝑀}, D̃)
24: D ← filterBadOrders(𝑓 , D, L) {Sec 5.3}
25: return L, P∗ (D,L) {Sec 3.4}

remove necessary degrees of freedom that can create meaningful
shape manipulations. We formalize this trade-off in an objective
function 𝑓 which the algorithm attempts to minimize.

3.1 Overview
The ShapeMOD algorithm has two phases. First, a proposal phase
(Section 4) finds clusters of similar programs and uses these clusters
to propose a set of candidate macros. Then, an integration phase
(Section 5) greedily iterates through a ranked list of these candidate
macros and adds them to the library L whenever it would improve
the objective function 𝑓 . These phases can be alternated one after
the other for multiple rounds, with the output of one phase treated
as the input for the next (Fig. 2). By iterating this procedure for
multiple rounds, increasingly complex macros can be found; as a
macro discovered in round 𝑡 can use a previously-discovered macro
from round 𝑡 − 1 in its definition (Fig. 3).
Working with imperative programs that contain real-valued pa-

rameters presents unique challenges. For instance, it is difficult
to reason about valid line re-orderings of imperative programs
when discovering macros and deciding when they can be applied.
ShapeMOD uses a sampling-based approach to discover macros by
creating clusters of shapes with shared program structure (Section
4.1) and a beam search procedure to decide how to apply discovered
macros to existing programs (Section 3.4). Moreover, when dealing
with real-valued parameters, it is challenging to find meaningful
(non-spurious) parametric relationships, especially within a single
program. To achieve generality, ShapeMOD finds abstracted expres-
sions that simultaneously describe multiple programs from a cluster
of related shapes (Section 4.2).
Complete pseudocode for ShapeMOD is shown in Algorithm 1;

Sections 4 and 5 explain this procedure in more detail. As input, it
takes in a starting library of functions L, a dataset of imperative
programs D and an objective function 𝑓 to be minimized. Each
element of D is a tuple (𝑃,O𝑃 ) containing program lines 𝑃 and the
set of valid orderings for those lines O𝑃 (i.e. re-orderings of the lines
which produce the correct output when executed).

3.2 Initialization
In our experiments, the library L is initialized with the 5 manu-
ally designed functions from the ShapeAssembly grammar. Then,
starting with a collection of hierarchically-organized 3D cuboid
structures from PartNet [Mo et al. 2019b], we use ShapeAssembly’s
data parsing algorithm to find program lines 𝑃 which recreate each
shape. We then developed a procedure to determine the set of valid
orderings O𝑃 for that program (i.e. all orderings which produce
the correct output geometry) to form our input dataset D. Further
details about the data parsing and valid ordering procedures can be
found in the supplemental (Section A.3).

3.3 Objective Function
Our goal is to represent an entire dataset of programs compactly
(removing free parameters) while also keeping the number of func-
tions in the library small. Specifically, our objective is to minimize a
weighted sum of the number of functions in L and the number of
free parameters needed to represent programs in the dataset D. For
ShapeAssembly, free parameters can have multiple types T: Choice
of function per line (fn), cuboid ID (cid), float/continuous (f), dis-
crete (d), Boolean (b). One may care about compressing these types
differently, we allow each parameter type to be weighed differently
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𝓓

𝓛
Cuboid
attach
squeeze
translate
reflect

Propose + Integrate

Cuboid
attach
squeeze
translate
reflect
macro1
...

def macro1(fv_0, fv_1, fv_2, fv_3):
c0 = Cuboid(fv_0, fv_1, fv_2, T)
attach(bbox, .5, 0, .5, .5, 0, fv_3)

Propose + Integrate

Cuboid
attach
squeeze
translate
reflect
macro1
macro2
...

def macro2(fv_0, fv_1, fv_2, fv_3, fv_4, dv_0):
macro1(fv_0, fv_1, fv_2, fv_3)
attach(dv_0, 0, .5, .5, fv_4, 0, .5)
reflect(Y)

...

...

Round 1 Round 2

𝓓 𝓓

𝓛 𝓛

Fig. 3. Running ShapeMOD for multiple rounds allows for discovery of increasingly complex macros. Here, a macro discovered in Round 2 uses a macro
previously found in Round 1 as part of its function body.

in the objective defined as,

𝑓 = 𝜆n |L| +
1
|D|

∑
𝜏 ∈T

𝜆𝜏 |𝜏 (P∗ (D,L))| + 𝜆𝜖𝜖 (𝜏,D,P∗ (D,L))

where P∗ (D,L) returns the best programs for D using the func-
tions in L (Section 3.4), 𝜏 (P) returns the set of all 𝜏-typed free
parameters in the programs P, and 𝜖 (𝜏,D,P) returns the sum of
errors in 𝜏-typed parameters incurred by using P∗ (D,L) in place
of the original programs in D. The weights 𝜆n, {𝜆𝜏 |𝜏 ∈ T} and 𝜆𝜖
can be adjusted to express preferences for the types of macros the
algorithm aims to find. In our experiments, we use 𝜆n = 1, 𝜆fn = 8,
𝜆cid = 8, 𝜆f = 1, 𝜆d = 0.5, 𝜆b = 0.25, and 𝜆𝜖 = 10.

3.4 Finding the Best Program for a Given Library
Calculating the value of 𝑓 over a dataset of shapes requires finding
the program under L that minimizes the objective function for each
program (𝑃,O𝑃 ) ∈ D. As O𝑃 is a collection of valid orderings of the
program lines 𝑃 , we solve this problem by finding the best scoring
program under L for every 𝑜 ∈ O𝑃 . Combining an ordering 𝑜 with
program lines 𝑃 produces a program expressed in terms of base
library functions 𝑃𝑜 . We then want to find the best program, 𝑃∗,
that uses the functions in L (including macros, if L contains them)
to recreate 𝑃𝑜 while minimizing 𝑓 . We implement this procedure
with a beam search that iteratively builds partial programs in the
beam by adding calls to functions from L whose expansions cover
lines in 𝑃𝑜 . For a function expansion to cover a sequence of program
lines, the expansion must match those lines on command type, the
values of the discrete / Boolean parameters must match exactly, and
the continuous parameters must differ by an amount no greater
than 𝜖 . We set 𝜖 = 0.05, finding that larger values lead to abstracted
programs with degenerate geometry. We rank partial programs in
the beam by their objective value, normalized by the number of
lines in 𝑃𝑜 it is covering. This search runs until all programs in the
beam have no more lines in 𝑃𝑜 to cover; the program with lowest
objective value is returned as the best program 𝑃∗. In the case of
ties, we choose the program with the most canonical ordering, as
explained in the supplemental material. In our implementation, we

use a beam width of 10. Other search strategies could be applied
here; we chose beam search as it was relatively fast and found good
solutions.

