
Supplemental Material for
PLAD: Learning to Infer Shape Programs with
Pseudo-Labels and Approximate Distributions

A. Details of Domain Grammars

2D CSG We follow the grammar from CSGNet [3]. This
grammar contains 3 Boolean operations (intersect, union,
subtract), 3 primitive types (square, circle, triangle), and pa-
rameters to initialize each primitive (L and R tuples). Please
refer to the CSGNet paper for details.

S → E;

E → EET | P (L,R);

T → intersect | union | subtract;
P → square | circle | triangle;

L →
[
8 : 8 : 56

]2
; R →

[
8 : 4 : 32

]
.

3D CSG We design our own grammar for 3D CSG similar
in spirit to the grammar of CSGNet. While CSGNet does
contain a 3D CSG grammar, we find that it overly discretizes
the possible spacing and positioning of primitives. Therefore
in our grammar, we allow each primitive to be parameterized
at the same granularity as the voxel grid (32 bins). In this
way, each primitive takes in 6 parameters (instead of 2 pa-
rameter tuples), where the 6 parameters control the position
and scaling of the primitive.

S → E;

E → EET | P (F, F, F, F, F, F);

T → intersect | union | subtract;
P → cuboid | ellipsoid;
F →

[
1 : 32

]
ShapeAssembly ShapeAssembly is a domain-specific lan-
guage for creating structures of 3D Shapes [1]. It creates
structures by instantiating parts (Cuboid command), and
then attaching parts to one another (attach command). It
further includes macro operators that capture higher-order
spatial patterns (squeeze, reflect, translate commands). To
remain consistent with our CSG experiments, we further

modify the grammar such that all continuous parameters are
discretized.

S −→ BBoxBlock;ShapeBlock;

BBoxBlock −→ bbox = Cuboid(1.0, x, 1.0)

ShapeBlock −→ PBlock;ShapeBlock | None

PBlock −→ cn = Cuboid(x, x, x);ABlock;SBlock

ABlock −→ Attach | Attach;Attach | Squeeze
SBlock −→ Reflect | Translate | None

Attach −→ attach(cuben, f, uv, uv)

Squeeze −→ squeeze(cuben, cuben, face, uv)

Reflect −→ reflect(axis)
Translate −→ translate(axis,m, x)

f −→ right | left | top | bot | front | back

axis −→ X | Y | Z

x ∈ [1, 32]/32.

uv ∈ [1, 10]2/10.

n ∈ [0, 10]

m ∈ [1, 4]

B. Details of Synthetic Pretraining
2DCSG We follow the synthetic pretraining steps from
CSGNet and directly use their released pretrained model
weights. Please refer to their paper and code for further
details.

3DCSG We generate synthetic programs for 3D CSG with
the following procedure. First, we sample K primitives,
where K is randomly chosen between 2 and 12. To sample
a primitive, we sample a center position within the voxel
space, and then we sample a scale, such that the scale is con-
strained so that the primitive will not extend past the borders
of the voxel grid. We then find if the bounding boxes of
any two primitives overlap in space (using the position and
scale of each primitive). We then construct a binary tree of

1

Boolean operations by randomly merging the K primitives
together, until only one group remains. Each Boolean op-
eration merges two primitive groups into a single primitive
group. The type of semantically valid Boolean operation de-
pends on the overlaps between primitives of the two groups.
When a group of primitives A and a group of primitives B
is merging: union is always a valid operation, difference
is a valid operation if each primitive in group B shares an
overlap with some primitive in group A, and intersection
is a valid operation if each primitive in group A shares an
overlap with some primitive in group B and each primitive
in group B shares an overlap with some primitive in group
A. We can then unroll this binary tree of boolean operations
into a sequence of tokens from the CSG grammar, form-
ing a synthetic program. We sample 2,000,000 synthetic
programs according to this procedure, that are used during
supervised pretraining, and we sample another 1000 syn-
thetic programs that we use a validation set. We pretrain
our model for 40 epochs, where each epoch takes around
1.5 hours to complete. At this check-point, the model had
converged to a reconstruction IoU of 90 on both train and
validation synthetic data.

