
Abstract of “Neurosymbolic Methods for Shape Analysis and Generation”

by R. Kenny Jones, Ph.D., Brown University, May 2025.

Shape analysis and generation methods are critical to many visual computing applications. Stakeholders

often want to populate physical and artificial spaces with high-quality, structured assets that support inter-

action and manipulation. Different shape representations support these desiderata to varying degrees. Pro-

grammatic representations (e.g. procedural models) are a popular choice with many benefits, but also come

with inherent limitations: they are expensive to author, have limited output variety, and typically require a

thoughtfully designed domain-specific language (DSL).

This dissertation explores a suite of neurosymbolic systems that combine learning with programmatic

representations to aid in shape analysis and generation. When datasets of procedural assets are available,

we can train generative models that synthesize novel shapes by learning to write programs. When we lack

a dataset of procedural assets, we can train networks to search for programs that explain visual inputs with

a bootstrapped, self-supervised learning paradigm. We show performance can be improved by reframing

this program synthesis task as a program editing task, and also that this paradigm can be extended to infer

stochastic programs capable of capturing a distribution of visual inputs. Finally, we investigate ways to

discover better DSLs with little or no expert intervention. We propose two bottom-up library learning works

that augment a starting DSL with automatically proposed functions that improve a data-driven compression

objective, starting from shape datasets of either imperative programs or unstructured primitives. We also

explore an alternative top-down framing, where we task a Large Language Model with authoring a library

of shape abstraction functions from two forms of user design intent: text descriptions of functions to include

in the library and a seed set of exemplar shapes. Together, these works demonstrate that the limitations of

the procedural representation can be successfully mitigated through the application of hybrid neurosymbolic

methods that learn to synthesize, infer, and abstract visual programs.

Neurosymbolic Methods for Shape Analysis and Generation

by

R. Kenny Jones

B. A. Williams College, 2017

Sc. M., Brown University, 2021

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2025

© Copyright 2025 by R. Kenny Jones

This dissertation by R. Kenny Jones is accepted in its present form

by the Department of Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date
Daniel Ritchie, Advisor

Recommended to the Graduate Council

Date
James Tompkin, Reader

Date
George Konidaris, Reader

Approved by the Graduate Council

Date

Dean of the Graduate School

iii

Vita

Kenny Jones grew up in sunny Palo Alto, California. He matriculated to the wonderful Williams College,

nestled in the Berkshires of western Massachusetts, graduating in 2017 with bachelor’s degrees in computer

science and English literature. He spent one semester of his undergraduate studies abroad in the hauntingly

beautiful Edinburgh, Scotland. After graduation, he returned to the bustling Bay Area, working for two years

at Facebook as a software engineer on the Charitable Giving and Facebook AI teams. In 2019, he traveled

back to the East Coast to begin a Ph.D in computer science at the buoyant Brown University in Rhode Island,

receiving a M.Sc. in 2021. Kenny’s research explores neurosymbolic methods to better understand and

represent visual data. This work sits at the intersection of computer graphics, vision, and machine learning,

and has been presented at leading conferences including CVPR, ICML, NeurIPS, and ACM SIGGRAPH.

During his Ph.D, he was supported by a Brown University Presidential Fellowship and an internship at Adobe

Research.

iv

Acknowledgements

As I near the destination marked by this dissertation, I am filled with a deep sense of gratitude for the

remarkable individuals who have shown me wisdom and kindness throughout this journey. Research, often,

is inane when treated as a process unto itself. Its trials and tribulations, so narrowly focused, summon visions

of Sisyphus and his daunting task. Thankfully, we find salvation in community, in its sense of purpose

and camaraderie, which provides perspective and meaning to our shared endeavor – for after all, with clear

purpose, one must imagine Sisyphus happy. Stepping onto this road of research, though some would say a

dangerous business, has been a truly rewarding experience, made all the more meaningful by those who’ve

walked alongside me, helping me keep my feet with their gracious guidance. So, if we are to put journey

before destination, let me take this time to acknowledge just some of the many, many wonderful people to

whom I am deeply indebted.

First, I would like to sincerely thank my advisor Daniel Ritchie. Daniel is a fantastic scholar who has

shaped my aptitude, attitude, and appetite for research. His infectious optimism provided invaluable motiva-

tion, while his concrete guidance helped transform my half-formed ideas into fully-fledged plans of action.

More importantly, Daniel’s abundant patience, kindness, and thoughtfulness fostered a welcoming environ-

ment, one that I’ve been proud to call my academic home. The chief piece of advice I give to prospective

Ph.D. students is to weigh the fit with a potential advisor above all else; in finding an advisor like Daniel,

I count myself extremely fortunate. He has been instrumental in helping me to become the researcher I am

today, and for that I will be forever grateful.

The work presented in this dissertation was supported through the generous guidance of numerous re-

search mentors. At the start of my Ph.D, I was very lucky to begin work on a ‘part-graph-programs’ project

with Paul Guerrero and Niloy Mitra. After almost six years of weekly project meetings, this direction has

produced four papers (the Shape-X series), which form a substantial portion of this dissertation’s contribu-

tion. Like these projects, I benefited tremendously from Paul and Niloy’s expertise and perspective. Rana

v

Hanocka was a tremendous help in getting me started with 3D learning methods while working on the de-

ceptively named ‘mesh-gen’ project. I am also grateful for Siddhartha Chaudhuri’s insightful questions and

advice about research and broader topics during my internship.

I’ve been fortunate to receive support from many members of the Brown community: I am especially

indebted to my committee members, James Tompkin and George Konidaris, whose thoughtful approaches to

research have strengthened the work in this dissertation. My very first course at Brown was James’ research

seminar, which proved foundational in shaping my view of what makes for good research. Beyond that,

I’ve always appreciated James’ ability to cut to the heart of hard problems with simple, insightful questions.

George’s research vision is inspiring, and though much of this dissertation lies outside his primary inter-

ests, lacking both robots and reinforcement learning, his advice on both high-level direction and low-level

details has been immensely helpful. I would also like to thank Srinath Sridhar, Chen Sun, David Laidlaw

and Stephen Bach, for thoughtful discussions, constructive feedback, and kind words of encouragement on

various research projects and presentations.

Despite what Covid restriction guidelines at one point suggested, this journey was not undertaken in isola-

tion, but rather in the wonderful company of peers and colleagues. To fellow group mates: Kai Wang, Theresa

Barton, Xianghao Xu, Aditya Ganeshan, Arman Maesumi, Yuanbo Li, and Maxim Gumin; office mates: Qian

Zhang, Rao Fu, Sudarshan Harithas; and lab mates, including Mikhail Okunev and Brandon Woodard, thank

you for making the visual computing community at Brown so welcoming and supportive. I’ll miss the collab-

orations, discussions, snacks, and board games, not to mention the timely help with resetting my computer.

Throughout my research projects, I also had the privilege of collaborating with many brilliant and inspiring

undergraduate and Master’s students: Brian Oppenheim, Dylan Tian, Ellen Jiang, Homer Walke, Caleb Trotz,

Bryce Blinn, David Charatan, Alex Ding, Aalia Habib, Alana White, Sarah Roberts, Norman Zhang, Anh

Truong, Paul Biberstein, Junyu Liu, Rio Aguina-Kang, Stewart Morris, Brian Han, Jean Yoo, and Vivian Lu.

I would also like to thank all of the amazing members of the A-staff and T-staff who were a tremendous help

with resolving technical, logistical, and bureaucratic issues, including Lauren Clarke, John Tracey-Ursprung,

Dawn Reed, Lori Agresti, Genie DeGouveia, Danielle Beatrice, John Bazik, Paul Vars, and Kathy Billings.

I first discovered my love for computer science and research at Williams College. A special thanks to

Derrick Bonafilia who first got me interested in coding and machine learning at a time when I wanted to

avoid anything with even a hint of engineering. Challenging and deeply rewarding courses and research

with Morgan McGuire helped to foster a love of graphics and procedural representations. Andrea Danyluk

(in memoriam) was a gracious mentor, who inspired me to investigate generative modeling techniques and

vi

taught me how to approach independent research with thought and care. That the work of my dissertation

would so naturally fall at the intersection of these two branches, first planted during my time at Williams,

never crossed my mind at the time, yet in hindsight seems to have always been inevitable. Truly, in some

cases, “the wheel weaves as the wheel wills”.

This dissertation would not have been possible without the love and support of my family and friends.

Despite my many failings in elucidating even remotely comprehensible answers to simple questions like,

“so what are you working on?”, they have unconditionally celebrated, cheered, consoled, and commiserated.

Even while they imagine me Wyndle, cultivating gardens of chairs from thin air, with no discernible purpose,

they have always believed in me. To my parents, Liz and Russ, my sisters, Maddy and Ella, my grandparents

Charles and Gloria (in memoriam), thank you for everything, I love you all.

Finally, I would like to dedicate this dissertation to Juliana Veira: my wife, and better half. There is not

a day that goes by where I am not blown away by how lucky I am to have found you – your wisdom, grace,

laughter, determination, empathy, and love provide continual joy, and there is no one else I would rather have

by my side. I’m forever grateful that we’ve had this chance to grow together and shape our lives in tandem.

Since we began our grad school journeys six years ago, we’ve gotten married, traveled the globe, and adopted

the best cats in the entire world: Alby (Albus Beano Dumbledore) and Dany (Daenerys Newton Targaryen).

Though you beat me to the ‘doctoral’ destination, I am so excited for our larger journey together, and I can’t

wait to see what comes next.