4 PROPOSAL PHASE
The goal of ShapeMOD’s proposal phase is to construct a set of
candidate macros which might be useful for compressing the dataset
of shape programs D. A schematic overview of the proposal phase
is shown in Figure 4. In each proposal round, the algorithm first
forms a cluster of similar programs sampled from D (Section 4.1).
Then, using the functions of L, it finds an abstracted program that
explains the majority of examples in the cluster while trying to
remove free parameters whenever possible (Section 4.2). It converts
this abstracted program into a set of candidate macros (Section 4.3)
and finds potential generalizations of these macros (Section 4.4).
This process is repeated for num_proposal_steps (we use 10000) to
build up a large collection of candidate macros.

4.1 Form a Program Cluster
The goal of the cluster formation step is to find a set of programs
from D that can be represented by a single abstracted program,
i.e. a program with free variables. The blue box in Fig. 4 illustrates
the procedure. The algorithm first randomly samples a program 𝑃

from D and then randomly samples an order 𝑜 from the possible
valid orderings in O𝑃 (Algorithm 1, line 4). It then finds the set
of programs Pmatches from D that structurally match 𝑃 and also
have 𝑜 as one of their valid orderings in (Algorithm 1, line 5). In
ShapeAssembly, two programs structurally match if they use the
same set of commands which refer to the same cuboid IDs (though
their other parameters may vary).
For each program in Pmatches, we record the norm 𝑛 of the dif-

ference of its continuous parameters compared with those in 𝑃 .
We then form a probability distribution over Pmatches, where each
program is given a weight proportional to 1 − 𝑛

𝑛∗ , where 𝑛∗ was
the maximum observed 𝑛. Taking the parameter distance between
programs into account results in clusters that are more semantically
consistent, which increases the likelihood the abstracted program
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...

Input Dataset Form Program Cluster (4.1)

Sample Program 
& Order

Program lines:

bb = Cuboid(.5, .8, .1, T) 
c0 = Cuboid(.1, .8, .1, T)
c1 = Cuboid(.35, .1, .05, T)
squeeze(c0,bb,bb,bot,.06,.5)
attach(c1,c0,0,.5,.5,1,.2,.5)
reflect(c0, X)
translate(c1, Y, 1, .6)

Find matching 
programs

...

Sample by 
parameter similarity

...

Abstract Cluster Program (4.2)

...

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0, bb_h, fv_0, T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2, T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

Abstracted Program

...

Propose Macros (4.3) Generalize Macros (4.4)

...

Generalizes

Ge
ne
ral
ize
s

Ge
ne
ra
liz
es

Order: 1, 2, 5, 6, 3, 4, 7 

bb = Cuboid(.5, .8, .1, T) 
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.5, .8, .1, T) 
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.5, .8, .1, T) 
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(1.0,.4,1.0,T) 
c0 = Cuboid(.2,.4,1.0,T)
squeeze(bb,bb,bot,.2,.5)
reflect(X)
c1 = Cuboid(.6,.2,.2,T)
attach(c0,0,.5,.5,1,.5,.2)
translate(Z, 3, .8)

bb = Cuboid(.8, .6, .15, T) 
c0 = Cuboid(.15, .6, .15, T)
squeeze(bb, bb, bot, .1, .5)
reflect(X)
c1 = Cuboid(.5, .05, .1, T)
attach(c0, 0, .5, .5, 1, .3, .5)
translate(Y, 2, .4)

bb = Cuboid(.5, .8, .1, T) 
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.8, .6, .15, T) 
c0 = Cuboid(.15, .6, .15, T)
squeeze(bb, bb, bot, .1, .5)
reflect(X)
c1 = Cuboid(.5, .05, .1, T)
attach(c0, 0, .5, .5, 1, .3, .5)
translate(Y, 2, .4)

def macro_1(
bb, fv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot, 
fv_0 * .6, .5

)
reflect(X)

def macro_2(
bb, fv_0, fv_1

): 
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, T

)

def macro_3(
fv_0, fv_1, 
dv_0, dv_1

):
attach(
dv_0, 0, .5, .5, 
1, fv_0, 0.5

)
translate(
dv_1, fv_1, 
1- 2 * fv_0

)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def macro_1_gen_2(
bb, fv_0, fv_1, dv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, dv_0, 
fv_0 * .6, fv_1

)
reflect(X)

def macro_1_gen_1(
bb, fv_0, fv_1

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot, 
fv_0 * .6, fv_1

)
reflect(X)

def macro_1(
bb, fv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot, 
fv_0 * .6, .5

)
reflect(X)

def macro_2_gen_1(
bb, fv_0, fv_1, bv_0

): 
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, bv_0

)

def macro_2(
bb, fv_0, fv_1

): 
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, T

) ...

bb = Cuboid(.7, .8, .1, T)
c0 = Cuboid(.7, .3, .08, T)
c1 = Cuboid(.05, .7, .06, T)
c2 = Cuboid(.6, .05, .05, T)
attach(c1,bb,.5,1,.5,.1, .95, .6)
attach(c1,bb,.5,0,.5, .1, 0, .25)
attach(c2,bb,.5, 1, .5, .5, 1, .2)
attach(c0,c1,.1,.1, .1, 1, .5, .5)
reflect(c1, X)

Program

{1, 3, 5, 6, 9, 2, 8, 4, 7}
{1, 3, 6, 5, 9, 2, 8, 4, 7}
{1, 3, 5, 6, 9, 4, 7, 2, 8}
. . .

Orders

Fig. 4. ShapeMOD’s proposal phase, which proposes candidate macros to be added into L. Each round of this phase begins by identifying a cluster of
structurally-identical programs with similar parameter values within the input dataset (Section 4.1). It then finds a single abstracted program which subsumes
most or all of the programs in this cluster (Section 4.2); here, gray parameter values are abstracted as constants, blue ones as continuous free variables, and
pink ones as discrete free variables. Subsequences of lines in this abstracted program (shown in green) are isolated to form potential macros which could be
used to re-write the program (Section 4.3). Finally, this set of candidate macros is expanded by including generalizations of the initial set (Section 4.4); purple
lines show lines that are generalized. Best viewed on a high-resolution screen.

we produce can discover meaningful parametric relationships. Fi-
nally, we sample 𝑘 programs from Pmatches using this probability
distribution in order to form Pcluster (line 6). We set 𝑘 to 20.