ShapeAssembly We generate synthetic programs for Sha-
peAssembly with the following procedure. We first sample
the number of primitive blocks K (PBlock), where K is ran-
domly chosen between 2 and 8; note that the number of
cuboids created can be greater then K, when symmetry op-
erations are applied. Each PBlock is filled in with random
samples according to the grammar syntax. First a cuboid
is created, then an attach block is applied, then a symme-
try block is applied. An attach block can contain either
one attach operation, one squeeze operation, or two attach
operations. A symmetry block can contain either a reflect
operation, a translation operation, or no operation. Com-
mand parameters are randomly sampled according to simple
heuristics (e.g. reflections are more common than trans-
lations) and in order to maintain language semantics (e.g.
attaches can only be made to previously instantiated cuboid
indices). A final validation step occurs after a complete set
of program tokens has been synthetically generated; we exe-
cute the synthetic program, and check how many voxels are
uniquely occupied by each cuboid in the executed output. If
any cuboid uniquely occupies less than 8 voxels, the entire
synthetic sample is rejected. We sample 2,000,000 synthetic
programs according to this procedure, that are used during
supervised pretraining, and we sample another 1000 syn-
thetic programs that we use as a validation set. We pretrain
our model for 26 epochs, where each epoch takes around
40 minutes to complete. At this check-point the model had
converged to reconstruction IoU of 70 on both train and
validation synthetic data.

C. Experiment Hyperparameters
3D Experiments For 3D CSG and ShapeAssembly, we
use the following model hyper-parameters.

The encoder for both cases is a 3D CNN that consumes
a 32 x 32 x 32 voxel grid. It has four layers of convolution,
ReLU, max-pooling, and dropout. Each convolution layer
uses kernel size of 4, stride of 1, padding of 2, with channels
(32, 64, 128, 256). The output of the CNN is a (2x2x2x256)
dimensional vector, which we transform into a (8 x 256)
vector. This vector is then sent through a 3-layer MLP with
ReLU and dropout to produce a final (8 x 256) vector that
acts as an 8-token embedding of the voxel grid.

The decoder for both cases is a Transformer Decoder
module [6]. It uses 8 layers and 16 heads, with a hidden di-
mension size of 256. It attends over the 8-token CNN voxel
encoding and up to 100 additional sequence tokens, with
an auto-regressive attention mask. We use a learned posi-
tional embedding for each sequence position. An embedding
layer lifts each token into an embedding space, consumed
by the transformer, and a 2-layer MLP converts Transformer
outputs into a probability distribution over tokens.

In all cases we set dropout to 0.1 . We use a learning rate
of 0.0005 with the Adam optimizer [2] for all training modes,
except for RL, where following CSGNet we use SGD with a
learning rate of 0.01 . During supervised pretraining we use
a batch size of 400. During PLAD method fine-tuning we
use batch size of 100. During RL fine-tuning we use a batch
size of 4, due to memory limitations (a batch size of 4 takes
up 10GB of GPU memory). Early stopping on the validation
set is performed to determine when to end each round and
when to stop introducing additional rounds. For deciding
when to stop introducing additional rounds, we use a pa-
tience of 100 epochs. For deciding when to stop each round,
we use a patience of 10 epochs. In both cases we employ a
patience threshold of 0.001 IoU improvement (e.g. we must
see at least this much improvement to reset the patience).
Within each round of PLAD training, we check validation set
reconstruction performance with a beam size of 3; between
rounds of PLAD training we check validation set reconstruc-
tion performance with a beam size of 5; final reconstruction
performance of converged models is computed with a beam
size of 10.

For RL runs, we make a gradient update after every 10
batches, following CSGNet. For runs that involve VAE
training (all Wake-Sleep runs), we add an additional module
in-between the encoder and the decoder. This module uses an
MLP to convert the output of the encoder into a 128 x 2 latent
vector (representing 128 means and standard deviations).
This module then samples an 128 dimensional vector from
a normal distribution described by the means and standard
deviations, and further lifts this encoding into the dimension
that the decoder expects with a sequence of linear layers. For
each round of VAE training, we allow the VAE to update

PBEST mode ST LEST LEST+ST LEST+ST+WS
Per round 0.881 1.011 0.853 0.845
All-time 0.841 0.976 0.829 0.811

Table 1. Different ways to update PBEST data structure. In the
"Per round" row, the data structure is cleared in between rounds. In
the "All-time" row, the data structure maintains the best program
for each input shape across multiple rounds.

for no more than 100 epochs. We perform early-stopping
for VAE training with respect to its loss, where the loss
is a combination of reconstruction (cross-entropy on token
predictions) and KL divergence, both weighed equally.