vii

Contents

List of Figures xvi

1 Introduction 1

1.1 Contributions . 3

1.2 Document Overview . 4

2 Background 6

2.1 Procedural Modeling . 6

2.2 Program Synthesis . 7

2.3 Related work on Generative Models of Visual Data . 8

2.4 Related work on Visual Program Synthesis . 10

2.5 Related work on Abstraction Discovery . 11

3 Learning to Generate Programs for Shape Structure Synthesis 13

3.1 Approach . 15

3.2 An Assembly Language for Shapes . 17

3.3 Turning Shapes into Training Programs . 20

3.3.1 Extracting Program Information . 20

3.3.2 Creating Candidate Programs . 21

3.3.3 Validating Programs . 22

3.4 Learning to Generate Programs . 22

3.4.1 Model Architecture . 22

3.4.2 Learning Procedure . 24

3.5 Results and Evaluation . 25

viii

3.5.1 Novel Shape Synthesis . 26

3.5.2 Latent Space Interpolation . 34

3.5.3 Synthesis from Unstructured Geometry . 37

3.6 Discussion . 38

4 Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions 41

4.1 Approaches for fine-tuning visual program induction models 42

4.2 Method . 44

4.2.1 Wake-Sleep (X,Z) Construction . 46

4.2.2 Self-Training (X,Z) Construction . 46

4.2.3 LEST (X,Z) Construction . 46

4.2.4 Inferring Programs with p(z|x) . 47

4.2.5 Training p(z|x) with multiple PLAD methods . 47

4.3 Results . 48

4.3.1 Shape Program Domains . 48

4.3.2 Experimental Design . 49

4.3.3 Reconstruction Accuracy . 50

4.3.4 Inner-loop Search Time . 52

4.3.5 Number of Training Shapes from S∗ . 52

4.3.6 Convergence Speed . 53

4.4 Discussion . 53

5 Learning to Edit Visual Programs with Self-Supervision 54

5.1 Method . 55

5.1.1 Edit Network Design . 55

5.1.2 Learning Paradigm . 57

5.1.3 Inference Algorithm . 59

5.2 Results . 60

5.2.1 Experimental Design . 60

5.2.2 Reconstruction Accuracy . 61

5.2.3 Search Time . 62

5.2.4 Training with limited data . 62

ix

5.2.5 Method Ablations . 63

5.3 Discussion . 65

5.3.1 Relation with SIRI . 66

5.3.2 Relation with Tree Diffusion . 66

6 Learning to Infer Generative Template Programs for Visual Concepts 68

6.1 Method . 70

6.1.1 Template Programs . 70

6.1.2 Inference Networks . 71

6.1.3 Learning Paradigm . 72

6.2 Results . 74

6.2.1 Visual Domains . 74

6.2.2 Experimental Design . 75

6.2.3 Concept Few-shot generation . 77

6.2.4 Concept Co-segmentation . 78

6.2.5 Discussion . 80

6.3 Discussion . 81

7 Macro Operation Discovery for Shape Programs 83

7.1 Macro Operator Discovery . 85

7.1.1 Overview . 86

7.1.2 Initialization . 88

7.1.3 Objective Function . 88

7.1.4 Finding the Best Program for a Given Library . 88

7.2 Proposal Phase . 89

7.2.1 Form a Program Cluster . 90

7.2.2 Find Abstracted Program for Cluster . 90

7.2.3 Proposing Candidate Macros . 91

7.2.4 Generalizing Macros . 92

7.3 Integration phase . 92

7.3.1 Ranking Candidate Macros . 92

7.3.2 Evaluating & Selecting Candidate Macros . 93

x

7.3.3 Removing Bad Program Orders . 94

7.4 Results and Evaluation . 94

7.4.1 Discovered Macros . 94

7.4.2 Generating 3D Shapes . 98

7.4.3 Inferring 3D Shape Structures . 99

7.4.4 Interactive Shape Editing . 100

7.4.5 Cross-category Macro Discovery . 102

7.5 Discussion . 103

8 Discovering Abstractions for Visual Programs from Unstructured Primitives 105

8.1 Overview . 107

8.1.1 Optimization Objective F . 108

8.2 Inferring Visual Programs . 108

8.2.1 Recognition Network . 109

8.2.2 Dream Phase . 110

8.2.3 Wake Phase . 110

8.3 Proposing and Integrating Abstractions . 111

8.3.1 Proposal Phase . 111

8.3.2 Integration Phase . 113

8.4 Refactoring Programs with E-Graphs . 114

8.5 Results and Evaluation . 117

8.5.1 Experimental Domains . 117

8.5.2 Discovering Abstractions . 118

8.5.3 Analysis of Discovered Abstractions . 120

8.5.4 ShapeCoder Ablations . 122

8.5.5 Discovering Abstractions from Unstructured Shapes 124

8.5.6 Downstream Benefits of Abstractions . 124

8.6 Discussion . 125

8.6.1 Relation with DreamCoder . 126

8.6.2 ShapeCoder Limitations . 127

xi

9 Designing a Library of Procedural Shape Abstractions with LLMs 129

9.1 Overview . 131

9.2 Library Design . 132

9.2.1 Interface Creation . 133

9.2.2 Proposing Function Applications . 133

9.2.3 Propose Function Implementations . 134

9.2.4 Library Validation . 134

9.3 Using the Library for Program Synthesis . 135

9.4 Results and Evaluation . 136

9.4.1 Library Function Generalization . 137

9.4.2 Shape Programs from Unstructured Geometry . 138

9.4.3 Sematic Consistency of Function Usages . 139

9.4.4 Editing Shape Programs with LLMs . 140

9.5 Discussion . 141

9.5.1 Relation with LILO . 141

10 Conclusion and Future Directions 144

10.1 Future Work . 145

10.1.1 Controllable Dense Geometry . 145

10.1.2 Visual Program Induction beyond Shapes . 146

10.1.3 Procedural Abstraction Discovery . 148

10.1.4 Programmatic Shape Analysis . 149

A Additional Details for ShapeAssembly 151

A.1 Semantics of the attach Command . 151

A.2 Semantics of SHAPEASSEMBLY Macro Functions . 153

A.3 Program Extraction Procedure . 154

A.4 Decoder Semantic Validity Checks . 156

A.5 Shape Quality Metrics . 157

B Additional Details and Results for PLAD 158

B.1 Details of Domain Grammars . 158

xii

B.2 Details of Synthetic Pretraining . 160

B.3 Experiment Hyperparameters . 162

B.4 P Best Update mode . 163

B.5 Failure to generalize beyond S∗ . 164

B.6 Additional Qualitative Results . 165

C Additional Details and Results for VPI-Edit 169

C.1 Experimental Results . 169

C.1.1 Performance on more challenging tasks . 169

C.1.2 Comparison to large vision-language models . 170

C.1.3 Method Ablations on 2D CSG domain . 171

C.2 Domain Details . 174

C.3 Experimental Design Details . 176

C.4 Visual Program Edits . 178

C.4.1 Local Edit Operations . 178

C.4.2 findEdits Algorithm . 179

C.4.3 Converting edits operations to training data . 181

C.4.4 Generality of our framing . 181

C.5 Program Corruption . 182

D Additional Details and Results for Template Programs 183

D.1 Additional Results . 183

D.1.1 Out-of-distribution Few-shot Generation . 183

D.1.2 Method Ablation Study . 184

D.1.3 Unconditional Concept Generation . 185

D.1.4 Visual Concept Groupings . 186

D.1.5 Reconstruction Performance . 187

D.1.6 Failure Modes . 188

D.2 Domain Details . 190

D.2.1 Omniglot . 191

D.2.2 2D Primitive Layout . 193

D.2.3 3D Shape Structures . 195

xiii

D.3 Model Details . 197

D.3.1 Architecture Details . 197

D.3.2 Location Encoding scheme . 198

D.3.3 Generative Networks . 198

D.4 Training Details . 199

D.4.1 Token Sequence Formatting . 201

D.5 Experiment Details . 201

D.5.1 Few-shot Generation . 201

D.5.2 Perceptual Study . 202

D.5.3 Co-segmentation . 203

D.6 Comparison Method Details . 205

D.6.1 BPL . 205

D.6.2 GNS . 206

D.6.3 FSDM . 206

D.6.4 VHE . 206

D.6.5 BAE-NET . 207

E Additional Details and Results for ShapeMOD 208

E.1 Modified ShapeAssembly Grammar . 208

E.2 Baseline Method for Macro Operator Discovery . 209

E.3 A Network Architecture for any library . 209

E.4 Shape Generation Qualitative Comparison . 211

E.5 Creating A Dataset of Shape Programs . 212

E.5.1 Parsing . 212

E.5.2 Finding Valid Orderings . 212

E.5.3 Canonical Ordering . 213

E.6 Details of applying ShapeMOD to ShapeAssembly . 214

E.6.1 Choosing Parameters for an Abstracted Program 214

E.6.2 Valid Candidate Macro operators . 215

E.6.3 Candidate Macro Frequencies . 215

E.7 Details about Generative Modeling Metrics . 216

xiv

E.8 Analysis of Variability . 216

E.9 Additional Cross-category Macro Discovery Results . 218

F Additional Details for ShapeCoder 219

F.1 Shape Grammar . 219

F.2 Implementation Details . 220

F.2.1 Objective Function Weights . 220

F.2.2 Geometric Error Function . 221

F.2.3 Recognition Network . 222

F.2.4 Dream Creation . 222

F.2.5 Combining Wake Programs . 223

F.2.6 Preference Ordering of Parametric Relationships 224

F.2.7 E-graphs . 225

F.2.8 Unsupervised Primitive Decomposition . 225

F.2.9 Generative Model for Programs . 225

F.3 Toy 2D Grammar Experiments . 226

F.4 DreamCoder Experiments . 227

G Additional Details and Results for ShapeLib 229

G.1 Additional Method Details . 229

G.1.1 Objective Function . 229

G.1.2 Network Design . 230

G.1.3 Synthetic Data Sampler . 230

G.2 Additional Experimental Details . 231

G.2.1 Cost and Timing . 231

G.2.2 Data . 231

G.2.3 LLM-Direct Baseline . 231

G.2.4 ShapeCoder . 232

Bibliography 233

xv

List of Figures

3.1 We present a deep generative model which learns to write novel programs in SHAPEASSEM-

BLY, a domain-specific language for modeling 3D shape structures. Executing a SHA-

PEASSEMBLY program produces a shape composed of a hierarchical connected assembly

of part proxies cuboids. Our method develops a well-formed latent space that supports in-

terpolations between programs. Above, we show one such interpolation, and also visualize

the geometry these programs produce when executed. In the last column, we manually edit

the continuous parameters of a generated program, in order to produce a variant geometric

structure with new topology. 13

3.2 Our pipeline for generating 3D shape structure programs. We first define a DSL language

for 3D shapes, SHAPEASSEMBLY . Then, given a dataset of hierarchical part graphs, we

extract SHAPEASSEMBLY programs from them. Finally, we use these programs as training

data for a deep generative model. Our method learns to generate novel program instances that

can be executed to produce complex and interesting 3D shape structures. 16

3.3 An example SHAPEASSEMBLY program and the shape that it generates. Parts are colored

according to the line of the program which instantiates them, and attachment points are

numbered accordingly. In the top shape, we show the executed Chair program without hi-

erarchy. In the bottom shape, we show the Chair program executed hierarchically with its

sub-programs (Base and Back). For instance, the light grey back part is expanded into the

purple back surface and gold slats. 17

3.4 An illustration of how the SHAPEASSEMBLY interpreter incrementally constructs shapes by

imperatively executing program commands. Cuboids are instantiated at the origin and are

moved through attachment. Notice how the reflect command in line 6 acts as a macro

function, creating a new cuboid and two new attachments. 18

xvi

3.5 The steps of our program extraction pipeline. (a) Fragment of an input hierarchical part

graph showing chair back (parent node), chair back frame (blue child), and chair back sur-

face (orange child). (b) Locally flattening the hierarchy so that physically interacting leaf

parts become siblings. (c) Shortening leaf parts that intersect other leaf parts. (d) Locating

attachment points between parts. (e) Forming leaf parts into symmetry groups. 19

3.6 Architecture of our hierarchical sequence VAE for SHAPEASSEMBLY programs. Given a

SHAPEASSEMBLY program, the encoder ascends the hierarchy from the leaves to the root,

encoding each sub-program into a latent z vector. Given a latent code, the decoder recursively

decodes a hierarchical SHAPEASSEMBLY program. Within each hierarchy node, a recurrent

neural network decodes each line of the program. 23

3.7 In the middle row, we show samples from our generative model of SHAPEASSEMBLY pro-

grams. In the top row, we show the nearest neighbor shape in the training set by Chamfer dis-

tance. In the bottom row, we show the nearest neighbor shape in the training set by program

edit distance. Our method synthesizes interesting and high-quality structures that go beyond

direct structural or geometric memorization. We quantitatively examine SHAPEASSEMBLY’s

generalization in Table 3.4. Refer to the supplemental material for the corresponding program

text. 25

3.8 Programs, by way of representational form, allow for easy semantic editing of generated

output. Each column shows a sample from our model in the top row. In the bottom row we

create a variant with the same structure, but different geometry, by editing only the continuous

parameters of the program. Program text can be found in the supplemental material. 27

3.9 Qualitative comparison between generated samples from our method, StructureNet, and 3D-

PRNN. Across different categories, our method creates novel SHAPEASSEMBLY programs

that, when executed, produce shape structures that maintain realistic and physically valid part-

to-part relationships. Comparison methods that directly predict 3D shape geometry exhibit

failure cases where parts become disconnected or intersect in an implausible manner. 31

3.10 Clustering results that demonstrate how the structure of a single SHAPEASSEMBLY program

is capable of capturing a family of related shapes. Using ground truth programs found with

our program extraction procedure, in the left graph we plot the percentage of shapes captured

as we consider more program structures extracted from the data. In the right graph we show

the same plot but with parts (nodes) instead of shapes (full hierarchy). 34

xvii

3.11 Converting generated SHAPEASSEMBLYprograms into dense point clouds. We use a point

cloud decoder to predict the surface geometry of each leaf part proxy in our 3D shape struc-

ture. In this process, geometric details begin to take form, at the cost of some artifacts. We

discuss a method for improving this procedure in section 3.6. 35

3.12 A qualitative comparison of latent space interpolation between our method and StructureNet

on shapes from the validation set. Our method’s interpolations within program space produce

sequences that combine smooth continuous variation with discrete structural transitions. . . 36

3.13 Qualitative comparison of synthesis from point clouds of our method against StructureNet

(SN). Our method is able to infer good program structures that match well with the unstruc-

tured geometry. The continuous parameters of this program structure can be further refined

through an optimization procedure in order to better fit the target point cloud without creating

artifacts. 39

3.14 Examples of PartNet shapes that contain parts whose orientations cannot be inferred from

part-to-part attachments alone. While these shapes can be represented with SHAPEASSEM-

BLY programs that attach parts to “floating” points within the bounding volume, such pro-

grams are not added to our training data during our program extraction phase. As a result, our

generative model never learns to produce shapes that require this type of attachment pattern. 39

4.1 (Left) Pseudocode for fine-tuning shape program inference models, p(z|x), towards a shape

distribution of interest, S∗, with Pseudo-Labels and Approximate Distributions (PLAD).

PLAD methods iterate through three steps: infer programs for S∗ with p(z|x), create a dataset

of (X,Z) shape-program pairs, and train p(z|x) on batches from (X,Z). Self-training, latent

execution self-training, and wake-sleep differ in how (X,Z) is constructed. (Right) A visual

illustration of the algorithm’s dataflow. 45

4.2 Experiments exploring properties of PLAD methods on 2D CSG. On the X-axis we plot the

beam size used during the PBEST update (Left), the number of training shapes (Middle), and

the training time (Right). The Y-axis of each plot measures reconstruction accuracy on test-set

shapes. 50

4.3 Qualitative comparisons of shape programs inferred for test-set shapes made by different

fine-tuning methods for 2D CSG (Top), 3D CSG (Middle), and ShapeAssembly (Bottom).

We provide additional qualitative results in the supplemental. 51

xviii

5.1 We design a network that learns how to locally edit an input program towards a target. It

first predicts what type of edit operation should be applied, then it predicts where that edit

operation should be applied, and finally it autoregressively samples any parameters the edit

operation requires. 56

5.2 Left: our bootstrapping algorithm that finetunes an edit network and a one-shot model towards

a target dataset. Right: our inference algorithm that initializes a population with a one-

shot model and then mutates it towards a visual target through iterative rounds of edits and

resampling. 58

5.3 Comparing reconstructions of one-shot models (top) against our joint approach (middle). . . 62
5.4 For 2D CSG, we compare reconstruction accuracy (Chamfer distance, lower is better, Y-axis)

between using an edit network and using only a one-shot network while varying time spent

on inference (left) and training set size (right). 63

5.5 Our inference procedure edits samples from an initial population (top) towards a target (bottom). 65

6.1 Our inference process. First, a group of visual inputs are encoded (Step 1). Next, our Tem-

plateNet uses these encodings to infer a Template Program (TP , Step 2). The TP and each

encoding are then sent to the ExpansionNet to produce a Structural Expansion (SE) for

each input (Step 3), which are finally passed to the ParamNet to produce a set of complete

programs that explain the inputs (Step 4). 70

6.2 We learn to infer Template Programs that capture input concepts (Inp). Template Programs

produce consistent concept parses (Seg) and synthesize new generations (Gen). Our frame-

work flexibly extends across different visual domains and input representations. 73

6.3 Comparing few-shot generations of Omniglot characters. 78

6.4 We compare co-segmentations produced from voxelized shapes (Input) to ground-truth an-

notations (GT) . 79
6.5 Qualitative examples of unconditional concept generations on the Omniglot domain. We

show 30 concepts synthesized by our method where each concept is associated with two rows

of five images. The bottom five images depict five samples from each concept, and the top

five images show the nearest neighbor in the training set by Chamfer distance to each sample. 82

xix

7.1 We propose ShapeMOD, an algorithm which takes as input a collection of 3D shape programs

and makes them more compact by automatically discovering common macros which can be

re-used across the collection. We apply ShapeMOD to datasets of ShapeAssembly programs

and find that generative models which train on refactored programs containing these macros

produce more plausible output shapes than those trained on the original programs. The dis-

covered macros also facilitate shape editing by exposing only a small number of meaningful

parameters for manipulating shape attributes. For example, the four leg base macro exposes

two parameters (visualized as sliders with red handles); one parameter controls leg size, while

the other controls leg spacing. 83

7.2 ShapeMOD consists of two alternating phases: proposing new candidate macros (top) and

refactoring programs to use some of the proposed macros (bottom). 85

7.3 Running ShapeMOD for multiple rounds allows for discovery of increasingly complex macros.

Here, a macro discovered in Round 2 uses a macro previously found in Round 1 as part of its

function body. 86

7.4 ShapeMOD’s proposal phase, which proposes candidate macros to be added into L. Each

round of this phase begins by identifying a cluster of structurally-identical programs with

similar parameter values within the input dataset (Section 7.2.1). It then finds a single ab-

stracted program which subsumes most or all of the programs in this cluster (Section 7.2.2);

here, gray parameter values are abstracted as constants, blue ones as continuous free vari-

ables, and pink ones as discrete free variables. Subsequences of lines in this abstracted

program (shown in green) are isolated to form potential macros which could be used to

re-write the program (Section 7.2.3). Finally, this set of candidate macros is expanded by

including generalizations of the initial set (Section 7.2.4); purple lines show lines that are

generalized. Best viewed on a high-resolution screen. 89

7.5 ShapeMOD’s integration phase, which chooses which candidate macros to add to the DSL

library L. On each round of this phase, the algorithm heuristically ranks candidate macros

based on which are likely to improve program compression, adds the top-ranked macro to the

library, then finds the best refactored program for each program in the input dataset D under

this new library. If this refactoring lowers the objective value f(D,L), then the macro is kept

in the library; otherwise, it is discarded. 91

xx

7.6 We show some macros (top-middle) that ShapeMOD discovered when run on the Table

dataset, and program refactors that use these macros to significantly compress the number

of exposed free parameters (ShapeMOD arrows from outside to inside). We show program

edits (down arrows) of corresponding parameters in both programs with macros (green) and

without macros (red). The discovered macros capture parametric relationships that better

preserve shape plausibility under manipulation; for example, all chair legs remain the same

size in the third column (macros), while the shape in the fourth column (no macros) becomes

disconnected and physically implausible . 95

7.7 We measure distributional similarity (Frechet Distance [73]) between a set of reference chairs

and a set of chair programs subjected to perturbations. We simulate perturbations by adding

noise from a normal distribution (x-axis is standard deviation) to continuous parameters in the

programs. Programs with ShapeMOD macros retain more similarity under larger perturba-

tions, suggesting the macros remove degrees of freedom that permit shapes to move outside

of their original distribution. 97

7.8 Some example outputs of generative models trained to produce ShapeAssembly programs

expressed with macros discovered by ShapeMOD, along with their training set nearest neigh-

bors (NN) by geometric and program similarity. Each cuboid represents a part proxy bound-

ing volume. Structures are formed through attaching parts to one another (red dots). The

generative models produce a variety of plausible structures without memorizing their train-

ing data. All corresponding programs can be found in supplemental material. 97

7.9 Example visual program induction results from our point cloud→ program inference experi-

ment. ShapeMOD macros are especially helpful for the heterogeneous Storage category. All

corresponding programs can be found in the supplemental material. 99

7.10 A screenshot of our editing interface. The key elements are: (1) A view of the ShapeAssembly

program’s text. (2) Contextual sliders (enlarged in the figure) that allow the user to edit

program parameters. (3) A view of the current program’s output. Note the optional wireframe

of the target shape and the ability to highlight correspondences between cuboids in the text

and the 3D viewer (blue highlights shown). (4) The target shape. 101

xxi

7.11 Top row: the initial program output shape (gray) and target shape (yellow) for each task in our

goal-directed editing study. Bottom row: plots of how quickly participants were able to edit a

program’s parameters to match the target shape, with 95% confidence intervals shown. The x

axis is time elapsed in minutes, while the y axis is the mean of the running minimum of each

participant’s corner distance to the target shape. In general, participants using ShapeMOD

macros more quickly converged to the target shape and achieved a closer fit. To allow users

to take breaks between tasks, time starts when the user makes their first edit for each task . . 102

7.12 Participants in our user study rated the ease of completing each task; here, we plot each

task’s average difficult rating for each condition (5 = very easy, 1 = very difficult) with 95%

confidence intervals shown. Participants using ShapeMOD macros generally rated tasks as

easier to complete. 103

8.1 ShapeCoder automatically discovers abstraction functions, and infers visual programs that

use these abstractions, to compactly explain an input dataset of shapes represented with un-

structured primitives. For example, the orange abstraction uses only five parameters to encode

a distribution of 4-legged table bases with adjoining horizontal support bars. 105

8.2 Overview. ShapeCoder consumes an initial library L, an objective F , and a dataset of

shapes D (brown boxes). Each round of the algorithm iterates through a series of phases

that progressively add abstractions into L to improve F . A dream phase trains a recognition

network by sampling from L. A wake phase infers programs for shapes in D. A proposal

phase produces candidate abstractions. An integration phase uses a refactor operation to

decide when these abstractions should be added into L. 107

8.3 Dream and Wake Phases. (Left) ShapeCoder’s recognition network is a Transformer de-

coder that attends over tokenized input primitives and autoregressively predicts functions and

parameterizations. (Middle) The dream phase trains the recognition network by sampling

expressions from library functions, which are randomly combined together to form (input,

target) training pairs. (Right) The wake phase uses the recognition network to find programs

that explain input shapes. In a series of iterative steps, it samples expressions, chooses the

expression that achieves the best cost, and removes covered primitives from the input canvas,

until the canvas is empty. 109

xxii

8.4 Proposal Phase. The proposal phase consumes a collection of programs and outputs a set

of candidate abstractions. First, possible structures and their parameterizations are recorded

from the input programs. Then clusters are formed by sampling a structure and a subset of

parameterizations. For each cluster, a greedy abstraction search generates a possible abstrac-

tion, which is recorded. 111

8.5 Refactor. The refactor operation uses e-graphs to identify when abstractions can be ap-

plied. Input programs are converted into e-graphs, which are expanded with semantic and

library-specific rewrites to uncover lower-cost equivalent expressions that can be extracted.