4.2 Find Abstracted Program for Cluster
Given the cluster of programs Pcluster identified in the previous
section, the next step is to use the library of functions L to find
the most compact program (fewest free parameters) that can rep-
resent the majority of programs in Pcluster (Algorithm 1, line 7).
By construction, the sequence of functions and cuboid IDs is the
same across all programs in Pcluster. To build up the abstracted
program 𝑃abs, the algorithm uses a similar procedure to the best-
program-finding routine in Section 3.4: covering each line in the
cluster by choosing functions from L. However, instead of using a
beam search to find the sequence of functions, here we employ a
greedy strategy. We create a preference ordering over the functions
of L based on how many free parameters each function constrains
(weighted by their respective 𝜆𝜏 weights). Then, whenever we need
to pick a function, we step through this ordering, until we find a
function that is able to match the parameters of at least 𝑝 = 70% of
the next lines from Pcluster.
For each function added to the abstracted program, we iterate

through its parameter slots to see if we can remove more degrees of
freedom. For discrete parameters, a constant can be used, a previ-
ously defined parameter can be used, or a new free parameter can
be declared. For continuous parameters, a constant can be used, an
expression over previously defined parameters can be used, or a
new free parameter can be declared. The details of this logic can be
found in the supplemental material (Section B.1). In all cases, the
value chosen for each parameter must still be valid for at least 𝑝
percent of programs in Pcluster. This process iterates until there are

no remaining uncovered lines in the programs of Pcluster. At this
point, 𝑃abs is complete. The green box in Fig. 4 shows an example
of finding a single abstracted program for two base programs.

4.3 Proposing Candidate Macros
The abstracted program 𝑃abs found in the previous step represents
multiple shape programs from our dataset (via leaving some of
its parameters as free parameters). Thus, its function body likely
contains re-usable shape programming patterns—in other words, it
is a good source of potential macrosM (Algorithm 1, line 8). In this
next step, the algorithm iterates through the lines of 𝑃abs and finds
all line sequences that could be turned into a valid macro (yellow
box in Fig. 4). A valid macro𝑀 is a sequence of program lines that
simplifies the program, i.e. it must remove some degree of freedom
from the program lines it aims to cover. For both computational
efficiency, and to encourage the creation of more meaningful macros,
we impose some additional restrictions on the definition of a valid
macro; see the supplemental material (Section B.2). For each created
candidate macro, we recordwhat cluster it was found in and the lines
of the cluster it covered, in order to calculate frequency statistics
used later in the integration phase (Section 5).

4.4 Generalizing Macros
As 𝑃abs is designed to maximally condense all of the programs
in Pcluster, the generated candidate macro operatorsM may be
somewhat overly-specific to the subset of programs in Pcluster.
Furthermore,M may also contain some very similar macros that are
treated as distinct. To get around these issues, the proposal phase
concludes with a generalization step, where for each discovered
candidate macro, we also find all generalizing macros that are within
𝑛 program edits (Algorithm 1, line 9). We set 𝑛 = 2 due to running
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def...

def...

def...

...

Candidate 
macros

def top_macro(
bb, fv_0, fv_1, fv_2

):
c0 = Cuboid(bb_w, fv_0, bb_d, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(

fv_1, bb_h – fv_0, fv_2, T
)
squeeze(bb, c0, bot, 0.5, 0.5)

Pop top-ranked 
macro (5.1)

Cuboid(…)
attach(…)
squeeze(...)
reflect(…)
translate(…)
top_macro(…)

Add to macro library
ℒ! = ℒ + {M}

Find best programs given 
updated library (3.4)

Evaluate new programs under 
objective function (5.2) 

𝑓 𝒟, ℒ! < 𝑓 𝒟, ℒ
?

YE
S

NO

Keep macro
return ℒ!

Discard macro
return ℒ

def table_root_2():
bb = Cuboid(1.8, .7, .75, T)
c0 = Cuboid(1.8, .08, .75, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.3, .62, .53, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.08, 1.3, .53)

def table_root_1():
bb = Cuboid(1.2, 1, .35, T)
c0 = Cuboid(1.2, .04, .35, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.1, .96, .3, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.04, 1.1, .3)

def table_root_3():
bb = Cuboid(1.4, .5, 1.4, T)
c0 = Cuboid(1.4, .05, .4, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.2, .45,  1.2, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.05, 1.2, 1.2)

Fig. 5. ShapeMOD’s integration phase, which chooses which candidate macros to add to the DSL library L. On each round of this phase, the algorithm
heuristically ranks candidate macros based on which are likely to improve program compression, adds the top-ranked macro to the library, then finds the best
refactored program for each program in the input dataset D under this new library. If this refactoring lowers the objective value 𝑓 (D, L) , then the macro is
kept in the library; otherwise, it is discarded.

time constraints; in principle, higher values of 𝑛 will lead to better
solutions. For a given macro 𝑀 , another macro 𝑀 ′ is defined to
be generalizing if for every parameterization of 𝑀 , 𝑀 ′could be
parameterized to produce the same output. From this generalization
procedure we form a graph where each node is a macro and edges
between two nodes indicates a generalizing relationship (orange
box in Fig. 4). This graph is used to update frequency statistics (in
that generalizing macros also cover all lines covered by macros they
generalize) which influences the candidate macro ranking logic used
by the integration phase (Section 5).

5 INTEGRATION PHASE
Given candidate macros from the proposal phase, the integration
phase chooses which macros to add to the library L in order to min-
imize its objective function 𝑓 . Figure 5 shows an overview. Solving
such a subset selection problem optimally is NP-hard, so this phase
instead employees a greedy approximation. It iterates through the
candidate macro operators, on each iteration taking the highest
ranked macro based on expected improvement to 𝑓 (Section 5.1).
It then decides whether to add the macro into the library L by
evaluating its effect on the objective function (Section 5.2).

5.1 Ranking Candidate Macros
The proposal phase can generate tens of thousands of candidate
macros; it is computationally intractable to consider all of them.
To prioritize which candidate macros to consider within a finite
time budget, the algorithm employs a heuristic ranking scheme
(Algorithm 1, line 13). The rank of a candidate macro𝑀 is based on
an estimate of how much using𝑀 would improve the score of the
objective function. The ranking scheme first calculates the gain of
the macro over the functions already in L. The gain 𝑔 of a macro
𝑀 is the weighted sum of the number of free parameters (weighted
by their respective 𝜆𝜏 weights) that would be removed each time
𝑀 were used in a program instead of the lowest-cost sequence of
functions currently in L that is equivalent to or generalizes 𝑀 .
Then our ranking scheme calculates the percentage of shapes 𝑝
that produced𝑀 as a candidate macro during the proposal phase.
The ranking score of𝑀 is then simply 𝑝 · 𝑔. This score is a simple
estimate of the effect on the actual objective value 𝑓 (D,L + {𝑀})

that does not require the expensive step of finding the best programs
for the whole dataset.

5.2 Evaluating & Selecting Candidate Macros
Given a candidate macro operator 𝑀 , the next step is to see if
adding it to L would actually improve the value of the objective
function 𝑓 . For this, we define a function optimize which takes
in 𝑓 , the current library L, a modified version of the library L+
, and a subset of programs from the dataset D̃ ⊂ D. It returns
whichever version of the library has the lower objective value, i.e.
argmin(𝑓 (D̃,L+) < 𝑓 (D̃,L)). Using a subsample D̃ of the full
dataset reduces computation time, i.e. we are using an unbiased
estimator of the true objective value for the dataset.