2D Experiments For 2DCSG, we follow the network ar-
chitecture and hyper-parameters of CSGNet. All training
regimes use a dropout of 0.2 and a batch size of 100. PLAD
methods use the Adam optimizer with a learning rate of
0.001. For deciding when to stop introducing additional
rounds, we use a patience of 1000 epochs. For deciding
when to stop each round, we use a patience of 10 epochs.
In both cases we employ a patience threshold of 0.005 CD
improvement. The parameters for the RL runs and VAE
training are the same as in the 3D Experiments.

D. P Best Update mode
During updates to PBEST , we choose to update each

entry in PBEST according to which inferred program has
achieved the best reconstruction similarity with respect to the
input shape. The entries of this data structure are maintained
across rounds. There is another framing where the entries
of this data structure are reset each round, so that the best
program for each shape is reset each epoch. This is similar
to traditional self-training framing.

We run experiments on 2D CSG with this variant of
PBEST update and present results in Table 1. When the
best program is maintained across rounds (All-time, bottom
row) each fine-tuning strategy reaches a better converged re-
construction accuracy compared with when the best program
is reset after each round (Per round, top row).

E. Failure to generalize beyond S∗

As demonstrated by our experiments, PLAD fine-tuning
methods are able to successfully specialize p(z|x) towards a
distribution of interest S∗. Unfortunately, this specialization
comes at a cost; the fine-tuned p(z|x) may actually general-
ize worse to out of distribution samples. To demonstrate this,
we collected a small dataset of 2D icons from the The Noun
Project1. We tested the shape program inference abilities of
the initial p(z|x) trained under supervised pretraining (SP)

1https://thenounproject.com

SP LEST+ST+WS Target

Figure 1. Qualitative examples of inferring 2D CSG programs for
2D icons. Both SP and LEST+ST+WS fail to infer representative
programs, but the reconstructions from LEST+ST+WS are even
less accurate than those from SP.

and of the fine-tuned p(z|x) trained under PLAD regimes
(LEST+ST+WS) and specialized to CAD shapes. We show
qualitative examples of this experiment in Figure 1. While
both methods fail to accurately represent the 2D icons, fine-
tuning p(z|x) on CAD shapes lowers the reconstruction
accuracy significantly; the SP variant achieves an average
CD of 1.9 while the LEST+ST+WS variant achieves a CD
of 4.1 Developing p(z|x) models capable of out-of-domain
generalization is an important area of future research.

F. Potential Societal Impacts
Fine-tuning our deep neural networks p(z|x) requires

a relatively large amount of electricity, which can have a
significant environmental impact [5]. Reducing the energy
consumption of deep learning is an active research area [4,7].
Notably, PLAD techniques place no restrictions on the in-
ference model, making it easy to adopt more efficient deep
learning techniques. Moreover, shape program inference
procedures may also allow the reverse engineering of pro-
tected intellectual property. Thus, improvements in shape
program inference may impact the content and enforcement

https://thenounproject.com

of copyright law.

G. Additional Qualitative Results
We present additional qualitative results comparing vari-

ous fine-tuning methods in Figure 2 (2D CSG), Figure 3 (3D
CSG) and Figure 4 (ShapeAssembly).

References
[1] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang,

Ellen Jiang, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie.
Shapeassembly: Learning to generate programs for 3d shape
structure synthesis. ACM Transactions on Graphics (TOG),
Siggraph Asia 2020, 39(6):Article 234, 2020. 1

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 2

[3] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kaloger-
akis, and Subhransu Maji. CSGNet: Neural Shape Parser for
Constructive Solid Geometry. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 1

[4] Ryan Spring and Anshumali Shrivastava. Scalable and sustain-
able deep learning via randomized hashing. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 445–454, 2017. 3

[5] Emma Strubell, Ananya Ganesh, and Andrew McCallum. En-
ergy and policy considerations for deep learning in nlp. arXiv
preprint arXiv:1906.02243, 2019. 3

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA,
2017. Curran Associates Inc. 2

[7] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue
Wang, Xiaohan Chen, Richard G Baraniuk, Zhangyang Wang,
and Yingyan Lin. Drawing early-bird tickets: Towards
more efficient training of deep networks. arXiv preprint
arXiv:1909.11957, 2019. 3

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 2. 2DCSG qualitative examples.

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 3. 3DCSG qualitative examples.

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure 4. ShapeAssembly qualitative examples.

	. Details of Domain Grammars
	. Details of Synthetic Pretraining
	. Experiment Hyperparameters
	. P Best Update mode
	. Failure to generalize beyond S*
	. Potential Societal Impacts
	. Additional Qualitative Results