We develop a conditional rewrite scheme that reasons over parametric relationships (green

highlights) without adding excessive e-nodes for parametric operators (red box). 113

8.6 Qualitative examples of discovered abstractions. We show one abstraction each for Chair

and Table, and two abstractions for Storage furniture. The abstraction code is shown on the

left, followed by three different usages of the abstraction in our shape dataset discovered by

ShapeCoder. In the right-most column, we manually edit the discovered program to create a

new shape. Along the bottom, we visualize randomly sampled dreams. 121

8.7 We leverage an unsupervised primitive decomposition approach [230] to run ShapeCoder

over datasets of 3D meshes. Even on these noisy primitive decompositions, our method

still finds high-level, useful abstractions that capture meaningful degrees of shape variation.

Interestingly, the two top-level abstractions we show, in orange and blue, both make use of

the same abstraction sub-function (highlighted in yellow) to create a four-leg base. 123

8.8 Sampled programs (top) from a generative model that writes programs containing abstrac-

tions, along with nearest neighbors (bottom). 126

9.1 ShapeLib guides an LLM to design a library of procedural shape functions from a given set

of (20) seed shapes and textual descriptions. Using an LLM prior makes the functions seman-

tically interpretable and easy to edit, while aligning them with the seed shapes specializes the

functions to a given domain and reduces LLM hallucinations. The library can be used to train

a network for visual program induction that generalizes well beyond the seed shapes. 129

xxiii

9.2 Method overview. We design a function library in four steps, starting from a user intent (light

blue) that consists of function descriptions and a set of seed shapes. First, (a) we prompt an

LLM to create function interfaces that define parameters and annotate the function’s purpose.

Then, (b) the LLM is prompted to propose multiple applications of the functions that recon-

struct the seed shapes. Next, (c) we use this information to guide the LLM to propose multiple

function implementations. The library is finalized with a validation step (d) that searches for

pairs of applications and implementations that best reconstruct the seed shapes. We can use

the library to extend beyond the seed shapes by guiding the LLM to author a synthetic data

generator with the library functions, and using the resulting paired data to train a recognition

network for visual program induction. 132

9.3 Examples of functions from the shape libraries discovered by ShapeLib. For each category,

we show a function implementation, and a few example applications of the function. For each

application, we show the full output shape, with parts corresponding to the function marked

in the same color as the function name, and the function parameters. We can see that function

applications are well-aligned with part semantics and that each function typically requires

only a small set of parameters to represent a rich variety of part shapes. 142

9.4 ShapeLib’s abstraction functions provide a semantically aligned and interpretable interface

that support downstream applications: text-based LLM editing and visual program induction

from unstructured geometry. 143

A.1 Illustrating how the attach command executes, depending on the number of existing at-

tachments (left column) to the cuboid in question. Cuboids with no existing attachments can

simply be translated into place (top). Cuboids with one existing attachment can be scaled

along one axis and then rotated (middle). Cuboids with two or more existing attachments are

more complicated, and the attachment may not always be satisfiable. Our interpreter attempts

to rotate and scale the cuboid to get as close as possible to valid solution. 152

B.1 Qualitative examples of inferring 2D CSG programs for 2D icons. Both SP and LEST+ST+WS

fail to infer representative programs, but the reconstructions from LEST+ST+WS are even

less accurate than those from SP. 164

B.2 2DCSG qualitative examples. 166

B.3 3DCSG qualitative examples. 167

xxiv

B.4 ShapeAssembly qualitative examples. 168

C.1 Qualitative reconstructions of ”challenge” tasks for 3D CSG. 171

C.2 Qualitative reconstructions of ”challenge” tasks for the layout domain. We compare against

GPT-4V in a zero-shot setting (column 1), when an in-content example (ICE) is provided

in the prompt (column 2), and when the one-shot model’s predicted program is provided as

input (column 3). Our approach (column 5) finds more accurate reconstructions of these out-

of-distribution targets (column 6) compared with using only the one-shot network (column

4). 172

D.1 Qualitative few-shot generation results that demonstrate our method’s ability to generalize to

out-of-distribution concepts, see Section D.1.1. 184

D.2 When our method fails to find good reconstructions of an input concept, downstream task

performance worsens. 188

D.3 A visualization of the interface we use in our two-alternative forced-choice perceptual study. 203

E.1 Samples generated from generative models of ShapeAssembly programs with ShapeMOD

macros (blue) and without macros (green). 211

xxv

Chapter 1

Introduction

Visual reasoning plays a critical role in how people interact with and understand the physical world. The

field of visual computing is concerned with how to best endow computing systems with the requisite skills to

effectively analyze, synthesize, manipulate, and interact with visual data. A myriad of stakeholders have cre-

ated a growing demand in this space. Applications within computer graphics require high-quality 3D assets

for visual effects, animation, entertainment, and games. Augmented and virtual reality experiences desire

3D shapes and scenes that support intuitive manipulation and interaction. Artificial intelligence systems rely

on synthetic visual data to train large data-driven models [175, 241, 103] and robotic agents in simulation

[110, 224, 182, 1].

The question of representation is central to visual computing: how visual data is represented affects what

downstream applications are supported. Unlike regular pixel grids for capturing 2D visual data, there is

no standard representation for 3D geometry. 3D shapes can be expressed in a variety of representations,

each with their own strengths and weaknesses. Voxels are the direct extension of pixels to 3D space, but

they suffer from the curse of dimensionality. Point clouds are easy to obtain from the real world via depth

sensors, but they lose surface connectivity and detail. Surface meshes are well-supported by rendering and

simulation packages, but their irregular topologies cause difficulties for learning and optimization. Recently,

there has been growing interest centered around approaches that represent 3D shapes ‘neurally’, including

occupancy/SDF networks [26, 157], Neural Radiance Fields [138], and 3D Gaussian splatting [105]. While

these exciting developments are capable of producing high-quality outputs, they often hallucinate implausible

geometry, do not expose interpretable interfaces, and are hard to interact with or manipulate.

1

2

In this proposal, we study programmatic representations of visual data. Such representations have tra-

ditionally been known as procedural models: structured computer programs that produce visual data when

executed. Procedural models have many compelling properties for downstream applications. Well-written

procedural models produce high-quality geometry from compact representations. Finding symbolic represen-

tations that effectively capture visual phenomenon allows for shape and scene analysis: sometimes referred to

as ‘analysis by synthesis’ [237] or ‘inverse graphics’ [8]. Procedural shape representations are interpretable

to users with some programming background, and they often expose high-level parameters that can be ma-

nipulated to change attributes of the visual data they generate. Further, randomization of these parameters

allows a single procedural model to generate a wide variety of different visual outputs—this is useful for

rapidly exploring their design space or for populating large virtual worlds with non-repetitive content.

Despite these numerous benefits, there are a few main limitations that beleaguer procedural models.

Foremost among these is availability: high-quality procedural models are hard to acquire. Typically, these

programs must be authored by domain experts, which is an expensive and time consuming process that does

not scale. Beyond this, while some procedural models are capable of producing a family of visual outputs, the

range of output variety is usually fairly limited. It would be almost impossible, for instance, to design a single

procedural model capable of producing all types of cars. Finally, the usefulness of any given procedural model

is dependent on the language in which it is written. Well-designed procedural models typically leverage

domain-specific languages (DSLs) that expose task-specific functionality to produce interesting structures

while maintaining a compact programmatic form. When using a poorly constructed DSL, a procedural model

might not be able to realize the potential benefits of this powerful representation.

This dissertation focuses on how these limitations can be mitigated through these use of neurosymbolic

methods that integrate learning and programmatic representations. For instance, given a collection of pro-

grammatic shape representations, we can leverage deep generative models that learn to synthesize novel

programs that can be executed to produce new geometry. When we lack human-authored procedural models,

we can employ self-supervised bootstrapped learning algorithms that infer visual programs that recreate input

data when executed. Given a base DSL, we can use optimization algorithms to discover new abstraction func-

tions that improve the DSL for a particular modeling task. In summary, we find that neurosymbolic methods,

that marry learning-based systems with symbolic representations, draw from the strengths of each of these

disparate techniques, and often achieve a ‘best of both worlds’ solution.

3

1.1 Contributions

This dissertation introduces a series of neurosymbolic methods that aid in shape analysis and generation tasks.

This content is based largely on seven previous publications [91, 98, 99, 93, 92, 94, 95], which are naturally

grouped into three thematic directions.

1. Generating shapes by learning to synthesize programs: When datasets of annotated assets are avail-

able, we can train generative networks that learn to author novel shape programs. We explore the ben-

efits of such a hybrid neural-procedural paradigm in our ShapeAssembly system [91]. We introduce

the ShapeAssembly language and its differentiable interpreter, allowing the procedural specification of

shape structures represented as connected part assemblies. We design a deep generative autoregressive

model for ShapeAssembly programs, coupling the ease-of-training and variability of neural networks

with the precision and editability of procedural representations. We demonstrate that training networks

that learn how to author shape programs improves performance over other structured modeling alter-

natives.

2. Unsupervised visual program induction: For many domains of interest, we lack annotated program

datasets, but we would still like to find programs that explain visual datum: this is the task of vi-

sual program induction (VPI). We propose PLAD, a method that trains a recognition network for VPI

without access to labeled data [98]. PLAD introduces a conceptual framework that groups and gener-

alizes a family of related self-supervised learning techniques. We run experiments across multiple VPI

domains, and find that PLAD training outperforms previous state-of-the-art alternatives such as policy

gradient reinforcement learning. In a follow-up work, we explore an extension of PLAD, VPI-Edit, that

introduces networks that learn how to edit visual programs [99]. Given an initial program and a visual

target, these networks predict local edit operations that can be applied to the input program to improve

its similarity to a target. We show that this paradigm is more effective at solving VPI tasks compared

with networks that try to author an entire program in ‘one-shot’. In another extension of PLAD, we

introduce Template Programs [93], partial programs that can explain groups of related visual inputs.

We propose a neurosymbolic method that learns how to infer these stochastic procedural models in an

unsupervised fashion. In experiments across VPI domains, we demonstrate that this framework sup-

ports multiple concept-related tasks, including cosegmentation, few-shot generation, and novel concept

synthesis.

4

3. Discovering better domain-specific languages: Obtaining a ‘good’ procedural model requires access

to a ‘good’ modeling language, where notions of ‘good’ are often task-specific. We explore how base

domain-specific languages can be improved automatically with methods that search for abstraction

functions that improve a data-driven compression-based objective. These library learning techniques

are provided with a shape dataset, and try to discover a concise set of functions that abstract out com-

mon structural and parametric patterns: removing extraneous degrees of freedom from the underlying

shape collection. ShapeMOD [92] assumes that the input shape dataset has associated imperative pro-

grams. ShapeCoder [94] relaxes this assumption, operating over collections of shapes represented with

unstructured primitives. We experimentally demonstrate on collections of manufactured objects that

learning over programs that use these discovered abstractions leads to better performance on important

downstream tasks such as novel shape generation, directed shape manipulation, and inferring shape

structures from unstructured geometry. As an alternative to these bottom-up approaches, we propose

the ShapeLib [95] method, which leverages the priors of Large Language Models to design a library

of shape abstraction functions in a top-down fashion. This system accepts two forms of user-provided

design intent: text descriptions of functions to include in the library and a small seed set of exemplar

shapes. Across multiple categories of manufactured 3D shapes, it is able to discover procedural ab-

stractions that match this design intent, expose semantically aligned parametric handles, and generalize

beyond the seed set.

Together, these contributions demonstrate how neurosymbolic methods can be used to mitigate the tra-

ditional limitations of procedural modeling, while maintaining a programmatic representation of visual data.

When available, we include links to our open sourced code in the respective chapters for each method.

1.2 Document Overview

The rest of this dissertation is organized as follows: Chapter 2 first provides high-level background overviews

of the fields of procedural modeling and program synthesis. It then discusses relevant related works on the

topics of generative models of visual data, visual program synthesis, and abstraction discovery. Next we

discuss the technical contributions of this proposal. In Chapter 3, we present ShapeAssembly, a generative

model of shape programs. We then describe a series of works for unsupervised visual program induction,

starting with the PLAD framework (Chapter 4), followed by extensions that train networks that learn how to

edit programs (Chapter 5) and infer programs that capture a collection of visual inputs (Chapter 6). Next, we

5

introduce a series of works for automatic abstraction discovery: starting from a dataset of shape programs

(ShapeMOD, Chapter 7), starting from a dateset of shapes represented with primitives (ShapeCoder, Chap-

ter 8), and guiding a LLM to author functions that match an input design intent (ShapeLIB, Chapter 9). We

conclude the dissertation in Chapter 10, with a summary of our main contributions and a discussion on the

future of neurosymbolic methods for shape analysis and generation.

Chapter 2

Background

In this chapter, we overview the most relevant background material and related works to this dissertation. We

first briefly survey the topics of procedural modeling, programs that generate visual outputs, and program

synthesis, the problem of finding a program that meets a specification. We then discuss the most relevant

related methods to the work of this dissertation in the topics of: generative modeling for visual data, visual

program synthesis, and abstraction discovery.

2.1 Procedural Modeling

In procedural modeling, a symbolic program describes graphics content, such that when the program is

executed it produces visual data as its output. Procedural models have a storied history that dates back

to the origins of computer graphics as a field, when Ivan Sutherland used constraint programs to produce

engineering sketches in the SketchPad system [39]. While procedural approaches have permeated almost all

facets of the graphics pipeline, procedural models are most widely used to represent geometry and appearance

of 3D objects. For instance, trees and vegetation have commonly been modeled in a procedural fashion,

where context-free grammars, such as rewrite-based L-systems, are used to represent the fractal nature of

these objects [161, 86, 160, 117]. Building facades and entire cityscapes are also a common interest of

procedural modeling approaches [142, 154]. Beyond 3D geometry, procedural models are also common

in texture modeling [3, 27, 6], and have even seen use in more varied application such as influencing the

behaviors of virtual characters in a crowd [134].

Most relevant to the contents of this dissertation, is the use of procedural models to represent shapes

6

7

[49]. Shape programs, or procedural models that create shapes when executed, are often written in a domain-

specific language, or DSL. The design process of complex procedural shape models often takes place within

proprietary software development environments, where graphical node-based programming is commonly em-

ployed [6, 9, 227]. One representative approach is Constructive Solid Geometry (CSG), which builds complex

shapes by combining primitives together with Boolean set operations (union, difference, intersection) [56].

Computer Aided Design (CAD) software typically constructs such 3D primitives by lifting 2D sketch profiles

into 3D volumes through extrusion [30, 5].

Most procedural models are manually designed by domain-experts, an expensive and time-consuming

process. While some procedural models are deterministic (they always produce the same output when exe-

cuted), others are stochastic (they can produce different outputs when executed). Typically, these models use

a single consistent structure that includes calls to functions that return random variables, optionally exposing

these variable parameters as controllable ‘handles’. For instance, a procedural program of a flower might

expose an interface that allows a user to vary the length of the stem or the number of petals. This paradigm

facilitates exploration over a wide-range of possible shape realization, allowing users to choose which of the

outputs best fits their intended purpose. Unfortunately, designing a stochastic model is arguably harder than

designing a deterministic procedural model.

In the following content of this dissertation, we discuss and explore works that attempt to automatically

synthesize procedural models of shapes, with little or no human intervention.

2.2 Program Synthesis

Program synthesis is a broad field that has employed many techniques throughout its history. The typical

problem framing presents a program synthesizer with two inputs: a programming language (often domain-

specific) and a specification. The goal of the synthesizer is to return a program from the language that

meets the specification. Ideas of automatic code generation have intrigued researchers since the inception of

Artificial Intelligence; this problem has even been dubbed the ”holy grail” of AI [62]. Despite this ambitious

framing, progress in program synthesis had been slow until the past few decades, when advances in computing

power and constraint-solving, along with novel enumeration techniques, started to produce useful systems

capable of solving synthesis tasks beyond toy-domains [191, 155, 207, 61].

Program synthesis systems can be primarily divided along three central axes of design decisions: in-

tent specification (e.g. how a user communicates the goals of the desired program), search space (e.g. the

8

programming language over which the synthesizer will search), and search technique (e.g. how the syn-

thesizer will search for a program that meets the specification). While program synthesis methods have ex-

plored a wide-range of search algorithms (including enumeration, constraint-based, probabilistic search, etc.),

more recently the field has focused on learning-based techniques. Typically methods within this paradigm

task a neural network with guiding how the search should proceed over the space of possible programs

[37, 220, 156, 197, 13, 22]. Since programs can be represented as sequences of discrete tokens, many

learning-based methods use auto-regressive models, where each token is generated conditionally based on

previously generated tokens [209]. This paradigm has become especially popular following the rapid adop-

tion and success of Large Language Models (LLMs). Frontier LLMs are often trained on massive datasets of

human-written code as part of their pretraining, and have demonstrated the ability to program in a way that

generalizes across tasks and programming languages [19].