The algorithm first calls optimize with a modified library where
𝑀 is added to L (line 14). If this leads to a library change, then it
continues to the next candidate macro operator (lines 15-16). If L
remains unchanged, it checks if any of the functions currently in L
are used significantly less in finding the best programs over D̃ when
the modified library version is used (line 17). If the set of functions
in L whose frequency decreased significantly,𝑀infreq, is not empty,
then it runs optimize once again with a modified version of the
library that includes𝑀 but removes all elements of𝑀infreq (lines
18-20). This step allows the algorithm to avoid a local minima where
𝑀 would not be added to L, even if it could ultimately improve 𝑓 ,
because similar macros to𝑀 had been added to L earlier. If this step
changes the library, then L has been updated to include𝑀 , but it
does not include any of the functions in𝑀infreq. Thus, the algorithm
attempts to add each𝑀 ∈ 𝑀infreq back intoL, by once again calling
optimize and keeping the library versionwith the better score (lines
23-24). Finally, after evaluating num_integration_steps=20 macros,
the algorithm checks if 𝑓 can be improved by removing any of the
functions in L (lines 25-26). This can be beneficial, for instance,
when a macro discovered in an early round becomes a sub-routine
of a macro discovered in a later round, and therefore appears less
frequently (or not at all) in P∗ (D,L).

5.3 Removing Bad Program Orders
When L is composed of only original library functions, any valid
ordering in O𝑃 for 𝑃 will lead to a program that produces the same
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Table 1. We measure how well different libraries can compress a dataset of
shape programs (metric details in Section 6.1). For all compression metrics,
lower values are better, as our goal is to find a small collection of functions
that remove many degrees of freedom from the underlying shape programs.
ShapeMOD operates by attempting to minimize 𝑓 , and we show that it
does in fact improve 𝑓 compared to the No Macros version.

Category Method 𝑓 |L | fn(P∗) d(P∗) f(P∗) b(P∗)

Chair
No Macros 411 5 29.8 17.8 84.4 11.3
Baseline Macros 312 36 21.7 7.0 80.2 4.2
ShapeMOD 260 17 21.0 6.4 58.1 8.6

Table
No Macros 356 5 25.6 16.3 70.7 9.6
Baseline Macros 263 36 18.0 6.4 65.8 3.2
ShapeMOD 214 15 17.4 5.1 48.7 5.6

Storage
No Macros 453 5 30.4 21.6 92.2 11.7
Baseline Macros 314 48 18.4 7.6 88.45 2.65
ShapeMOD 283 17 21.1 7.6 68.9 4.0

score under 𝑓 . As macros are added into L, using different line
orderings in O𝑃 may result in different scores under 𝑓 (as some line
orders will prohibit certain macros from being applied). As such,
after each integration round, the algorithm removes any orders from
O𝑃 that lead to objective function scores that are significantly worse
(using a threshold of 𝜏𝑜 = 1) then the score produced by the order,
𝑜∗; the order that leads to the best objective function score for 𝑃
(Algorithm 1, line 27). The following proposal rounds will then only
be able to use orderings that have not been filtered out ofD. Keeping
the orderings that perform best during the preceding integration
phase produces more accurate heuristic rankings of macros from
the proposal phase (Section 5.1). We found this encouraged the
discovery of complex macros, e.g. without this step, the ‘four leg
base’ macro was not discovered.

6 RESULTS AND EVALUATION
We experimentally evaluate ShapeMOD’s effectiveness at compress-
ing shape programs and at supporting downstream tasks. Our exper-
iments use three categories of manufactured shapes (Chairs, Tables,
Storage) from CADmodels in PartNet. We use the same data parsing
procedure as described in the original ShapeAssembly paper [Jones
et al. 2020] to produce 3836 Chair programs, 6536 Table programs,
and 1551 Storage programs. In Section 6.1, we examine the prop-
erties of ShapeMOD’s discovered macros on dataset compression.
In Section 6.2, we show that using these macros improves the per-
formance of generative models of 3D shape structures. In Section
6.3, we demonstrate that macros aid in visual program induction
tasks. And finally, in Section 6.4, we report the results of a user
study comparing performance on goal-directed shape editing tasks
with and without discovered macros.

6.1 Discovered Macros
For each shape category, we run ShapeMOD until 𝑓 stops decreasing
(5 rounds in all cases) to discover a small set of macro operators.
Instead of applying ShapeMOD directly on hierarchical programs,
we form D by decomposing each ShapeAssembly program into
a collection of non-hierarchical sub-programs (e.g., a single Chair
might contribute one program for its back sub-part and one program

for its base sub-part). We implement ShapeMOD in Python and run
the algorithm on a computer with an Intel i9-9900K CPU, which
takes 5 hours for Chairs, 12 hours for Storage, and 19 hours for
Tables.

Fig. 6 shows examples of some of the macros discovered for Ta-
bles; see the supplemental material for complete discovered libraries
for all shape categories (Section F). These macros are used by multi-
ple shape programs in our dataset, explaining common patterns and
shortening programs that use them. They also better facilitate edit-
ing: making edits to a few parameters in macro-refactored programs
tends to produce more plausible shape variations than edits to the
corresponding parameters of the macro-free program. For instance,
discovered macro_1 introduces a relationship that the heights of the
table base and the table top should sum to the height of the table
bounding box. Without this macro, edits to base ShapeAssembly
functions can easily cause the table top to overlap and intersect
parts of the table base in an implausible manner (left side of figure).

We compare the library of functions generated by our ShapeMOD
procedure to two baselines:
(i) NoMacros: The base library of functions from ShapeAssembly

that is used to initialize our ShapeMOD procedure.
(ii) Baseline Macros: A naive single-pass approach for macro dis-

covery that creates macros out of the most common structural
sequences present in the dataset and replaces parameters with
constants whenever a high percentage of its parameterizations
share similar values. See Appendix B for details.

Table 1 compares these baselines to ShapeMOD’s discovered lan-
guage on the task of compressing a dataset of 3D Shape programs.
We consider the following metrics:
• Value of ShapeMOD’s objective function (𝑓 )
• Number of functions in library (|L|)
• Number lines in the best programs (fn(P∗))
• Number of discrete parameters in the best programs (d(P∗)
• Number of continuous parameters in the best programs (f(P∗))
• Number of Boolean parameters in the best programs (b(P∗))

By adding only a handful of macros to the language, ShapeMOD
significantly compresses programs in terms of number of lines and
number of free parameters. For instance, the 12 Chair macros discov-
ered remove 30% of program lines, 64% of the discrete parameters,
and 30% of the continuous parameters needed to represent the same
dataset without macros. In total, these macro functions are able to
decrease the value of the objective function we aim to minimize
by 37%. Moreover, ShapeMOD is able to compress programs to a
greater degree than the baseline approach, especially for continuous
parameters, while using half as many (or fewer) new macros. We
examine the effects of different design decisions on the convergence
properties of ShapeMOD with an ablation experiment, described in
Appendix D.

The examples shown in Fig. 6 suggest that programs refactored
using ShapeMODmacros produce more plausible shapes under vari-
ations of their free parameters. We ran an experiment to quantify
this behavior. Given a set of ground-truth Chair programs, we run
ShapeMOD and our baseline macros procedure on them to create a
set of macro-refactored programs. We then perturb the free parame-
ters of bothmacro refactored and nomacro programs by increasingly
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def Table_1(1.1, 1.1, 1.1):
cube0 = Cuboid(1.1, .05, 1.1, T)
attach(bbox, .5, 1, .5, .5, .0, .5)
Prog_1 = Cuboid(.72, 1.05, .72, T)
squeeze(bbox, cube0, bot, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(0.12, 1.05, .69, T)
squeeze(bbox, bbox, bot, .08, .48)
reflect(X)
cube1 = Cuboid(.69, .18, .04, T)
attach(bbox, .5, 1, .5, .52, 0, .02)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

def Table_1(1.1, 1.1, 1.1):
cube0, Prog_1 = macro_1(.05, .72, .72, T)

def Prog_1(bbox):
Prog_2 = macro_18(.12, .69, .08, .48, X)
cube1 = macro_17(.69, .18, .04, .52, .02)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…def Table_1(2.0, 0.8, 1.2):

cube0 = Cuboid(1.1, .2, 1.1, T)
attach(bbox, .5, 1, .5, .5, .0, .5)
Prog_1 = Cuboid(1.9, 1.05, 1.2, T)
squeeze(bbox, cube0, bot, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(0.12, 1.05, .69, T)
squeeze(bbox, bbox, bot, .08, .48)
reflect(X)
cube1 = Cuboid(1.65, .18, .04, T)
attach(bbox, .5, 1, .5, .52, 0, .25)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

def Table_1(2.0, 0.8, 1.2):
cube0, Prog_1 = macro_1(.2, 1.9, 1.2, T)

def Prog_1(bbox):
Prog_2 = macro_18(.12, .69, .08, .48, X)
cube1 = macro_17(1.65, .18, .04, .52, .25)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

EDIT

EDIT

ShapeMOD
Def Table_2(1.58, 0.9, 1):
cube0, Prog_1 = macro_12(.01, 1.4, .9, .86, .5)
def Prog_1(bbox):
Prog_2, Prog_3 = macro_20(.1, .1, .05)
cube2 = macro_9(1.4, .04, .86, Prog_2, .05, .1, .5, .1, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

Def Table_2(1.58, 0.9, 1):
cube0 = Cuboid(1.58, .01, 1, T)
attach(bbox, .5, 1, .5, .5, 0, .5)
Prog_1 = Cuboid(1.4, .9, .86, T)
attach(bbox, .5, 0, .5, .5, 1, .5)
attach(cube0, .5, 1, .5, .5, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .05, 0.1)
reflect(X)
Prog_3 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .05, .9)
reflect(X)
cube2 = Cuboid(1.4, .04, .86, T)
attach(Prog_2, .05, .5, .1, .5, .1, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

Def Table_2(0.8, 1.2, 1.6):
cube0 = Cuboid(1.58, .01, 1, T)
attach(bbox, .5, 1, .5, .5, 0, .5)
Prog_1 = Cuboid(1.4, .9, 1.6, T)
attach(bbox, .5, 0, .5, .5, 1, .5)
attach(cube0, .5, 1, .5, .5, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(.25, .89, .1, T)
squeeze(bbox, bbox, bot, .05, .15)
reflect(X)
Prog_3 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .1, .9)
reflect(X)
cube2 = Cuboid(.45, .04, 1.4, T)
attach(Prog_2, .05, .5, .1, .9, .2, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

EDIT

Def Table_2(0.8, 1.2, 1.6):
cube0, Prog_1 = macro_12(.01, 1.4, .9, 1.6, .5)
def Prog_1(bbox):
Prog_2, Prog_3 = macro_20(.25, .15, .1)
cube2 = macro_9(.45, .04, 1.4, Prog_2, .05, .1, .9, .2, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

EDIT

ShapeMOD

def macro_18(
bb, fv_0, fv_1, fv_2, fv_3, dv_0

):
c0 = Cuboid(fv_0, bb_h, fv_1, T)
squeeze(bb, bb, bot, fv_2, fv_3)
reflect(dv_0)

def macro_20(
bb, fv_0, fv_1, fv_2

):
macro_18(
bb, fv_0, fv_0, fv_0 * .4, fv_1, X)
macro_18(
bb, fv_0, fv_0, fv_2, 1 – fv_1, X)

def macro_1(
bb, fv_0, fv_1, fv_2, bv_1

):
c0 = Cuboid(bb_w, fv_0, bb_d, T)
attach(bb, .5, 1, .5, .5, 0, .5)
c1 = Cuboid(fv_1, bb_h – fv_0, fv_2, bv_1)
squeeze(bb, c0, bot, .5, .5)

Library of Discovered Macros

…

Fig. 6. We show some macros (top-middle) that ShapeMOD discovered when run on the Table dataset, and program refactors that use these macros
to significantly compress the number of exposed free parameters (ShapeMOD arrows from outside to inside). We show program edits (down arrows) of
corresponding parameters in both programs with macros (green) and without macros (red). The discovered macros capture parametric relationships that
better preserve shape plausibility under manipulation; for example, all chair legs remain the same size in the third column (macros), while the shape in the
fourth column (no macros) becomes disconnected and physically implausible .

Fig. 7. We measure distributional similarity (Frechet Distance) between a
set of reference chairs and a set of chair programs subjected to perturbations.
We simulate perturbations by adding noise from a normal distribution (x-axis
is 𝜎) to continuous parameters in the programs. Programs with ShapeMOD
macros retain more similarity under larger perturbations, suggesting the
macros remove degrees of freedom that permit shapes to move outside of
their original distribution.

large perturbations, and we check how distributionally similar the
outputs of the perturbed programs are to a held-out validation set of
Chair shapes using Frechet Distance [Heusel et al. 2017] in the fea-
ture space of a PointNet classifier pre-trained on ShapeNet [Chang
et al. 2015; Qi et al. 2017]. Figure 7 plots this distance against the

magnitude of parameter perturbation. Frechet Distance increases
more slowly for programs that use macros, and increases the slowest
for macros found using ShapeMOD. This indicates that the modes
of variation in programs expressed with our method’s macros are
better at producing plausible output shapes that stay within the dis-
tribution that the collection of input programs originally came from.
In Section 6.4, we conduct a shape-editing user study to further
validate this behavior.

6.2 Generating 3D Shapes
We are interested in how well ShapeMOD’s discovered macros sup-
port the downstream task of generative shape modeling. Our hy-
pothesis is that using macros will restrict the output space of a
program-generating model, making it harder to output ‘garbage’
shapes. To test this hypothesis, we train generative models on pro-
grams with and without ShapeMOD macros.