Some systems model this autoregressive process not only at the token level, but instead across program

versions. A number of program synthesis methods have been proposed that learn how to repair or fix programs

for domains where ground-truth programs are available. SED interleaves a series of synthesis, execution and

debugging steps in order to improve synthesis of Karel programs from input/output examples [66]. Related

approaches have explored learning how to ‘fix’ programs end-to-end by manipulating latent-space encodings

of programs under a fixed decoder for the RobustFill domain [7]. A number of recent works have explored

how LLMs can be used to fix programs when prompted with mismatching input/output examples [189, 21,

130, 148]. Though differing in details, the typical formulation these methods take involves presenting an

LLM with a previous program version, and asking it to either (i) debug exceptions or (ii) modify program

behavior in light of input/output mismatches. While these initial forays show promise, performance gains of

code-editing LLMs are not always definitive when adjusted for inference budgets [152].

This dissertation introduces a series of methods for visual program induction, a sub-problem of program

synthesis where the input specification is visual data, and the goal is to find a program whose output execution

recreates the input. We discuss relevant related works that study this problem in Section 2.4.

2.3 Related work on Generative Models of Visual Data

Learning generative models of visual data is a rapidly growing field that has received a great deal of interest.

Fueled by deep learning, and access to massive datasets, the capabilities of these systems have increased

dramatically in recent years. Deep generative models learn to represent the probability distribution over an

9

input domain X (e.g. a collection of visual data). This probability distribution can then be sampled to syn-

thesize novel instances from X (e.g. new visual data). There are a multitude of deep generative modeling

paradigms, all with different strengths and weaknesses, including generative adversarial networks (GANs),

variational autoencoders (VAEs), auto-regressive models, normalizing flows, and diffusion models [10, 28].

These deep generative modeling paradigms have been applied across many visual domains including image

synthesis, processing, and manipulation [87, 245, 55, 104, 169, 181, 178], scenes [213], material and texture

modeling [50, 36, 72, 64], and 2D drawing and sketching [68, 174, 210]. In principle, these models are easy

to create: just provide training data, and a learning algorithm takes care of the rest. What’s more, they are

quite general: the same model architecture (and sometimes even the same trained model) can represent a huge

variety of different kinds of visual data (e.g. the space of all human faces). However, these ‘neural’ methods

are not without limitations. The representations these models learn are usually opaque and uninterpretable,

making them hard for users to edit or manipulate. Additionally, as machine learning methods produce sta-

tistical approximations of the true function implied by their training data, such models may generate outputs

that exhibit artifacts or fail to generalize beyond their training distribution.

For deep generative models that learn to synthesize 3D shapes, representation is a central design decision.

Some of the earliest approaches generated shapes as 3D occupancy grids [223, 221], while later work has

explored how to generate point clouds [44, 121], meshes [59, 146], and implicit representations [26, 157,

136, 24, 84, 78]. Most of these aforementioned generative models of 3D shapes create geometry directly.

In contrast, structure-aware models learn to generate objects as arrangements of their component parts [18,

139]. These include approaches for iteratively adding parts to partially-complete shapes [198], generating

symmetry hierarchies [120], composing parts from two different shapes [244], and generating hierarchical

connectivity graphs [140].

This dissertation discusses structured generative models for visual data, where a neural network learns

to model a distribution over shape programs. The ShapeAssembly system, introduced in Chapter 3, of-

fers one of the first realizations of such a neurosymbolic generative model for 3D shape structure synthesis.

This paradigm has also demonstrated success across visual domains and tasks [176], including node graphs

for materials [60], scalable vector graphics [170, 15], CAD sketches [153, 184, 54], and 3D modeling se-

quences [222, 229, 217].

10

2.4 Related work on Visual Program Synthesis

Visual program induction is a sub-problem of program synthesis. Typically the input is a single visual entity,

such as an image or a 3D shape, and the goal is to find a program whose execution would recreate this

input. This problem framing is particularly appropriate for manufactured objects, as such shapes typically

originate as CAD programs of some form (e.g. connected assemblies of parts, the geometry of which may be

specified by lower-level instructions). Some methods for this task use non-learning based approaches. These

typically rely on heuristics and are specialized for particular domains and/or tasks. Recent work includes

reverse-engineering CAD programs from 3D shapes [38, 144, 228] and shape program manipulation [71].

As the design space of visual programs is often prohibitively large for exhaustive search, and insightful

heuristics are hard to identify, neurally-guided approaches have become increasingly preferred. Unfortu-

nately, while shape data is increasingly available in large quantities [16, 32], these shapes do not usually

come with paired program annotations, so supervised learning cannot be used directly. To mitigate this

lack of data, some approaches require an expert designed program structure as input, and then search for

a parametrization of this program structure to match a given target [137, 159]. Other approaches aim to

jointly infer both program parameters and structure, and have demonstrated success across a range of visual

programming domains, including CAD modeling sequences [118, 54, 184, 119], SVG shapes [170, 171],

and even custom DSLs with learned neural primitives [35]. These works leverage task-specific learning or

architecture modifications that make the search space tractable.

Methods that infer shape programs in a general way (capable of learning across VPI domains), typically

employ a two step learning process to circumvent the lack of paired data. First, these methods will gen-

erate synthetic data by sampling random programs under the input DSL and pairing them with the shapes

they output. This pretrained network can then be fine-tuned towards a target shape distribution that lacks

annotated ground-truth programs. In Chapter 4, we introduce PLAD, a fine-tuning technique that works

across shape program inference domains, and discuss alternative fine-tuning paradigms in Section 4.1. While

this approach, like many other VPI methods, attempts to author a complete program from only visual con-

ditioning (e.g. a latent encoding), some approaches employ an an execution-aware search procedure. For

instance, some methods will reason over partial program executions [151] that guide a more complex outer

search [41]. Others use executor-gradients to guide inner-loop optimization [53, 236]. In Chapter 5, we pro-

pose an extension of PLAD that trains networks that learn how to edit programs towards a visual target in an

execution-aware manner.

11

Another line of research has studied inverse methods for producing procedural models capable of gener-

ating a distribution of visual outputs. A typical framing such approaches take is to induce a grammar with

a bottom-up procedure, e.g. through Bayesian merging [85]. These techniques have demonstrated success

across many visual domains, including plants [193, 63] and buildings [150, 132, 149, 33], and some can even

induce more general probabilistic programs [177]. Though these methods achieve impressive results, they

lack generality and flexibility, struggling to induce grammars outside of their specialized domain, and often

requiring highly structured input data. In Chapter 6, we introduce a method that extends a single-shape VPI

method to search for procedural models that can explain a collection of related visual inputs. Our approach

generalizes across visual programming domains, doesn’t require structurally-annotated data, and supports a

range of downstream tasks.

As Large Language Models (LLMs) have exploded in popularity, reshaping the field of computer science,

initial investigations have explored their ability for producing and reasoning over programmatic descriptions

of visual content [12]. Up to now, frontier LLMs and Vision-Language models (VLMs) have struggled

to perform these generation and analysis tasks for non-toy shape modeling domains, though task-specific

finetuning can improve performance to a degree [113, 164]. Some approaches have found success in using

LLMs to guide searches over symbolic re-parameterizations of procedural models for 3D shape editing and

manipulation tasks [52, 109, 82]. A related research direction of nascent interest has explored how well LLMs

can author programs that describe the arrangements of objects within a scene [231, 47, 240, 126, 81, 4].

Unfortunately, directly prompting LLMs to generate programs that produce compelling 3D shapes has so far

proved a harder task.

2.5 Related work on Abstraction Discovery

While procedural models offer an attractive representation for visual data, not all visual programs are equally

useful. The usefulness of a procedural model is dependent on the programming language in which it is writ-

ten; for instance, in representing the wheels of an office chair, it would be harder to author a ‘good’ procedural

model without access to a language operator that created a rotational symmetry group. The functions of the

DSL should be designed for the modeling task at hand, where specialized high-level functions (e.g. macros,

abstractions, helper functions) are required to produce the ‘most useful’ procedural models. As illustrative

examples, consider that in urban procedural modeling, a macro might capture how primitives combine to

make a particular class of railing; in furniture modeling, a macro might be used to model a shelving pattern

12

that could be instantiated within different types and sizes of furniture; in plant modeling, a macro might be

used to instantiate examples of petal structures across a family of flowers. Typically such abstraction func-

tions must be carefully crafted by humans, but some prior work has investigated if these ‘better’ languages

can be found automatically; typically by augmenting the functions of a base DSL with a library of additional

abstraction functions.

Several prior methods aim to discover abstractions in context-free languages, where only a reduced set

of relations between primitives or sub-programs can be modeled, in the context of façade grammars [133]

or more general grammar types [200, 85, 177]. Recently, another line of work has investigated common ab-

straction discovery for general functional programs, under the framing of library learning: the Exploration-

Compression (EC) algorithm [31] and its successor, DreamCoder [42]. EC operates by switching between

two algorithmic phases: “exploration” (trying to find programs that solve input problems) and “compression”

(finding abstractions common to these programs). DreamCoder extends the ideas of EC, replacing explo-

ration with a “wake” phase (with similar goals), and compression with two new phases: a “sleep-dream”

phase that fantasizes new tasks and a “sleep-abstraction” that mirrors EC’s “compression” phase. We discuss

DreamCoder, and how it relates to abstraction discovery methods for 3D shapes proposed in this dissertation

(ShapeMOD and ShapeCoder), in more detail in Chapter 8. Recently, alternatives have been proposed for the

abstraction step of a DreamCoder-like system, either by using a top-down search, like the STITCH algorithm

[11], or by employing anti-unification over an equality preserving data-structure, like in the Babble algorithm

[14]. LILO [58], is another recent method that uses a LLM to automatically document the abstractions dis-

covered by STITCH. In Chapter 9, we introduce an alternative framework that guides a LLM through the

process of implementing procedural abstraction functions that match a provided design intent.

A related problem studies how to discover common patterns in a single program, as opposed to a set of

programs. This has been explored for L-Systems [63] and there has also been prior work on this problem in

the realm of shape modeling languages. The Szalinski system takes a low-level CAD program as input and

searches for a more compact, higher-level program which produces the same output geometry [145]. The

Carpentry Compiler is a program optimizer that finds rewrites of low-level instructions to maintain high-level

semantics while optimizing to reduce manufacturing cost [219]. Such approaches can also be seen as related

to systems for more general program-rewriting, such as optimizing compilers [203].

Chapter 3

Learning to Generate Programs for

Shape Structure Synthesis

def Chair():
 bbox = Cuboid(1.2, 1.4, 1, T)
 base = Base(.9, .5, .8, T)
 seat = Seat(1.1, .1, .9, T)
 back = Back(1.1, .9, .2, F)
 arm = Cuboid(.1, .4, .7, F)
 attach(base, bbox, .5, 0, .5, .5, 0, .5)
 squeeze(back, bbox, base, top, .5, .1)
 attach(seat, base, .5, 0, .5, .5, 1, .5)
 attach(arm, back, .5, .5, 0, .1, .3, .5)
 attach(arm, seat, .5, 0, .5, .1, .7, .5)
 reflect(arm, X)
. . .
def Back(l, w, h, aligned):
 bbox = Cuboid(l, w, h, aligned)
 surface = Cuboid(1.16, .64, .13, T)
 slat = Cuboid(.04, .76, .1, F)
 attach(surface, bbox, .5, 1, .5, .5, 1, .7)
 attach(slat, bbox, .5, 0, .5, .2, 0, .45)
 attach(slat, surface, .5, .6, .8, .2, .3, .2)
 reflect(slat, X)

 EDIT

def Chair():
. . .
def Back(l, w, h, aligned):
 bbox = Cuboid(l, w, h, aligned)
 surface = Cuboid(1.08, .58, .11, T)
 slat = Cuboid(.04, .73, .1, F)
 attach(surface, bbox, .5, 1, .5, .5, 1, .6)
 attach(slat, bbox, .5, 0, .5, .15, 0, .3)
 attach(slat, surface, .6, .5, .6, .1, .1, .1)
 reflect(slat, X)

def Chair():
. . .
def Back(l, w, h, aligned):
 bbox = Cuboid(l, w, h, aligned)
 surface = Cuboid(.9, .51, .08, T)
 slat = Cuboid(.05 .6, .07, F)
 attach(surface, bbox, .5, 1, .5, .5, 1, .5)
 attach(slat, bbox, .5, 0, .5, .1, 0, .3)
 attach(slat, surface, .5, .8, .5, .1, .1, .3)
 reflect(slat, X)

def Chair():
 bbox = Cuboid(.82, 1.6, .85, T)
 base = Base(.75, .66, .66, T)
 seat = Seat(.8, .13, .85, T)
 back = Back(.8, .9, .1, T)
 attach(base, bbox, .5, 0, .5, .5, 0, .5)
 attach(back, bbox, .5, 1, .5, .5, 1, .05)
 attach(seat, base, .5, .0, .5, .5, 1, .5)
 attach(back, seat, .5, .0, .5, .5, .75, .05)

. . .

def Back(l, w, h, aligned):
 bbox = Cuboid(l, w, h, aligned)
 surface = Cuboid(.8, .4, .1, T)
 slat = Cuboid(.05, .5, .05, T)
 attach(surface, bbox, .5, 1, .5, .5, 1, .5)
 squeeze(slat, bbox, surface, bot, .1, .5)
 translate(slat, X, 3, 0.8)

def Chair():
 bbox = Cuboid(0.5, 2, 0.7, T)
 base = Base(0.5, .95, 0.7, T)
 seat = Seat(0.5, .05, 0.7, T)
 back = Back(0.5, 1, 0.05, T)
 attach(base, bbox, .5, 0, .5, .5, 0, .5)
 attach(back, bbox, .5, 1, .5, .5, 1, .05)
 attach(seat, base, .5, .0, .5, .5, 1, .5)
 attach(Back, seat, .5, .0, .5, .5, .75, .05)

. . .

def Back(l, w, h, aligned):
 bbox = Cuboid(l, w, h, aligned)
 surface = Cuboid(0.5, 0.1, 0.05, T)
 slat = Cuboid(.09, .9, .05, T)
 attach(surface, bbox, .5, 1, .5, .5, 1, .5)
 squeeze(slat, bbox, surface, bot, .1, .5)
 translate(slat, X, 2, 0.8)

execute execute execute execute execute

Interpolation in ShapeAssembly Program Space

Figure 3.1: We present a deep generative model which learns to write novel programs in SHAPEASSEMBLY,
a domain-specific language for modeling 3D shape structures. Executing a SHAPEASSEMBLY program
produces a shape composed of a hierarchical connected assembly of part proxies cuboids. Our method
develops a well-formed latent space that supports interpolations between programs. Above, we show one such
interpolation, and also visualize the geometry these programs produce when executed. In the last column,
we manually edit the continuous parameters of a generated program, in order to produce a variant geometric
structure with new topology.

3D models of human-made objects are more in-demand than ever. Despite the growing demand, the craft

of 3D modeling largely remains as difficult and time-consuming as it has ever been. The time and expertise

13

14

required to create 3D content by hand will not scale to these demands.

One promising way out of this conundrum is the development of generative models of 3D shapes, i.e.

procedures which can be executed to generate novel shapes within some class [161, 142, 154]. An ideal

generative model would produce plausible output geometry, capture a wide range of shape variations, and

use an interpretable representation which a user could subsequently manipulate and edit. Unfortunately, no

existing shape generative model achieves all of these properties.

In this chapter, we capitalize on our insight that procedural models and deep generative models have

complementary strengths. Deep generative models are efficient to create and excel at broad-scale variability,

and procedural models produce high-quality geometry by construction and better facilitate editing for fine-

scale variability. We take a first step toward achieving the best of both worlds by integrating these two

approaches into a single pipeline: a deep generative model that learns to write programs, which, when

executed, themselves output 3D geometry. We hypothesize that going through this intermediate program

representation produces a generative model with a smoother latent space, whose outputs are more likely to

be physically valid, compact, and editable.

As the motivating applications mentioned earlier demand 3D models of human-made objects, we focus

on generating novel part-based shape structures. We introduce SHAPEASSEMBLY, an “assembly language”

for 3D shape structures. In SHAPEASSEMBLY, shape structures are represented by hierarchical assemblies

of connected parts, where leaf-level parts are approximated by a bounding cuboid (a similar representation

as the ones used by PartNet [141] and StructureNet [140]); these hierarchical cuboid structures can then

be used to condition the generation of shape surface geometry in the form of e.g. point clouds. A SHA-

PEASSEMBLY program constructs a shape by declaring cuboids, iteratively attaching them to one another,

and specifying symmetric repetitions of connected cuboid assemblies. The dimensions of these cuboids and

the positions of these attachments are a program’s parameters; manipulating them allows for exploring a

family of related shapes. Furthermore, our interpreter for executing SHAPEASSEMBLY programs is fully

differentiable, meaning it is possible to compute gradients of a program’s output geometry with respect to its

continuous parameters. Figure 3.1 shows some example hierarchical SHAPEASSEMBLY programs and the

output shapes they produce.