For our generative model, we use the variational autoencoder ar-
chitecture from ShapeAssembly [Jones et al. 2020], modified slightly
to support programs that use an arbitrary number of functions as
opposed to a fixed, predefined set (see Appendix C for details). We
train each model for 5000 epochs with a learning rate of 2𝑒−4 and a
batch size of 64. At the end of training, we choose the model from
whichever training epoch produced the lowest Frechet Distance
[Heusel et al. 2017] to the training set; we report all other metrics
on a held out set. Training was done on a computer with a GeForce
RTX 2080 Ti GPU with an Intel i9-9900K CPU, consumed 2GB of
GPUmemory, and takes approximately 14 hours for Chairs, 22 hours
for Tables, and 8 hours for Storage.
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Geom NN

ShapeMOD

Prog NN

Fig. 8. Some example outputs of generative models trained to produce ShapeAssembly programs expressed with macros discovered by ShapeMOD, along
with their training set nearest neighbors (NN) by geometric and program similarity. Each cuboid represents a part proxy bounding volume. Structures are
formed through attaching parts to one another (red dots). The generative models produce a variety of plausible structures without memorizing their training
data. All corresponding programs can be found in supplemental material.

Fig. 8 shows some examples of novel shapes synthesized by these
generative models, as well as their nearest neighbor from the train-
ing set according to both program similarity and geometric similar-
ity. The generative models are capable of producing valid, plausible
output shapes, and they do not simply memorize their training data.
We quantitatively assess the quality of the generative models’

output shapes using the following metrics (additional details in
supplemental Section C):
• Rootedness ⇑ (% rooted): percentage of shapes whose leaf
parts all have a path to the ground.
• Stability ⇑ (% stable): percentage of shapes which remain
upright when subjected to a small vertical drop.
• Realism ⇑ (% fool): percentage of test set shapes classified as
“generated” by a PointNet [Qi et al. 2017] trained to distinguish
between generated shapes and training set shapes.
• Frechet Distance ⇓ (FD): distributional similarity between
generated shapes and training set shapes in the feature space
of a pre-trained PointNet [Heusel et al. 2017].

Table 2 shows the results of this experiment. Metrics related
to realism/plausibility (% fool, FD) are always best for programs
that use ShapeMOD macros as opposed to other language variants.
Complexity (# Parts) and validity (% rooted, % stable) metrics also
generally improve. The simple baseline macros are considerably
worse; worse, in fact, than using no macros at all. We provide some
qualitative comparisons of generated outputs from ShapeMOD vs
No Macros in Appendix E.

6.3 Inferring 3D Shape Structures
Another downstream task is visual program induction: inferring a
shape program fromunstructured input geometry. Here, we consider
inferring ShapeAssembly programs from a point cloud. As with
generative modeling, our hypothesis is that macros will regularize
this problem, making it harder to output invalid shapes.

We train the program inference networks end-to-end in an encoder-
decoder paradigm. The encoder uses a PointNet++ architecture to

Table 2. Comparing the quality of programs sampled from a learned gen-
erative model. Generative models trained on programs with ShapeMOD
macros tend to produce more visually plausible, physically valid, and com-
plex shapes than those trained on programs expressed with other libraries.

Category Method % fool ⇑ FD ⇓ # Parts ⇑ % rooted ⇑ % stable ⇑

Chair
No Macros 21.2 17.8 7.6 93.9 82.3
Baseline Macros 16.9 24.1 8.5 89.8 74.2
ShapeMOD 25.6 16.7 8.6 92.7 79.5

Table
No Macros 27.7 26.0 8.0 88.8 76.1
Baseline Macros 11.5 38.1 7.0 90.2 79.6
ShapeMOD 29.2 23.2 7.8 93.2 84.3

Storage
No Macros 4.9 70.0 6.0 92.4 85.5
Baseline Macros 5.5 78.9 7.6 86.2 78.3
ShapeMOD 11.1 38.1 7.7 95.1 90.5

embed a point cloud sampled from dense surface geometry into a
latent space. The decoder is identical the one used for generative
modeling, it converts a point in this latent space into a hierarchical
shape program. We create a 80/10/10 training/validation/test set
split for all categories. Each network is trained for 2000 epochs with
a learning rate of 2e-4 and a batch size of 32. We report metrics on
test set shapes, and choose the model that reported the best Chamfer
distance on the validation set.

Table 3 shows the results of this experiment. As with generative
modeling, using ShapeMOD macros results in significantly better
performance. Using ShapeMOD macros leads to better reconstruc-
tion accuracy, in terms of Chamfer distance and F-score, for all
categories (average relative improvement for both is 11%). More-
over, the programs that are inferred with macros also always result
in shapes that are more physically valid in terms of stability and
rootedness. Fig. 9 shows some example input point clouds and the
shapes produced by their inferred programs. Macros help consid-
erably, especially for Storage, which is the most structurally- and
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Point Cloud

No Macros

ShapeMOD

Fig. 9. Example visual program induction results from our point cloud→ program inference experiment. ShapeMOD macros are especially helpful for the
heterogeneous Storage category. All corresponding programs can be found in the supplemental material.

Table 3. Quantitative results from our visual program induction experiment,
where we train encoder-decoder models that learn to infer ShapeAssem-
bly programs from point clouds. ShapeMOD macros regularize the output
program space, leading to significant and consistent improvement in both
reconstruction accuracy and physical validity. Note: Chamfer Distance (CD)
values are multiplied by 1000 for clarity and we use a F-Score threshold of
0.03 [Knapitsch et al. 2017].

Category Method CD ⇓ F-Score ⇑ % rooted ⇑ % stable ⇑

Chair No Macros 44.2 54.8 93.7 83.6
ShapeMOD 41.7 56.1 96.9 88.0

Table No Macros 41.1 64.0 92.8 78.2
ShapeMOD 36.7 68.7 95.2 88.5

Storage No Macros 56.5 41.1 95.0 87.7
ShapeMOD 47.0 53.0 97.6 92.6

geometrically-heterogeneous category and thus most likely to cause
structured prediction models to output garbage.

6.4 Interactive Shape Editing
Our final downstream task is interactive shape editing. We hypoth-
esize that programs with macros will support easier, more efficient
shape editing. To test this hypothesis, we built an interactive Sha-
peAssembly editor and conducted a user study with it.

Editing interface. We designed an interactive editing interface tai-
lored to the goal-directed editing task of modifying a ShapeAssembly
program such that its output shape matches a target output shape
as closely as possible. Fig. 10 shows our interactive editing interface.
The left panel shows the text of the current ShapeAssembly pro-
gram. The top-right panel shows the current output shape produced
by this program; the bottom-right panel shows the target shape.

Fig. 10. A screenshot of our editing interface. The key elements are: (1) A
view of the ShapeAssembly program’s text. (2) Contextual sliders (enlarged
in the figure) that allow the user to edit program parameters. (3) A view of
the current program’s output. Note the optional wireframe of the target
shape and the ability to highlight correspondences between cuboids in the
text and the 3D viewer (blue highlights shown). (4) The target shape.