While SHAPEASSEMBLY programs produce valid geometry under a range of parameter values, they do

not exhibit structural variability, and authoring them from scratch still takes time. Thus, we train a neural

network to write a variety of SHAPEASSEMBLY programs for us. Using programs we extract from a shape

dataset, we train a hierarchical sequence VAE which outputs hierarchical SHAPEASSEMBLY programs. Each

15

node in the hierarchy uses a recurrent language model to generate the program text at that level, and to

decide which cuboids should be expanded into subroutine calls. Furthermore, the well-defined semantics

of SHAPEASSEMBLY allow us to identify semantically-invalid programs and modify the generator such that

it never produces them. The programs shown in Figure 3.1 were written by our generative model, by decoding

code vectors along a straight line in its latent space. We show that this generative model indeed learns

to generate plausible, novel shape programs that were never seen its the training set. Note that one could

consider solving our problem of novel shape program generation by first generating novel 3D shapes with an

existing shape generative model and then using a VPI-like system to infer a program describing that shape.

However, as we will later show, the programs produced by such a process are less clean and editable than

ones generated by our model; furthermore, training to generate programs rather than shapes directly actually

produces a better-structured latent space.

We evaluate our approach by comparing it to other recently-proposed generative models of 3D shape

structure along several axes including plausibility, diversity, complexity, and physical validity. We find that

our generated shapes are both more plausible and more physically-valid than those of other methods. Ad-

ditionally, we assess the latent spaces of these models, and find that ours is better structured and produces

smoother interpolations, both in terms of geometric and structural continuity. As a bonus, we also show

that SHAPEASSEMBLY’s decoder does a better job of fitting programs to unstructured point clouds while also

maintaining physical validity, and that this performance difference is magnified by optimizing the program

fit via our differentiable interpreter.

We provide code for our method at https://github.com/rkjones4/ShapeAssembly .

3.1 Approach

Figure 3.2 shows our overall pipeline. Our approach is divided into the following stages:

Input Our pipeline takes as input a large dataset of hierarchical 3D part graphs [141, 140]. This is a shape

representation in which each node represents a part in a shape consisting of an assembly of parts. Nodes

are connected via edges that denote physical part attachments. They can also be connected via parent-child

edges that denote hierarchy relationships (i.e., that one part is composed of several other smaller parts). At

the leaf level of this hierarchy, atomic parts are represented by cuboid proxy geometry (typically computed

from minimum-volume bounding boxes of more detailed part meshes).

16

Input Hierarchical Part Graphs

ShapeAssembly DSL
(Section 4)

Shapes to Training Programs
(Section 5)

Learning to Generate Programs
(Section 6)

def Chair():
 bbox = Cuboid(.7, 1.7, .5, True)
 prog1 = Program1(.7, .6, .5, True)
 prog2 = Program2(.7, .9, .05, True)
 cube2 = Cuboid(.7, .15, .5, True)
 attach(prog1, bbox, .5, 0, .5, .5, 0, .5)
 attach(cube2, prog1, .5, 0, .5, .5, 1, .5)
 squeeze(Prog2, bbox, cube2, top, .5, .1)

def Program1(l, w, h, aligned):
 bbox = Cuboid(.7, .6, .5, True)
 prog3 = Program3(.05, .6, .5, True)
 squeeze(prog3, bbox, bbox, top, 0, .5)
 reflect(prog3, X)
...

def Chair():
...

def Chair():
...

def Chair():
...

def Chair():
...

execute execute execute execute

Figure 3.2: Our pipeline for generating 3D shape structure programs. We first define a DSL language for 3D
shapes, SHAPEASSEMBLY . Then, given a dataset of hierarchical part graphs, we extract SHAPEASSEM-
BLY programs from them. Finally, we use these programs as training data for a deep generative model. Our
method learns to generate novel program instances that can be executed to produce complex and interesting
3D shape structures.

Defining a DSL for connected, hierarchical shapes To represent shapes as programs, we introduce a

domain-specific language (DSL). Since our input shapes are characterized by graphs of parts, where graph

edges denote physical part connections, we introduce a DSL based around declaring parts and then attaching

them to one another. We call this language SHAPEASSEMBLY (as in, an “assembly language” for shapes).

Section 3.2 describes the language.

Creating a dataset of shape-program pairs Given the language described above, we present a method

for finding programs that represent the shapes in our dataset. In our procedure, we first extract the program

content based on a combination of data cleaning and geometric analysis. Then, we create canonical programs

through a series of ordering and filter steps. Section 3.3 describes this procedure in more detail.

Learning to generate programs Finally, we treat the programs extracted from each shape as training data

for a generative model. Section 3.4 describes our deep generative model’s architecture, the procedure we use

to train it, and how we sample from it to synthesize new programs, which when executed produce novel shape

structures.

17

3.2 An Assembly Language for Shapes

Our goal in this section is to define a domain-specific language for shapes which are specified as connected

assemblies of parts. As we focus on the problem of shape structure synthesis, cuboids, serving as part proxy

geometry, are the only data type in our language. In Section 3.5, we show how to use other existing techniques

to convert these proxies into surface geometry.

The primary operation in the language is attaching these cuboids together. Attachment turns out to be

a very powerful and flexible operation. In fact, our language does not include any operations for explicitly

positioning or orienting cuboids: all of this is accomplished via attachment operations. Additionally, the

language includes higher-level macros that capture more complex spatial relationships, such as symmetry. At

execution time, each macro is expanded into a series of cuboid declarations and attachment operations.

We call this DSL SHAPEASSEMBLY, because it is an “assembly language for shapes”: a low-level lan-

guage for creating shapes, in which shapes are created by assembling parts. Table 3.1 shows the grammar

for SHAPEASSEMBLY, and Figure 3.3 shows an annotated program along with its output shape.

A SHAPEASSEMBLY program consists of four main blocks:

• BBlock: Declares a non-visible bounding volume of the overall shape. This bounding volume is treated

21

22
23

13

14

16

15

7

6

8

Root Program

Expand Sub-Programs

1. def Chair():
2. bbox = Cuboid(1, 1.5, .8, True)
3. base = Base(.8, .5, .8, True)
4. cube1 = Cuboid(.8, .1, .8, True)
5. back = Back(.9, .8, .07, True)
6. attach(base, bbox, .5, 0, .5, .5, 0, .5)
7. attach(cube1, base, .5, 0, .5, .5, 1, .5)
8. squeeze(back, bbox, cube1, top, .5, .05)

9. def Base(l, w, h, aligned):
10. bbox = Cuboid(l, w, h, aligned)
11. cube0 = Cuboid(.2, .5, .2, True)
12. cube1 = Cuboid(.2, .5, .2, True)
13. squeeze(cube0, bbox, bbox, top, .1, .1)
14. squeeze(cube1, bbox, bbox, top, .1, .8)
15. reflect(cube0, X)
16. reflect(cube1, X)

17. def Back(l, w, h, aligned):
18. bbox = Cuboid(l, w, h, aligned)
19. cube0 = Cuboid(.9, .4, .07, True)
20. cube1 = Cuboid(.1, .4, .05, True)
21. attach(cube0, bbox, .5, 1, .5, .5, 1, .5)
22. squeeze(cube1, bbox, cube0, bot, .3, .5)
23. translate(cube1, X, 2, .5)

Figure 3.3: An example SHAPEASSEMBLY program and the shape that it generates. Parts are colored ac-
cording to the line of the program which instantiates them, and attachment points are numbered accordingly.
In the top shape, we show the executed Chair program without hierarchy. In the bottom shape, we show the
Chair program executed hierarchically with its sub-programs (Base and Back). For instance, the light grey
back part is expanded into the purple back surface and gold slats.

18

(1) attach(cube0, bbox, .5, 0, .5, .5, 0, .5)

(2) attach(cube1, cube0, .5, 0, .5, .5, 1, .5)

(3) squeeze(cube2, bbox, cube1, top, .5, .18)

(4) attach(cube3, cube2, .5, .5, 0, .1, .1, 1)

(5) attach(cube3, cube1, .5, 0, .5, .1, 1, .7)

1

2

3

4

5

6

bbox = Cuboid(.7, 1.8, .6, True)
cube0 = Cuboid(.6, .6, .6, True)
cube1 = Cuboid(.6, .2, .6, True)
cube2 = Cuboid(.6, .9, .2, True)
cube3 = Cuboid(.2, .2, .4, True)

(6) reflect(cube3, X)

Figure 3.4: An illustration of how the SHAPEASSEMBLY interpreter incrementally constructs shapes by
imperatively executing program commands. Cuboids are instantiated at the origin and are moved through
attachment. Notice how the reflect command in line 6 acts as a macro function, creating a new cuboid
and two new attachments.

as a physical entity to which other parts can be connected.

• CBlock: Declares all the cuboid part proxies that will be used by the remainder of the program. The

Cuboid command takes in l, w, h parameters that control the starting dimensions of the part, and an

aligned flag a that specifies if the part has the same orientation as its bounding volume.

• ABlock: Connects cuboids by iteratively attaching them to one another. The attach command takes

in two cuboids, cn1, cn2, and attaches the point (x1, y1, z1) in the local coordinate frame of cn1 with

the point (x2, y2, z2) in the local coordinate frame of cn2. The squeeze macro expands into two

attach statements, such that cn1 is placed in-between cn2 and cn3 along the specified face f at the

face-coordinate position (u, v).

• SBlock: Generates symmetry groups by instantiating additional Cuboid and attach commands. The

reflect macro reflects cuboid cn over axis axis of the bounding volume. The translate macro

creates a translational symmetry group starting at cn with m additional members along axis a of the

bounding volume that ends distance d away.

19

a b c d e

Figure 3.5: The steps of our program extraction pipeline. (a) Fragment of an input hierarchical part graph
showing chair back (parent node), chair back frame (blue child), and chair back surface (orange child). (b)
Locally flattening the hierarchy so that physically interacting leaf parts become siblings. (c) Shortening leaf
parts that intersect other leaf parts. (d) Locating attachment points between parts. (e) Forming leaf parts into
symmetry groups.

Semantics SHAPEASSEMBLY has imperative semantics: every line of the program immediately takes effect

and alters the state of the shape being constructed. Figure 3.4 shows an example of a simple shape being

imperatively constructed. Declaring a cuboid instantiates a new piece of cuboid geometry with the requested

dimensions, centered at the origin. Invoking the attach command alters the cuboid, potentially translating,

rotating, or resizing it in order to satisfy the attachment (see Appendix A.1 for details). Higher-level macros

expand into two or more Cuboid or attach lines, which are then immediately executed (see Appendix

A.2 for details).

One distinct advantage of this imperative semantics, as opposed to an alternative formulation in which the

Table 3.1: The grammar for SHAPEASSEMBLY, our low-level domain-specific “assembly language” for
shape structure. A program consists of Cuboid statements which instantiate new geometry and attach
statements which connect these geometries together at specified points on their surfaces. Macro func-
tions (reflect, translate, squeeze) form complex spatial relationships by expanding into multiple
Cuboid and attach statements.

Start −→ BBlock; CBlock; ABlock; SBlock;
BBlock −→ bbox = Cuboid(l, h, w,True)
CBlock −→ cn = Cuboid(l, w, h, a) ; CBlock — None
ABlock −→ Attach ; ABlock — Squeeze ; ABlock — None
SBlock −→ Reflect ; SBlock — Translate ; SBlock — None
Attach −→ attach(cn1 , cn2 , x1, y1, z1, x2, y2, z2)
Squeeze −→ squeeze(cn1 , cn2 , cn3 , f, u, v)
Reflect −→ reflect(cn, axis)
Translate −→ translate(cn, axis,m, d)
f −→ right — left — top — bot — front — back
axis −→ X — Y — Z
l, h, w ∈ R+

x, y, z, u, v, d ∈ [0, 1]2

a ∈ [True,False]
n,m ∈ Z+

20

program specifies constraints which are jointly optimized, is that the entire process of executing a program

is end-to-end differentiable. That is, it is possible to compute the gradient of the program’s output geometry

with respect to the continuous parameters in the text of the program (e.g., cuboid dimensions, attachment

point locations). We make use of this feature in results shown later in this chapter.

Handling hierarchy Thus far, we have described a language that can generate flat assemblies of parts,

but not hierarchical ones. The extension to hierarchical shapes is straightforward: we represent hierarchical

shapes by treating select non-leaf cuboids as the bounding box of another program (e.g., the contents of its

“BBlock”). Figure 3.3 shows an example of a program in which cuboids expand into sub-programs.

3.3 Turning Shapes into Training Programs

SHAPEASSEMBLY allows us to write programs that generate new shapes. However, we are interested in using

the language to represent existing shapes in a dataset, so that we can learn to generate novel instances from

the same underlying shape distribution. In this section, we describe how we accomplish this goal. Given an

input shape, represented as a hierarchical part graph, the process divides into three steps: extracting program

information, creating candidate programs, and checking program validity.

3.3.1 Extracting Program Information

To convert hierarchical part graphs into SHAPEASSEMBLY programs, we perform a series of data regular-

izations, record cuboid parameters, locate cuboid-to-cuboid attachments, and identify symmetry groups (Fig-

ure 3.5). We provide a high-level overview of the steps involved here, and a detailed description in Appendix

A.3.

Regularization Before we parse program attributes, we attempt to create more regularized part graphs

through a series of data-cleaning steps. For instance, in the flattening phase, we restructure the part graph

hierarchy so that leaf parts with spatial relationships are more often siblings. In the shortening phase, we

decrease the dimensions of leaf cuboids that interpenetrate other leaf cuboids (to create more surface-to-

surface part connections).

Cuboids Ground truth cuboid dimensions are provided in the input part graphs. A cuboid is marked as

aligned if its orientation matches its parent cuboid (with an allowable error of 5-degrees).

21

Attachment To locate cuboid-to-cuboid attachments, we sample a uniform, dense point cloud on each

cuboid in the scene. For each pair of cuboids, we compute the intersection of the point clouds. If the

intersection set is non-zero, we record an attachment point within the volume formed by the intersection,

with preference for locations on the centers of faces. For every cuboid, we then check if any of its parsed

attachments could be represented as a squeeze relationship, and replace any that can.

Symmetry To find symmetry groups, we identify collections of cuboids that share a reflectional or trans-

lational relationship about either the X, Y, or Z axis of their parent cuboid. For each collection, if all of

the member cuboids have the same connectivity relationships, we form them into a symmetry group. Each

symmetry group is represented by a transform applied to a single cuboid, and all other members are removed

from the graph.

3.3.2 Creating Candidate Programs

Given the extracted program information, we know the content of the program, but not how the lines should

be ordered. To make the task of learning a generative model of programs easier, we aim to extract only a

single, “canonical” program for each shape. As the ordering of cuboid and symmetry lines doesn’t change

the executed geometry, this consistency is enforced by ordering these lines according to the semantic label of

each part involved in the line. Ties in this ordering between same part-type cuboids are broken by sorting on

centroid position.

Deciding on a single ordering of the attach and squeeze statements is more challenging. Since SHA-

PEASSEMBLY has an imperative execution semantics, the order in which these commands are executed is

significant: different orderings can potentially create different output geometries. To reduce the space of

possible orderings, we only consider programs which follow a grounded attachment order, which we define

as follows:

• Initially, only the shape bounding box is grounded.

• The only valid attachments to perform are those which connect a cuboid to a grounded cuboid.

• After executing an attachment, the newly-attached cuboid becomes grounded.

If there are multiple valid grounding orders, we first discard any orderings that produce worse geometric

fits to the target shape. If ambiguities in the attachment ordering still remain, we break ties using (1) the

semantic ordering of the cuboids involved in the attachment (2) preferring attachments from non-aligned to

aligned cuboids and finally (3) preferring attachments from cuboid face-centers.

22

3.3.3 Validating Programs

Once we extract a canonical SHAPEASSEMBLY program, we perform a series of checks to verify the results

of our procedure. Programs must pass the following validation steps in order to be added to our training data:

Reconstruction Executed programs should recreate the geometry of their respective ground truth part

graph. To verify this, we sample point clouds from the surfaces of the ground truth shape and the geom-

etry generated by executing the canonical program. These point clouds are compared using the F-score [108]

metric; a program is filtered out if it produces an F-score lower than 75.

Semantics Programs must respect the semantics of SHAPEASSEMBLY. For instance, within each program,

the connectivity graph of all parts should have only one component. Likewise, executed programs should not

create geometry that extends beyond the bounding volumes they define.

Complexity Programs that are overly complex (more than 12 leaf cuboid instantiations) are discarded.

Note that, when executed, programs can still produce more than 12 leaf cuboids through expanding symmetry

macros.

3.4 Learning to Generate Programs

Given the programs extracted from our dataset, we now have the data we need to train a neural network to

write novel hierarchical SHAPEASSEMBLY programs for us. In this section, we describe the generative model

architecture we use, our learning procedure, and how we sample new shapes from the learned model.

3.4.1 Model Architecture

Figure 3.6 shows our generative model architecture. It is a hierarchical sequence VAE. The encoder branch

embeds a hierarchical SHAPEASSEMBLY program into a latent space. The decoder branch converts a

point in this latent space into a hierarchical SHAPEASSEMBLY program. The bottleneck of our network is

parameterized by separate µ and σ vectors in the standard variational autoencoder (VAE) setup.

The dark grey callout in Figure 3.6 illustrates the operation of our decoder within a single node of the

program hierarchy. The decoder receives as input the latent code zpar of its parent node (or the root latent

code from the encoder, if it is the root node of the hierarchy). This latent code is used to initialize the hidden

23

𝜇 𝜎

𝒩(𝜇, 𝜎)

𝑧
GRU

𝑧!"#

Line 1

GRU

𝑓!"#$

GRU

...
...

𝑓%&"!'

𝑓%&"!'

𝑧 $%
&'(

DecoderEncoder

Line 1𝑓!"#$

Line 2

Line 3

Line 𝑁

𝑓!"#$

𝑓!"#$

GRU

GRU

GRU

GRU

......

𝑧 $%
&'(

Line Decoder

Line 2Line Decoder

Line 𝑁Line Decoder

... ...

...

Line DecoderGRUBBox dims

Cuboid(𝑙, 𝑤, ℎ, 𝑎)

attach(𝑐(, 𝑐), 𝑥𝑦𝑧(, 𝑥𝑦𝑧))

squeeze(𝑐(, 𝑐), 𝑐*, 𝑓, 𝑢𝑣)

reflect(𝑐(, axis)

translate(𝑐(, axis, 𝑚, 𝑑)

END

𝑓+,-

𝑓.//

𝑓+01

𝑓%23$

𝑓+,-

𝑓"'4

𝑓"'4

𝑓%-'

𝑓"'4

𝑓"'4

Figure 3.6: Architecture of our hierarchical sequence VAE for SHAPEASSEMBLY programs. Given a
SHAPEASSEMBLY program, the encoder ascends the hierarchy from the leaves to the root, encoding each
sub-program into a latent z vector. Given a latent code, the decoder recursively decodes a hierarchical SHA-
PEASSEMBLY program. Within each hierarchy node, a recurrent neural network decodes each line of the
program.

state of a Gated Recurrent Unit (GRU), a recurrent language model which is responsible for constructing a

representation of the program state. The output of the GRU cell is sent to the line decoder sub-routine, which

predicts a line in the SHAPEASSEMBLY grammar, that is then passed as input back to the GRU cell at the

next time step.

The purple callout in Figure 3.6 gives a detailed depiction of the line decoder sub-routine. The line

decoder receives the hidden state of the GRU cell, along with conditioning information about the size of the

current bounding volume, and uses a collection of multilayer perceptrons (MLPs) to predict a 63-dimensional

vector representing a single line in SHAPEASSEMBLY . The sub-networks it uses are:

• fcmd: (7): Predicts the type of command to execute. This is a one-hot vector whose seven entries

correspond to <start> (the special program start token), <stop> (the special program stop token),

Cuboid, attach, squeeze, translate and reflect.

• fcube: (4): Predicts the length, width, height, and aligned flag for cuboid lines, conditioned on the

bounding volume dimensions.

• fidx: (11× 3): Predicts the indices of the cuboids involved in the line represented as 3 one-hot vectors,

conditioned on the predicted command. We limit each node in the hierarchy to contain at most 10

children parts, so there are 11 choices (10 cuboids and the bounding volume).

• fatt: (3× 2): Predicts the (x, y, z) coordinates involved in an attach line, conditioned on the cuboids

involved in the attach.

• fsqz: (8): Predicts the the face involved in a squeeze line as a one-hot vector in the first 6 indices. The

last 2 indices predict the (u, v) coordinates. Both predictions are conditioned on the cuboids involved

24

in the squeeze operation.

• fsym: (5): Predicts the axis involved in a symmetry line as a one-hot vector in the first 3 indices. For

translate lines, the 4th index is the number of cuboids involved in the symmetry group, and the

5th index is the scale of the symmetry. All predictions are conditioned on the cuboid involved in the

symmetry and the bounding volume dimensions.

Hierarchical decoding To generate a hierarchical program, our decoder also includes a submodule fchild

which is executed after every predicted Cuboid command to determine whether that cuboid should be re-

cursively expanded. This is another MLP which takes as input both the current hidden state of the GRU as

well as zpar, the overall latent code for this hierarchy node. fchild produces two outputs: a Boolean flag for

whether the current cuboid should be expanded into a child program, and a new latent code zchild which is

used to initialize the decoder for this child program.

3.4.2 Learning Procedure

We implement our models in PyTorch[158]. All training is done with the Adam optimizer [106], with a

learning rate of 0.0001 without batching. All multilayer perceptrons have 3 layers and use leaky ReLU [129]

with α = 0.2.

We train our model in a seq2seq fashion, where the ground truth input sequence is teacher forced to the

model, and our model is tasked with predicting each subsequent line. During training, we use a program

reconstruction loss that only considers entries of the predicted 63 dimensional vector that are relevant to the

target line. For instance, when predicting a Cuboid line, no part of the reconstruction loss comes from the

indices in the tensor associated with symmetry. The program reconstruction loss is comprised of a cross-

entropy component for each one-hot prediction (with weight 1) and an l1 loss for each continuous component

(with weight 50). Additionally we use a KL loss in the standard VAE setup with weight 0.1 [107].

Enforcing semantically-valid output As our model generates shape programs, rather than raw shape ge-

ometry, we can use the semantics of the SHAPEASSEMBLY language to detect outputs that would be invalid,

and prevent them from happening. For instance, attaches must be made in a grounded order. If a predicted

attach line violates such a constraint, we use a backtracking procedure to find new ‘valid’ parameter values

whenever possible. During unconditional generation, if we cannot fix the line through backtracking, we reject

the sample. During interpolation, if we cannot fix the line through backtracking we don’t add the predicted

25

Figure 3.7: In the middle row, we show samples from our generative model of SHAPEASSEMBLY programs.
In the top row, we show the nearest neighbor shape in the training set by Chamfer distance. In the bottom
row, we show the nearest neighbor shape in the training set by program edit distance. Our method synthe-
sizes interesting and high-quality structures that go beyond direct structural or geometric memorization. We
quantitatively examine SHAPEASSEMBLY’s generalization in Table 3.4. Refer to the supplemental material
for the corresponding program text.

line to the program. Appendix A.4 describes the complete semantic validity procedure we enforce. We also

note that this approach to forbidding the generation of invalid outputs is similar to that of the Grammar Vari-

ational Autoencoder [114]. However, that model only uses grammar syntax to determine whether an output

is valid, whereas as we use program semantics.

3.5 Results and Evaluation

In this section, we demonstrate our learned generative model’s ability to synthesize high-quality hierarchi-

cal SHAPEASSEMBLY programs, and we compare it to alternative generative models of 3D shape structure.

All of the experiments described were run on a GeForce RTX 2080 Ti GPU with an Intel i9-9900K CPU, and

consumed 3GB of GPU memory.

We use objects from the PartNet dataset [141] as our training data. It contains 3D shapes in multiple

categories, each with a hierarchical part segmentation and labeling. For the experiments in this chapter, we

use the Chairs, Tables, and Storage categories. After running the program extraction procedure described in

Section 3.3, we obtain 3835 ground truth programs from Chairs, 6536 ground truth programs from Tables,

and 1551 ground truth programs from Storage.

26

3.5.1 Novel Shape Synthesis

In this section, we present both qualitative and quantitative evaluations of our method’s ability to produce

novel shape structures. Figure 3.7 includes some unconditionally generated samples from our learned gener-

ative model for each of the three shape categories. Above each sample we show its nearest neighbor in the

training data based on Chamfer distance. Additionally, below each sample we visualize its nearest neighbor

in the training data based on program distance, the string edit distance of a tokenized version of our hierarchi-

cal programs. As shown, our method is able to generate complex and interesting structural variation without

copying either the geometry or program structure of its training data.

As our model directly generates programs, its outputs can be easily edited to produce variants. In Fig-

ure 3.8 we demonstrate how by changing just the continuous parameters of programs generated by our model,

we are able to create a wide variety of output geometry, all the while maintaining part-to-part attachment re-

lationships.

We compare the generated results of our method against two baselines:

• StructureNet is a variational autoencoder that generates hierarchical part graphs with cuboids at each

node [140].

• 3D-PRNN is a recurrent neural network that generates a sequence of cuboids [247]. It enforces global

bilateral symmetry by only generating cuboids with some part of their geometry on the negative side

of the x = 0 plane, and then reflecting generated cuboids which fall entirely on that side of the plane.

We compare against the StructureNet models released by the authors. These were trained on the subset of

PartNet that they were able to represent within the constraints of their problem formulation. This is a heavily

overlapping set, but not identical, with the shapes we were able to find valid SHAPEASSEMBLY programs

for. In direct comparisons with StructureNet for reconstruction tasks, we only consider shapes that appear

in the validation splits of both methods. We compare against a version of 3D-PRNN that was re-trained

on the data we use for our generative model. Figure 3.9 shows a qualitative comparison of unconditionally

generated samples from each method. Our method is capable of generating diverse, structurally complex, 3D

shape structures across multiple categories. Attachment as a primary operation provides a strong inductive

bias for generating physically plausible shapes that maintain realistic part-to-part relationships. In contrast,

both comparison methods that directly predict part placements in 3D space are prone to producing floating

cuboids or jumbled collections of spatially colocated parts.

27

Figure 3.8: Programs, by way of representational form, allow for easy semantic editing of generated output.
Each column shows a sample from our model in the top row. In the bottom row we create a variant with the
same structure, but different geometry, by editing only the continuous parameters of the program. Program
text can be found in the supplemental material.

Analysis of Shape Quality

We also quantitatively compare the quality of the shape structures generated by different methods. Our

desiderata for generated shape structures is that they should be physically plausible and come from the same

distribution that the model was trained on. In order to asses the quality of generated output, we use the

following metrics:

• Rootedness ⇑ (% rooted): The percentage of shapes for which a connected path exists between the

ground and all leaf parts.

• Stability ⇑ (% stable): The percentage of shapes which remain upright under gravity and small forces

in a physical simulation.

• Realism ⇑ (% fool): The percentage of test set shapes classified as “generated” by a PointNet classifier

trained to distinguish between generated shapes and shapes from the training dataset.

• Frechet Distance ⇓ (FD): Measurement of distributional similarity between generated shapes and the

training dataset using the feature space of a pre-trained PointNet model [73]

Further details about these metrics are provided in Appendix A.5.

We show results for these metrics on 1000 unconditional generated shapes in Table 3.2. Our method

28

largely outperforms 3D-PRNN and StructureNet across these metrics for three categories of shapes. While

StructureNet achieves good rootedness scores, especially for the Storage category, our method performs better

in the other three metrics along all categories. The samples from 3D-PRNN, achieve similar FD and % fool

scores with StructureNet, but perform markedly worse on the rootedness and stability metrics.

Additionally in this experiment we compare our model with a series of ablated versions:

• Flat: Training on programs with no hierarchies, only leaf parts.

• No Order: Training on programs without canonical ordering as described in Section 3.3.

• No Align: Training on programs without an aligned flag for cuboids.

• No Macros: Training on programs without squeeze, translate, or reflect commands.

• No Reject: At generation time, discard unfixable, invalid program line predictions instead of rejecting

the entire sample.

Training without hierarchy (Flat) slightly improves rootedness, but drastically lowers the quality of output as

seen in the % fool and FD columns. Training on programs without a canonical ordering (No Order) performs

worse on every metric. Removing the alignment flag (No Align) actually improves performance on the Chair

category for % rooted and % fool, but drastically worsens the physical validity of generations for Tables

and Storage, categories where parts are much more often aligned with their parent cuboid. Training without

macros (No Macros) once again decreases the performance of all metrics, but not by a substantial margin.

Finally, we see that while the rejection sampling step does improve the quality of our generated samples,

without it we still outperform 3D-PRNN and StructureNet by a wide margin.

Analysis of Editability

In this section, we quantitatively analyze our previous claim that directly predicting programs improves ed-

itability. We claim that a program is more editable if it is both compact and compromised of higher level

functions. That is, a shorter program that uses higher-level constructs will be easier to understand and make

changes to.

As a strong baseline, we evaluate the editability of our programs against the generated outputs of 3D-

PRNN and StructureNet. As 3D-PRNN and StructureNet do not directly produce SHAPEASSEMBLY pro-

grams, we use our extraction procedure described in Section 3.3 in order to convert their generations into

programs. As StructureNet predicts part graph hierarchies, the representational form our extraction proce-

dure takes as input, we use our procedure without any of the data cleaning steps. As 3D-PRNN has no notion

29

Table 3.2: Comparing the quality of generated samples. Our method outperforms other generative methods
for 3D shape structure in terms of realism and physical validity. Through a series of ablation baselines, we
validate various design decisions of our method.

Category Method % rooted ⇑ % stable ⇑ % fool ⇑ FD ⇓

Chair

3D-PRNN 73.1 50.9 12.60 39.30
StructureNet 89.7 74.9 4.04 64.79
Ours (Flat) 95.0 60.0 11.58 77.45
Ours (No Order) 82.4 58.4 12.36 64.17
Ours (No Align) 94.6 84.6 28.68 29.32
Ours (No Macros) 92.0 77.9 19.56 36.78
Ours (No Reject) 92.9 79.7 23.36 20.63
Ours 94.5 84.7 25.06 22.34
Ground Truth 100 88.0 — —

Table

3D-PRNN 71.2 29.4 2.12 140.07
StructureNet 94.4 76.8 3.94 173.35
Ours (Flat) 87.0 66.0 29.84 148.63
Ours (No Order) 84.5 56.0 27.38 114.10
Ours (No Align) 92.2 61.5 23.64 46.64
Ours (No Macros) 95.9 85.0 33.16 53.21
Ours (No Reject) 94.1 76.4 29.20 52.78
Ours 96.2 85.9 33.21 49.07
Ground Truth 100 93.1 — —

Storage

3D-PRNN 44.8 20.8 4.62 94.08
StructureNet 96.2 75.0 5.04 92.85
Ours (Flat) 95.9 74.0 7.44 81.17
Ours (No Order) 87.9 63.4 8.70 107.42
Ours (No Align) 89.7 49.3 11.04 30.15
Ours (No Macros) 87.5 69.9 5.92 72.80
Ours (No Reject) 94.3 80.9 11.66 31.69
Ours 95.3 83.7 13.50 31.72
Ground Truth 100 87 — —

of hierarchy, we create single node part graphs out of their output samples, which are then run through our

program extraction logic.

Table 3.3 shows results from an experiment where we compare the SHAPEASSEMBLY programs of each

method’s generations (directly predicted by our method, parsed programs from comparisons). The metrics

we use are the number of lines in each program (as a coarse measure of compactness) and the percentage of

lines which are macros (split by macro type).

Compared with programs parsed from StructureNet, the programs generated by our model are much more

compact and have higher rates of macro usage across all categories of shapes. While our method also has

higher macro rate usage compared with 3D-PRNN, 3D-PRNN programs are more compact in the Chair and

Table categories. Based on 3D-PRNN’s poor performance within our shape quality experiments (Table 3.2),

and its significant deviation from the number of lines found in the ground truth programs (the cleanest set of

30

Table 3.3: Markers of program editability for SHAPEASSEMBLY programs predicted by our generative
model compared with SHAPEASSEMBLY programs parsed from outputs of other generative methods. Train-
ing our model in the space of programs allows us to represent geometry more compactly. We find higher rates
of macro functions per program line in our method’s generations compared with extracting programs from
other generative models’ predictions.

Macros Per Line
Category Method Lines ⇓ Refl ⇑ Trans ⇑ Squeeze ⇑ Total ⇑

Chair

3D-PRNN 15.7 0.1100 0.0020 0.0240 0.1430
StructureNet 27.1 0.0600 0.0004 0.0700 0.1330
Ours 20.4 0.0880 0.0054 0.0920 0.1860
Ground Truth 24.4 0.0800 0.0090 0.1130 0.2070

Table

3D-PRNN 13.1 0.1300 0.0010 0.0680 0.1990
StructureNet 24.8 0.0270 0.0006 0.0620 0.0900
Ours 19.0 0.0990 0.0002 0.1440 0.2440
Ground Truth 20.0 0.0950 0.0050 0.1450 0.2460

Storage

3D-PRNN 22.6 0.0170 0.0060 0.0530 0.0770
StructureNet 30.7 0.0390 0.0040 0.0770 0.1200
Ours 19.8 0.0820 0.0080 0.1440 0.2340
Ground Truth 24.7 0.0650 0.0147 0.1510 0.2320

SHAPEASSEMBLY programs we have access to), there is reason to believe that the compactness of its parsed

programs more likely reflects shape simplicity rather than useful editability.

Analysis of Variability

Beyond quality and editability, we also consider the variability of outputs of each method. Specifically, for

generated shapes, we care about their novelty with respect to the training data, their complexity, and their

variety. We present results of an experiment using Chamfer distance to quantify performance across these

areas in Table 3.4.

The Generalization metric measures the average distance of each generated sample to its nearest neighbor

in the training set. As all methods have higher generalization scores than the validation set, we can conclude

that none of the methods appear to be overfitting. For our method specifically, this re-enforces the qualitative

nearest neighbor results presented in Figure 3.7.