The cameras of the two shape view panels are synchronized, such
that if a user moves the viewpoint of one, the other one follows.
The user also has the option of toggling a wireframe display of the
target shape overlaid on the current output shape, which can assist
with making fine-tuning edits. Finally, in this interface, the text of
the program is frozen: users are only allowed to manipulate the
continuous programs parameters via contextual slider widgets that
appear when a parameter is clicked. See the supplemental video for
a demonstration of the interface.
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Experiment design. Our study asked participants to perform a
series of goal-directed editing tasks. To ensure that it was possible
to complete these tasks, we selected each target shape by finding a
program in our dataset that was identical to the input program up
to continuous parameters. We recruited 38 participants, all of whom
were university students with some programming background. Par-
ticipants were randomly divided into one of two conditions: editing
programs with ShapeMOD macros or programs without them. Par-
ticipants were not told the meaning of their assigned condition.
First, each participant was shown a short tutorial which explained
the features of ShapeAssembly and allowed them to become familiar
with the editing interface. Then, participants completed six editing
tasks (two for each of Chair, Table, and Storage). Participants were
given 10 minutes to complete each task. After completing these
tasks, participants completed an exit survey which asked them to
rate the ease of each task (1-5, with 5 being easiest) as well as to
provide qualitative feedback about their experience.

Results. Wefirst ask the question: how long did it take participants
to edit the program to produce a close match to the target shape?
Fig. 11 plots the running lowest corner distance of the program
output to the target shape as a function of task time elapsed, for
each of the six study tasks, averaged across participants in each
condition. For all tasks, participants using ShapeMOD macros more
quickly converged to the target shape.

We also examined the participants’ responses to survey questions.
Fig. 12 shows the ease rating given to each task, averaged across
participants in each condition. For most tasks, participants using
ShapeMOD macros rated the task as slightly easier to complete.

6.5 Cross-category Macro Discovery
We also wondered: can one discover useful macros from a dataset
consisting of multiple categories of shapes? To answer this ques-
tion, we ran the ShapeMOD algorithm on the union of our Chair,
Table, and Storage datasets, and report full quantitative results in
the supplemental material (Section E). Interestingly, the library of
functions discovered across multiple categories led to better pro-
gram compression statistics, but slightly degraded performance on
novel shape generation and program inference tasks, compared with
libraries discovered by category specific ShapeMOD runs. These
experiments show that for downstream tasks it is slightly better
to run ShapeMOD on a per-category basis, although the marginal
performance gap provides evidence that the discovered macros can
generalize.

7 CONCLUSION & FUTURE WORK
Wepresented ShapeMOD, an algorithm for discovering usefulmacros
across a dataset of shape programs. To our knowledge, ShapeMOD
is the first method that discovers common abstractions from a set of
imperative programs with relationships between continuous vari-
ables. The macros ShapeMOD finds significantly compress the input
programs, and these compressed programs lead to better results
when used to train models for generating shape structures and in-
ferring shape programs from point clouds. We also conducted a
user study which showed that compressed programs allow for more
efficient shape program editing.

The abstractions that ShapeMOD currently considerswhen propos-
ing macros are relatively simple refactorings of free parameters (e.g.
into constants or expressions of other variables). The algorithm
could be extended to consider other forms of abstraction, for exam-
ple explaining repeated statements with for loops, use of conditional
branches, etc. Such abstractions might allow ShapeMOD to discover
even more complex macros, such as new forms of symmetry groups.
As mentioned in Section 5, ShapeMOD’s integration step is in-

tractable to solve optimally. But even the greedy approximation we
use can be slow for large collections of shape programs. The major
computational bottleneck is the cost of finding optimal programs
𝑃∗ (D,L). This step could potentially be accelerated via neurally-
guided program search, i.e. training a neural net which proposes
which macros are most promising for explaining which lines of the
original programs [Ellis et al. 2018a, 2020; Lu et al. 2019].

ShapeMOD requires programs in a base DSL as input. While
some shape datasets exist which are readily convertible into such a
format (e.g. PartNet [Mo et al. 2019b]), they are not widely available.
It would be interesting to try discovering a shape programming
language (complete with macros) from scratch given, for instance,
only a set of parts per shape in a shape collection.

While ShapeMOD finds macros that are useful across shape pro-
gram collections, it does not give them semantic names. In fact, some
users in our editing study found the base ShapeAssembly functions
easier to work with than the macros for this reason (even though
they edited more efficiently with the macros). Finding efficient ways
to assign semantic names to automatically-discovered macros would
be a fruitful direction for future work.
Finally, while we demonstrated the ShapeMOD algorithm on

ShapeAssembly programs in this paper, the method is quite general
in principle: it makes no assumptions about its input language, other
than that it is imperative and has certain parameter types. Aside
from shape modeling, other graphics problems may be expressible
in such a language (e.g. shader programming). We are excited to
see how ShapeMOD’s automatic macro discovery capabilities might
find applications elsewhere in computer graphics and beyond.
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Table 4. Modified grammar of ShapeAssembly [Jones et al. 2020].

Start −→ BBoxBlock; ShapeBlock;
BBoxBlock −→ bbox = Cuboid(𝑤,ℎ,𝑑, True)
ShapeBlock −→ PBlock ; ShapeBlock | None
PBlock −→ 𝑐𝑛 = Cuboid(𝑤,ℎ,𝑑, 𝑎) ; ABlock; SBlock
ABlock −→ Attach | Attach ; Attach | Squeeze
SBlock −→ Reflect | Translate | None
Attach −→ attach(𝑐𝑛1 , 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2)
Squeeze −→ squeeze(𝑐𝑛1 , 𝑐𝑛2 , 𝑓 ,𝑢, 𝑣)
Reflect −→ reflect(axis)
Translate −→ translate(axis,𝑚,𝑑𝑖)
𝑓 −→ right | left | top | bot | front | back
axis −→ X | Y | Z
𝑤,ℎ,𝑑 ∈ R+
𝑥, 𝑦, 𝑧,𝑢, 𝑣,𝑑𝑖 ∈ [0, 1]2
𝑎 ∈ [True, False]
𝑛,𝑚 ∈ Z+

A MODIFIED SHAPEASSEMBLY GRAMMAR
Table 4 shows the modified grammar for ShapeAssembly that we use.
We make the following changes from the ShapeAssembly version
presented in [Jones et al. 2020]. Instead of having separate blocks
where all cuboids are defined, then all attaches are defined, and
then finally all symmetry operators are defined, we interleave the
attach / symmetry commands with the cuboids they move. Specifi-
cally a program starts with defining a bounding volume, and then
is followed with a series of PBlocks. Each PBlock defines a Cuboid,
attaches it to at least one previous cuboid (or the bounding vol-
ume), and optionally applies a symmetry operation to it. We find
that this ordering permits the discovery of more interesting and
useful macros, as otherwise macros would mostly be made up of
only Cuboid definitions or only attachments (instead of a mix of
operators). As a by-product of this new ordering, we assume that
all non-Cuboid operators (attach, squeeze, reflect, translate)
always operate on the last defined cuboid, and so in this way we
remove one cuboid index parameter from each of these functions.

B BASELINE METHOD FOR MACRO OPERATOR
DISCOVERY

Designing a baseline for ShapeMOD is non-trivial, because there do
not exist any existing methods that are able to find macro operators
over datasets of programs written in imperative languages that
contain continuous parameters. Thus, we present a naive single-
pass algorithm that mimics a simplified version of ShapeMOD’s core
logic. It starts by choosing one order for each program in the dataset.
Specifically, the most canonical order, as defined in the supplemental
material (Section A.3). Then it records all subsequences of functions
that appear in the resulting program lines. If any subsequence is
observed in more than 10% of programs in the dataset, then it is
turned into a macro function. Parameters of this macro function
can be converted from free parameters to constants if at least 90
% of the parameterizations of this subsequence across the dataset
had the same value (for discrete parameters) or were within .05
range of the mean value (for continuous parameters). Once these
macros have been discovered, we use the best program finding step
from ShapeMOD to create a dataset of programs expressed with
macros discovered by the baselinemethod. As shown throughout the
results section, the macros discovered by ShapeMOD outperform
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the macros discovered by this baseline method, for every task we
consider.

C A NETWORK ARCHITECTURE FOR ANY LIBRARY
After running our procedure to generate a library 𝐿, we want to
design a neural network that is able to generate programs using the
functions of 𝐿. As our procedure is able to produce many different
libraries 𝐿, depending on which macro operators it discovers, our
network architecture must be flexible enough to model any set
of discovered functions. To demonstrate that this is achievable,
we generalize the neural network from [Jones et al. 2020] so that
it is able to learn how to generate programs expressed in any 𝐿

discovered through our procedure, and validate this works in later
experiments.
The base model is a hierarchical sequence VAE. The encoder

branch ingests a hierarchical program and embeds it into a high
dimensional latent space. The decoder branch converts a code from
this latent space into a hierarchical program. Originally, the underly-
ing library was fixed to ShapeAssembly, so the network architecture
and input representation could be tailored to one set of functions.

We design a generalized version of this network architecture that
is customized based on the library of functions 𝐿 discovered by our
procedure. The parts of the architecture that had to be generalized
were the tensor line representation and the sub-networks in the line
decoder module.
In our new line representation, the dimension of the line tensor

and meaning of each index changes depending on 𝐿. The first |𝐿 | + 2
indices of the tensor correspond to a one hot vector denoting the
function type of each line (notice we add special START and STOP
tokens). Then for each type of discrete parameter, 𝑝𝑑 , we find its
number of valid values, 𝑝𝑑_𝑠𝑖𝑧𝑒 , and maximum number of 𝑝𝑑 free
parameters in any function of 𝐿, 𝑝𝑑_𝑓 𝑟𝑒𝑒 . We then reserve 𝑝𝑑_𝑓 𝑟𝑒𝑒
slots of size 𝑝𝑑_𝑠𝑖𝑧𝑒 in our tensor for 𝑝𝑑 , where each slot corresponds
to a one hot vector whenever 𝑝𝑑 is required by a function. Finally,
for any function 𝑓 ∈ 𝐿 that takes in a set of continuous parameters,
𝑓𝑐 , we reserve a slot in our tensor of size |𝑓𝑐 |.
The number and structure of sub-networks in our new line de-

coder model also depends on 𝐿. The𝑀𝑓 𝑢𝑛𝑐 module is responsible
for predicting the line’s function, and therefore has |𝐿 | + 2 possible
outputs (the functions of 𝐿 and the special START and STOP tokens.
For each 𝑓 ∈ 𝐿, for each of its free discrete parameters 𝑓𝑑_𝑖 , we add
a sub-network 𝑀𝑓 _𝑑_𝑖 responsible for predicting the ith discrete
parameter of 𝑓 . Then, for every 𝑓 that has free continuous param-
eters, we add a sub-network 𝑀𝑓 _𝑐 for predicting the continuous
parameters of 𝑓 .

We implement each sub-network as a 3 layer MLP. The network
is trained in a teacher forcing paradigm with a cross entropy loss for
all discrete predictions and an l1 loss for all continuous predictions.
Parameter sub-networks are invoked, and tensor slots in each line
are filled, depending on the function type predicted in each output
line. Otherwise we use the same hyper-parameters as in Jones et
al. [2020]

Table 5. Evaluating the convergence properties of ShapeMOD under differ-
ent ablation variants. Lower values of 𝑓 are better.

Method 𝑓 ⇓

ShapeMOD (5 rounds) 68.1
ShapeMOD (3 rounds) 72.0
ShapeMOD (1 round) 82.7
No Pmatches Dist (5 rounds) 68.4
No Beam Search (5 rounds) 71.6
No Bad Order Filter (5 rounds) 73.6
No Generalize Macros (5 rounds) 79.3
No Valid Macros Criteria (5 rounds) 91.5

D SHAPEMOD CONVERGENCE PROPERTIES
To characterize how different design decisions affect the conver-
gence properties of ShapeMOD, we ran an ablation experiment
(Table 5). Each variant was tasked with discovering a library of
macros for the dataset of chair programs, and we track how well
each variant’s library was able to compress the dataset according to
ShapeMOD’s objective function 𝑓 (Section 3.3). The "Pmatches Dist"
variant replaces the sampleByParamSim function (Alg 1, line 6) with
a uniform sample over matching programs. The "No Beam Search"
variant replaces the beam search step from Section 3.4 with a best-
first search approach. The "No Bad Order Filter" variant removes the
filterBadOrders function (Alg 1, line 27). The "No GeneralizeMacros"
variant removes the generalize function (Alg 1, line 9). The "No Valid
Macro Criteria" variant accepts any proposed macro function, ignor-
ing the validity criteria from Section B.2 of the supplemental. Notice
that the full version of ShapeMOD achieves the lowest objective
function value compared with all of the other variants, and that the
discovered library of macros does improve through multiple rounds
of the algorithm (top three rows).

E SHAPE GENERATION QUALITATIVE COMPARISON
We share some interesting representative shape programs output by
learned ShapeAssembly generative models in Figure 13. Outputs by
the model trained with ShapeMOD macros are shown in blue. Out-
puts by the model trained on the No Macros programs are shown in
green. We include all generated program text in the supplemental
materials. These qualitative results enforce the trends of our earlier
quantitative experiments from Section 6.2. The best generations
from Chairs and Tables are qualitatively similar, although across en-
tire shape collections we calculated that programs with ShapeMOD
macros were more plausible. For storage, the qualitative difference
is more pronounced, as the generations that use ShapeMOD macros
are able to create output shapes that are much closer in distribution
to the target shape collections.
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Fig. 13. Samples generated from generative models of ShapeAssembly programs with ShapeMOD macros (blue) and without macros (green).
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