The Coverage metric measures the average distance of each validation shape to its nearest neighbor in the

set of generated shapes. Across all categories our method achieves the best results, and by a wide-margin for

tables, which indicates that our generations have enough complexity to match the distribution of the validation

shapes.

The Variety metric measures the average distance of each generated shape to its nearest neighbor in the

31

Figure 3.9: Qualitative comparison between generated samples from our method, StructureNet, and 3D-
PRNN. Across different categories, our method creates novel SHAPEASSEMBLY programs that, when exe-
cuted, produce shape structures that maintain realistic and physically valid part-to-part relationships. Compar-
ison methods that directly predict 3D shape geometry exhibit failure cases where parts become disconnected
or intersect in an implausible manner.

32

set of generated shapes besides itself. Once again, across all categories our method achieves top, or tied for

top performance.

Additionally, we look at average number of leaf parts as a coarse proxy for the complexity of a shape’s

structure, which is shown in Table 3.5. While our method has a similar number of leaf parts to the comparison

methods for the Chair and Table categories, we do have fewer leaf parts on average for Storage. Qualitatively,

these additional parts in the comparison methods often manifest as collections of spatially colocated cuboids,

and not necessarily more complex shape structures.

In terms of the variability of programs generated by our method, we note that 65% of Chair programs,

85% of Table programs, and 53% of Storage programs contained SHAPEASSEMBLY program structures not

present in the training data. Thus our method not only exhibits novelty in the geometric domain, but also in

the structural domain.

Program Clustering

Our approach is predicated on the assumption that a single program can represent a parametric family of

multiple shapes, allowing for this shape space to be explored via manipulation of interpretable program

parameters. To verify whether this is true, we cluster shapes that are represented by structurally-equivalent

programs (i.e. programs that are the same up to continuous parameter variations). Figure 3.10 shows program

clustering results for the ground truth programs we parse from PartNet. These results demonstrate how

the structure of a single SHAPEASSEMBLY program is able to represent related shapes through different

parameterizations. The marked improvement in clustering when splitting by intermediate part programs

compared with clustering on entire shape programs, provides additional support for our hierarchical approach;

shape programs are more likely to share structure within a node of the hierarchy than they are to match entire

hierarchies exactly.

Synthesizing Surface Geometry

While collections of part proxies are a useful modeling representation for 3D shape structures, they do not

directly attempt to capture the wide range of intra-part variability present in man-made objects. We demon-

strate how SHAPEASSEMBLY programs can additionally be used to model parts at finer levels of detail by

turning SHAPEASSEMBLY programs into dense point clouds. As a proof of concept, we augment our gen-

erative model with a point cloud encoder that consumes dense point cloud samples of ground truth leaf parts,

and a point cloud decoder that generates dense point clouds for every leaf part within its predicted bounding

33

Table 3.4: We compare the geometric variability of generated shapes from different methods. In the first
column, we measure generalization as the average nearest neighbor distance (NND) from generated samples
to shapes in the training set. In the second column we measure coverage as the average NND from shapes
in the validation set to generated samples. In the last column, we measure variety as the average NND
from shapes in the generated samples to other generated shapes in the same set. Across three categories of
shapes, our method performs the best on the coverage and variety metrics, while outperforming validation on
generalization (demonstrating we are not overfitting).

Generalization Coverage Variety
NND to Train ⇑ NND from Val ⇓ NND to Self ⇑

Category Method CD CD CD

Chair

3D-PRNN 0.111 0.123 0.104
StructureNet 0.104 0.119 0.087
Ours 0.108 0.118 0.104
Validation 0.105 — 0.114

Table

3D-PRNN 0.095 0.130 0.086
StructureNet 0.129 0.141 0.0925
Ours 0.101 0.108 0.102
Validation 0.09 — 0.099

Storage

3D-PRNN 0.134 0.132 0.119
StructureNet 0.129 0.135 0.107
Ours 0.125 0.129 0.119
Validation 0.11 — 0.125

Table 3.5: We compare the average number of leaf parts in generated shapes, as a coarse proxy for complexity
of shape structure. Our method generates similar numbers of leaf parts compared with other methods for
Chairs and Tables, but fewer leaf parts for Storage. Qualitatively, the additional leaf parts measured in
comparison methods often manifests as spurious overlapping cuboids, rather than more complex structural
variety.

Category Method Avg # Leaf Parts

Chair

3D-PRNN 8.6
StructureNet 8.7
Ours 7.9
Ground Truth 9.7

Table

3D-PRNN 7.07
StructureNet 8.16
Ours 7.84
Ground Truth 8.4

Storage

3D-PRNN 10.6
StructureNet 12.3
Ours 8.4
Ground Truth 10.8

volume. Figure 3.11 shows some qualitative results of our method, trained on point clouds sampled from

the dense geometry of Chairs found in PartNet. These generated surfaces provide additional detail over the

geometry specified by their cuboid part proxies, as evidenced by both the rounding in the legs and back slats,

and also in the curvature of the chair back surfaces.

34

Table 3.6: We measure smoothness along random high-frequency interpolation sequences in each method’s
latent space. The Geo column measures smoothness with Chamfer distance, while the Prog column measures
smoothness with program edit distance. Note that 3D-PRNN is missing because it is not a latent variable
model and thus does not support interpolation.

Avg. Step Size ⇓
Category Method Geo Prog

Chair
StructureNet 0.0384 3.90
Ours 0.0384 1.33

Table
StructureNet 0.0474 4.75
Ours 0.0389 2.48

Storage
StructureNet 0.0512 4.29
Ours 0.0482 2.6

Figure 3.10: Clustering results that demonstrate how the structure of a single SHAPEASSEMBLY program
is capable of capturing a family of related shapes. Using ground truth programs found with our program
extraction procedure, in the left graph we plot the percentage of shapes captured as we consider more program
structures extracted from the data. In the right graph we show the same plot but with parts (nodes) instead of
shapes (full hierarchy).

3.5.2 Latent Space Interpolation

Beyond novel shape generation, we evaluate the ability of our method to interpolate between two points in our

latent space. The presence of smooth, semantic transitions between end-points indicates a well-formed latent

space. In Figure 3.12 we qualitatively compare our method with StructureNet on the task of interpolating

between shapes in the validation sets of both models. Our interpolations demonstrate both geometrically

smooth and semantically consistent transitions. For instance, in the top interpolation sequence, the surface of

the chair back in the source shape gradually shrinks vertically until in the target shape it is just a horizontal

bar. At the same time, the number of vertical slats in the chair back gradually increases from 2, to 4, to 5.

35

Figure 3.11: Converting generated SHAPEASSEMBLYprograms into dense point clouds. We use a point cloud
decoder to predict the surface geometry of each leaf part proxy in our 3D shape structure. In this process,
geometric details begin to take form, at the cost of some artifacts. We discuss a method for improving this
procedure in section 3.6.

In Table 3.6, we attempt to quantify the smoothness along random interpolation sequences within the

latent space of each generative model. In this experiment, 100 interpolation sequences were computed from

sources to targets that were randomly sampled in each model’s latent space, with 100 interpolation steps per

sequence. Each method’s geometric smoothness is computed by taking the average Chamfer distance (nor-

malized by shape scale) between each interpolation step. The lower geometric smoothness of our method,

compared to StructureNet in the Table and Storage categories, demonstrates the quality of the latent space

learned by our method. Moreover, using our procedure to turn StructureNet outputs into SHAPEASSEM-

BLY programs, we can measure the program smoothness along these interpolation paths. Each method’s

program smoothness is computed by taking the average tokenized program edit distance between each inter-

polation step. As a measure for structural change throughout the transitions of an interpolation sequence, our

lower program smoothness metric again shows how our method benefits by operating within the space of 3D

shape programs.

36

Figure 3.12: A qualitative comparison of latent space interpolation between our method and StructureNet on
shapes from the validation set. Our method’s interpolations within program space produce sequences that
combine smooth continuous variation with discrete structural transitions.

37

3.5.3 Synthesis from Unstructured Geometry

Another way to inspect the structure of a generative model’s latent space is through performing “synthesis

from X”, by projecting X into the latent space of the generative model. As an application for 3D reconstruc-

tion, we are able perform such a projection with point clouds, demonstrating how our generative model’s

latent space can synthesize SHAPEASSEMBLY programs from unstructured geometry.

Specifically, we train a PointNet++ encoder [163] to map point clouds sampled on dense mesh geometry

to the latent space learned by our generative model. These latent codes are then converted into programs by

our trained decoder.

In Table 3.7, we show an experiment comparing our method against StructureNet on the task of recon-

structing point cloud samplings of dense geometry on the intersection of each method’s validation set for

Chairs in Partnet (463 shapes total). We evaluate reconstruction accuracy with F-score [108], and the phys-

ical validity of reconstructions with the rootedness and stability metrics. When projecting point clouds into

the latent space of each method (top two rows), our method outperforms StructureNet on both reconstruction

accuracy and maintaining physical validity. This demonstrates, once again, the well-structured nature of our

method’s latent space.

Moreover, as the SHAPEASSEMBLY interpreter is differentiable, we can further refine the continuous

parameters of a program by minimizing the Chamfer distance between executed geometry and a target point

cloud with a gradient-based optimizer. We compare this procedure (Ours + Opt Program) against the

following conditions:

• SN + Opt Cuboids: Starting with StructureNet’s reconstruction, then directly optimizing predicted

cuboids to minimize Chamfer distance to the target point cloud.

• SN + Opt Program: Parsing StructureNet’s reconstruction into a SHAPEASSEMBLY program, then

optimizing the program to minimize Chamfer distance to the target point cloud.

• Ours + Opt Cuboids: Starting with our reconstruction, directly optimizing predicted cuboids to mini-

mize Chamfer distance to the target point cloud.

We show results for this experiment in the last four rows of Table 3.7. All of the optimization procedures

improve reconstruction accuracy at the cost of physical validity. However, Ours + Opt Program is the only

condition that achieves a desirable trade-off in this exchange, gaining much more reconstruction accuracy

improvement than it loses in physical validity.

We show some qualitative results of this experiment in Figure 3.13. Through latent space projection,

38

Table 3.7: Results from our point cloud reconstruction experiment. Our model’s well-formed latent space
allows for more accurate and physically valid reconstructions without further optimization. With additional
optimization, using the reconstructed program from our method and our differentiable interpreter finds the
best trade-off between reconstruction accuracy and maintaining physical validity.

Method F1 ⇑ % rooted ⇑ % stable ⇑

StructureNet 24.3 95.1 78.4
Ours 31.1 95.5 84.4

SN + Opt Cuboids 80.0 92.9 72.7
SN + Opt Program 77.4 90.0 71.9
Ours + Opt Cuboids 77.6 93.1 72.9
Ours + Opt Program 75.8 95.3 80.2

our model is able to output the rough 3D shape structure (column 1) of an input unstructured point cloud

(column 0). Through our differentiable interpreter, we are able to find continuous parameters for the predicted

program structure that ultimately lead to better reconstruction fits (column 3). Shape programs place a strong

structural regularization prior over unstructured 3D data, and thus our presented method is less prone to

“losing” semantic parts, such as small legs, in comparison to the other conditions.

3.6 Discussion

In this chapter, we took a first step toward marrying the complementary strengths of neural and procedural 3D

shape generative models by introducing a hybrid neural-procedural approach for synthesizing novel 3D shape

structures. We introduced SHAPEASSEMBLY, a low-level “assembly language” for shape structures, in which

shapes are constructed by declaring cuboidal parts and attaching them to one another. We also introduced a

differentiable interpreter for SHAPEASSEMBLY, allowing the optimization of program parameters to produce

desired output geometry. After describing how to extract consistent programs from existing shape structures

in the PartNet dataset, we then defined a deep generative model for SHAPEASSEMBLY programs, effectively

training a neural network to write novel shape programs for us. We evaluated the quality of the generative

model along several axes, showing that it produces more plausible and physically-valid shapes, and that its

latent space is better-structured than that of other generative models of shape structure. We also found that

directly generating shape programs leads to more compact, editable programs than extracting programs from

shapes generated by methods that directly output 3D geometry.

Limitations As mention in Section 3.3, we do not successfully extract training programs from every shape

in our dataset. For instance, our program extraction procedure assumes that the orientation of all parts can

39

Figure 3.13: Qualitative comparison of synthesis from point clouds of our method against StructureNet (SN).
Our method is able to infer good program structures that match well with the unstructured geometry. The
continuous parameters of this program structure can be further refined through an optimization procedure in
order to better fit the target point cloud without creating artifacts.

Figure 3.14: Examples of PartNet shapes that contain parts whose orientations cannot be inferred from part-
to-part attachments alone. While these shapes can be represented with SHAPEASSEMBLY programs that
attach parts to “floating” points within the bounding volume, such programs are not added to our training
data during our program extraction phase. As a result, our generative model never learns to produce shapes
that require this type of attachment pattern.

be specified through solely part-to-part attachments, yet as demonstrated in Figure 3.14, this does not hold

for all shapes. While it is possible to reconstruct these shapes with SHAPEASSEMBLY programs (through

attaching parts to “floating” points in space via the bounding volume) such programs will never be added to

our training data, and thus our generative model won’t learn to produce such constructs. Our design decision

40

to discard training programs with more than 12 total Cuboid declarations has a similar effect: it limits our

generative model from synthesizing the most complex of shape structures that exist in our dataset. We impose

such strict criteria in order to make our training programs exhibit more regularity, simplifying the learning

task for our neural network at the expense of its potential expressivity.

This highlights a central tradeoff: higher variability in the training programs may result in lower quality

shapes synthesized by a generative model. This phenomenon is not unique to our setting: it is well-known that

e.g., image generative models perform better on very-regularly-structured domains, such as human faces. The

question, looking forward, is how to capture more data variability while keeping a high-degree of regularity

in the input data representation? We believe that using programs as a data representation is the best avenue

of attack, here. As we have shown in our work, a single program can capture a wide range of parametrically

related shapes. One program, many shapes; strong regularity, but also high variability.

While SHAPEASSEMBLY has a strong inductive bias for generating physically-connected shapes, it is not

guaranteed to do so. Hierarchical part structures which are locally connected everywhere may occasionally

still exhibit disconnected leaf cuboids. This is more likely to happen with very non-axis-aligned structures

that result in loose bounding cuboids at the intermediate levels of the hierarchy.

Chapter 4

Learning to Infer Shape Programs with

Pseudo-Labels and Approximate

Distributions

Having access to a procedure which generates a visual datum reveals its underlying structure, facilitating

high-level manipulation and editing by a person or autonomous agent. In R2, inferring shape programs has

applications in the design of diagrams, icons, and other 2D graphics. InR3, it has applications in reverse engi-

neering of CAD models, procedural modeling for 3D games, and 3D structure understanding for autonomous

agents.

We formally define shape program inference as obtaining a latent program z which generates a given

observed shape x. We model p(z|x) with deep neural networks that train over a distribution of real shapes in

order to amortize the cost of shape program inference on unseen shapes (e.g. a test set). This is a challenging

problem: it is a structured prediction problem whose output is high-dimensional and can feature both discrete

and continuous components (i.e. program control flow vs. program parameters). Nevertheless, learning

p(z|x) becomes tractable provided that one has access to paired (X,Z) data (i.e. a dataset of shapes and the

programs which generate them) [217].

In this chapter, we study a collection of methods that create (shape, program) data pairs used to train

p(z|x) models with maximum likelihood estimation (MLE) updates while treating the program executor as a

black-box. As discussed, ground-truth (shape, program) pairs are often unavailable, so these techniques must

41

42

make compromises in how they formulate paired data. In wake-sleep, a generative model p(z) is trained to

convergence on alternating cycles with respect to p(z|x). When training p(z|x), paired data can be created

by sampling from p(z). Each program label z is valid with respect to its associated x shape, but there is often

a distributional mismatch between the generated set of shapes, X, and shapes from the target distribution, S∗.

In self-training, one uses p(z|x) to infer latent z’s for unlabeled input x’s; these z’s then become “pseudo-

labels” which are treated as ground truth for another round of supervised training. In this paradigm, there is

no distributional shift between X and S∗, but each z is only an approximately correctly label with respect to

its paired x.

We observe that shape program inference has a unique property that makes it especially well-suited for

self-training: the distribution p(x|z) is known a priori—this is a delta distribution defined by the program

executor. When using a model p(z|x) to infer a program z from some shape x∗ of interest, one can use

this executor to produce a shape x that is consistent with the program z: in the terminology of self-training,

z is guaranteed to be the “correct label” for x. However, similar to wake-sleep, formulating X as shape

executions produced by model inferred programs can cause a distributional shift between X and S∗. Since

this variant of self-training involves executing the inferred latent program z, we call this procedure latent

execution self-training (LEST).

As all of the aforementioned fine-tuning regimes use either Pseudo-Labels or Approximate Distributions

to formulate (shape, program) pairs, we group them under a single conceptual framework: PLAD. We evalu-

ate PLAD methods experimentally, using them to fine-tune shape program inference models in multiple shape

domains: 2D and 3D constructive solid geometry (CSG), and assembly-based modeling with ShapeAssem-

bly, a domain-specific language for structures of manufactured 3D objects (Chapter 3). We find that PLAD

training regimes offer substantial advantages over the de-facto approach of policy gradient reinforcement

learning, achieving better shape reconstruction performance while requiring significantly less computation

time. Further, we explore combining training updates from a mixture of PLAD methods, and find that this

approach leads to better performance compared with any individual method.

We provide code for our method at https://github.com/rkjones4/PLAD .

4.1 Approaches for fine-tuning visual program induction models

A common practice of methods that train networks to infer shape program is to start with a model that

has been pretrained on synthetically generated (shape, program) pairs with supervised learning, and then

43

Method Models Black-Box p(x|z)? X = S∗
Low variance,

unbiased
gradients

Policy gradient RL p(z|x) ✓ ✓ X
Differentiable executor p(z|x) X ✓ ✓
Variational Bayes p(z|x), p(z) X ✓ ✓
Wake-sleep, EM p(z|x), p(z) ✓ X ✓
Self-training p(z|x) ✓ ✓ X
LEST p(z|x) ✓ X ✓

Table 4.1: Comparison of different methods for fine-tuning p(z|x), in terms of the models that must be
trained, if they treat the program executor as black-box, if their distribution of training shapes matches the
distribution real shapes (X = S∗), and if their loss gradients are unbiased with low-variance. The last three
rows describe methods that fall under the PLAD framework.

perform fine-tuning towards a distribution of interest. However, as there is typically significant distributional

mismatch between these synthetic shapes and “real” shapes from the distribution of interest, S∗, various

techniques must be employed to fine-tune p(z|x) models towards S∗. In this section, we discuss prior work

for fine-tuning such program inference models, organized by methodology used to learn p(z|x); see Table

4.1 for an overview.

Policy Gradient Reinforcement Learning The most general method for fine-tuning a pretrained p(z|x) is

reinforcement learning: treating p(z|x) as a policy network and using policy gradient methods [216]. The

geometric similarity of the inferred program’s output to its input is the reward function; the program executor

p(x|z) can be treated as a (non-differentiable) black-box. CSG-Net uses RL for fine-tuning [187, 188],

as does other recent work on inferring CSG programs from input geometry [41]. While CSG-Net has been

improved to allow it to converge without supervised pretraining [243], not starting from the supervised model

results in worse performance. The main problem with policy gradient RL is its instability due to high variance

gradients, leading to slow convergence. Like RL, PLAD methods treat the program executor as a black-box,

but as we show experimentally, they converge faster and achieve better reconstruction performance.

Differentiable Executor If the functional form of the program executor p(x|z) is known and differentiable,

then the gradient of the reward with respect to the parameters of p(z|x) can be computed, making policy

gradient unnecessary. Shape programs are typically not fully differentiable, as they often involve discrete

choices (e.g. which type of primitives to create). UCSGNet uses a differentiable relaxation to circumvent this

issue [101]. Other work trains a differentiable network to approximate the behavior of the program execu-

tor [206], which introduces errors. PLAD regimes do not require the program executor to be differentiable,

44

yet they perform better than other approaches (e.g. policy gradient RL) that share this desirable property.

Generative Model Learning Shape program inference has also been explored in the context of learning a

generative model p(x, z) of programs and the shapes they produce. The most popular approach for training

such models is variational Bayes, in particular the variational autoencoder [107]. This method simultaneously

trains a generative model p(x, z) and a recognition model p(z|x) by optimizing a lower bound on the marginal

likelihood p(x). When the z’s are shape programs, the program executor is p(x|z), so learning the generative

model reduces to learning a prior over programs p(z). Training such models with gradient descent requires

that the executor p(x|z) be differentiable. When this is not possible, the wake-sleep algorithm is a viable

alternative [76]. This approach alternates training steps of the generative and recognition models, training one

on samples produced by the other. Recent work has used wake-sleep for visual program induction [74, 42].

If one trains the generative model and the inference model to convergence before switching to training the

other, this is equivalent to expectation maximization (viewed as alternating maximization [147]).

Self-Training Traditionally, self-training has been employed in weakly-supervised learning paradigms to

increase the predictive accuracy of simple classification models [183, 232, 135]. Recently, renewed interest

in self-training-inspired data augmentation approaches have demonstrated empirical performance improve-

ments for neural models in domains such as large-scale image classification, machine translation, and speech

recognition [246, 70, 100]. But while self-training has been shown to yield practical gains for some do-

mains, for others it can actually lead to worse performance, as training on too many incorrect pseudo-labels

can cause learning to degrade [17, 194]. For self-training within the PLAD framework, the assigned pseudo-

label for each example changes during fine-tuning whenever the inference model discovers a program that

better explains the input shape; similar techniques have been proposed for learning programs that perform

semantic parsing under the view of iterative maximum likelihood [124]. To our knowledge, self-training has

not been applied for fine-tuning visual program inference models, likely because it is somewhat unintuitive

to view a program as a “label” for a visual datum.

4.2 Method

In this section, we describe the PLAD framework: a conceptual grouping of fine-tuning methods for shape

program inference models. Our formulation assumes three inputs: a training dataset of shapes from the dis-

tribution of interest, S∗, a program inference model, p(z|x), and a program executor that converts programs

45

Input: (S∗, p(z|x), E)
Output: p(z|x) fine-tuned on S∗

PBEST ← {}
for Number of Rounds do

// Update Best Programs
PBEST ←
inferProgs(p(z|x), S∗, PBEST)
// Create Training Data
if Self-Train then
Z← PBEST

X← S∗

else if LEST then
Z← PBEST

X← {E(z) | z ∈ Z}
else if Wake-Sleep then

p(z)← trainGenerative(PBEST)
Z← sample(p(z), |S∗|)
X← {E(z) | z ∈ Z}

end if
// Train inference model
p(z|x)← trainMLE(X,Z)

end for

𝑝 𝐳 𝐱)

P	BESTReal Shape 𝑺∗

𝑝(𝒛)

LEST: (X, Z)

ST: (X, Z)

WS: (X, Z)

Infer
Programs Execute

Train Generative

SampleExecute

Train on
(X,	Z)

PLAD

… … …

……

Figure 4.1: (Left) Pseudocode for fine-tuning shape program inference models, p(z|x), towards a shape
distribution of interest, S∗, with Pseudo-Labels and Approximate Distributions (PLAD). PLAD methods
iterate through three steps: infer programs for S∗ with p(z|x), create a dataset of (X,Z) shape-program
pairs, and train p(z|x) on batches from (X,Z). Self-training, latent execution self-training, and wake-sleep
differ in how (X,Z) is constructed. (Right) A visual illustration of the algorithm’s dataflow.

into shapes, E. Throughout this chapter, we assume that the p(z|x) passed as input has undergone supervised

pretraining on a distribution of synthetically generated shapes. Methods within the PLAD framework return

a fine-tuned p(z|x) specialized to the distribution of interest from which S∗ was sampled.

We depict the PLAD procedure both algorithimcally and pictorially in Figure 4.1. To fine-tune p(z|x)

towards S∗, PLAD methods iterate through the following steps: (1) use p(z|x) to find visually similar pro-

grams to S∗, (2) construct a dataset of shape and program pairs (X,Z) using the inferred programs, and (3)

fine-tune p(z|x) with maximum likelihood estimation updates on batches from (X,Z). Through successive

iterations, these steps bootstrap one another, forming a virtuous cycle: improvements to p(z|x) create (X,Z)

pairs that more closely match the statistics of S∗, and training on better (X,Z) pairs specializes p(z|x) to

S∗.

Methods that fall within the PLAD framework differ in how the paired (X,Z) data is created within

each round. We detail this process for wake-sleep (Section 4.2.1) , self-training (Section 4.2.2), and latent

46

execution self-training (Section 4.2.3). In Section 4.2.4 we explain our program inference procedure (infer-

Progs, Fig 4.1). Finally, in Section 4.2.5 we discuss how a single p(z|x) can be fine-tuned by multiple PLAD

methods.

4.2.1 Wake-Sleep (X,Z) Construction

Wake-sleep uses a generative model, p(z) to construct (X,Z). In our implementation, we choose to model

p(z) as a variational auto-encoder (VAE) [107], where the encoder consumes visual data and the decoder

outputs a program. To create data for p(z), we take the current best programs discovered for S∗, PBEST, and

execute each program to form a set of shapes XG. p(z) is then trained on pairs from (XG, PBEST) in the

typical VAE framework. Note that the design space for p(z) is quite flexible, for instance, p(z) can trained

without access to XG if implemented with a program encoder.

Once p(z) has converged, we use it to sample |S∗| programs by decoding normally distributed random

vectors. This set of programs becomes Z, and X is formed by executing each program in Z. In this set of

(X,Z) programs, Z is always the correct label for X, so the gradient estimates during p(z|x) training will

be low-variance and unbiased. However, X is not guaranteed to be close to S∗, it is only an approximate

distribution. Note though, that as PBEST better approximates S∗, the distributional mismatch should become

smaller, as long as the generative model has enough capacity to properly model p(z).

4.2.2 Self-Training (X,Z) Construction

Self-training constructs (X,Z) by assigning labels from the current best program set, PBEST, to shape in-

stances from S∗. Formally, X← S∗ and Z← PBEST. This framing maintains the nice property that X = S∗,

so there will never be distributional mismatch between these two sets. The downside is that unless programs

from PBEST exactly recreate their paired shapes from S∗ when executed, we know that the pseudo-labels

from PBEST are ‘incorrect’. From this perspective, we can consider gradient estimates that come from such

(X,Z) pairs to be biased. However, as we will show experimentally, when X forms a good approximation

to S∗, sourcing gradient estimates from these pseudo-labels leads to strong reconstruction performance.

4.2.3 LEST (X,Z) Construction

A unique property of shape program inference is that the distribution p(x|z) is readily available in the form

of the program executor E. We leverage this property to propose LEST, a variant of self-training that does

47

not create mismatch between pseudo-labels and their associated visual data. Similar to the self-training

paradigm, LEST first constructs Z as the current best program set, PBEST. Then, differing from self-training,

LEST constructs X as the executed version of each program in Z. By construction, the labels in Z will

now be correct for their paired shapes in X. The downside is that, like wake-sleep, LEST may introduce a

distributional mismatch between X and S∗. But once again, as PBEST better approximates S∗, the mismatch

between the two distributions will decrease.

4.2.4 Inferring Programs with p(z|x)

During each round of fine-tuning, PLAD methods rely on p(z|x) to infer programs that approximate S∗. We

propose to train PLAD methods such that the best matching inferred programs for S∗ are maintained across

rounds. Specifically, we construct a data structure PBEST that maintains a program for each training shape in

S∗. In this way, as more iterations are run, PBEST always forms a closer approximation to S∗. There is an

alternative framing, where PBEST is reset each epoch, but we show experimental results in the supplemental

material that this can lead to worse generalization.

To update PBEST each round, we employ an inner-loop search procedure. For each shape in S∗, p(z|x)

suggests high-likelihood programs, and the PBEST entry is updated to keep the program whose execution

obtains the highest similarity to the input shape; the specific similarity metric varies by domain. While there

are many ways to structure this inner-loop search, we choose beam-search, as we find it offers a good trade-

off between speed and performance. Experimentally, we demonstrate that PLAD methods are capable of

performing well even as the time spent on inner-loop search is varied (Section 4.3.4).

4.2.5 Training p(z|x) with multiple PLAD methods

As detailed in the preceding sections, the main difference between PLAD approaches is in how they construct

the (X,Z) dataset used for fine-tuning p(z|x). However, there is no strict requirement that these different

(X,Z) distributions be kept separate. We explore how p(z|x) behaves under fine-tuning from multiple PLAD

methods, such as combining LEST and self-training. We implement these mixtures on a per-batch basis.

Before p(z|x) training, we construct distinct (X,Z) distributions for each method in the combination. Then,

during training, each batch is randomly sampled from one of the (X,Z) distributions. We experimentally

validate the effectiveness of this approach in the next section.

48

Method 2D CSG CD ⇓ 3D CSG IoU ⇑ ShapeAssembly IoU ⇑
Supervised Pretraining (SP) 1.580 41.0 37.6

REINFORCE (RL) 1.097 53.4 50.8
Wake-Sleep (WS) 1.118 67.4 57.2
Self-Training (ST) 0.841 67.3 61.3
LEST 0.976 69.8 56.5

LEST+ST 0.829 70.8 66.0
LEST+ST+WS 0.811 74.3 66.4

Table 4.2: Test-set reconstruction performance across multiple shape program inference domains. The top
row contains results for the pretrained p(z|x) model fine-tuned by the other methods. For 2D CSG the metric
is Chamfer distance (CD, lower is better). For 3D CSG and ShapeAssembly the metric is intersection over
union (IoU, higher is better). Individual PLAD methods outperform RL, and combining PLAD methods
achieves the best performance across all domains (LEST+ST+WS).

4.3 Results

We evaluate a series of methods on their ability to fine-tune shape program inference models across multiple

domains. We describe the different domains in Section 4.3.1 and details of our experimental design in Section

4.3.2. In Section 4.3.3, we compare the reconstruction accuracy of each method, and study how they are

affected by varying the time spent on inner-loop search (Section 4.3.4) and the size of the training set (Section

4.3.5). Finally, we explore the convergence speed of each method in Section 4.3.6.

4.3.1 Shape Program Domains

We run experiments across three shape program domains: 2D Constructive Solid Geometry (CSG), 3D CSG,

and ShapeAssembly. Details can be found in the supplemental.

In CSG, shapes are created by declaring parametric primitives (e.g. circles, boxes) and combining them

with Boolean operations (union, intersection, difference). CSG inference is non-trivial: as CSG uses non-

additive operations (intersection, difference), inferring a CSG program does not simply reduce to primitive

detection. For 2D CSG, we follow the grammar defined by CSGNet [187], using 400 shape tokens that

correspond to randomly placed circles, triangles and rectangles on a 64 x 64 grid. For 3D CSG, we use a

grammar that has individual tokens for defining primitives (ellipsoids and cuboids), setting primitive attributes

(position and scales), and the three Boolean operators. Attributes are discretized into 32 bins.

ShapeAssembly is designed for specifying the part structure of manufactured 3D objects. It creates ob-

jects by declaring cuboid part geometries and assembling those parts together via attachment and symmetry

49

operators. Our grammar contains tokens for each command type and parameter value; to handle continuous

values, we discretize them into 32 bins.

4.3.2 Experimental Design

Fine-Tuning Methods We compare the ability of the following training schemes to fine-tune a model on a

specific domain of interest:

• SP: p(z|x) with supervised pretraining.

• RL: Fine-tuning with REINFORCE.

• WS: Fine-tuning with wake-sleep.

• ST: Fine-tuning with self-training.

• LEST: Fine-tuning with latent execution self-training.

• LEST+ST: combining LEST and ST.

• LEST+ST+WS: combining LEST, ST and WS.

Shape Datasets Fine-tuning methods learn to specialize p(z|x) against a distribution of real shapes

S∗. For each domain, we construct a dataset of shapes S∗, and split it into train, validation, and test sets.

We perform early-stopping with respect to the validation set. For 2DCSG, we use the CAD dataset from

CSGNet [187], which consists of front and side views of chairs, desks, and lamps from the Trimble 3D

warehouse. We split the dataset into 10K shapes for training, 3K shapes for validation, and 3K shapes for

testing. For 3D CSG and ShapeAssembly, we use CAD shapes from the chair, table, couches, and benches

categories of ShapeNet; voxelizations are provided by [25]. We split the dataset into 10K shapes for training,

1K shapes for validation, and 1K shapes for testing.

Model Architectures For all experiments, we model p(z|x) in an encoder-decoder framework, although

the particular architectures vary by domain. In all cases, the encoder is a CNN that converts visual data into a

latent variable, and the decoder is an auto-regressive model that decodes the latent variables into a sequence

of tokens. For 2D CSG, we use the same p(z|x) architecture as CSGNet. A CNN consumes 64× 64 binary

mask shape images to produce a latent code that initializes a GRU-based recurrent decoder. For 3D CSG

and ShapeAssembly, we use a 3D CNN that consumes 32× 32× 32 occupancy voxels. This CNN outputs a

latent code that is attended to by a Transformer decoder network [209]; this network also attends over token

sequences in a typical auto-regressive fashion.

50

0.8

0.9

1.0

1.1

1.2

1.3

1000 4000 7000 10000

Ch
am

fe
r D

is
ta

nc
e

Number of Training Shapes

RL
WS
ST
LEST
LEST+ST
LEST+ST+WS

0.7

0.8

0.9

1.0

1.1

1.2

1.3

5 10 15 20

Ch
am

fe
r D

is
ta

nc
e

Beam Size for 𝛲BEST update

WS

ST

LEST

LEST+ST

LEST+ST+WS

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 4 8 12 16 20 24

Ch
am

fe
r D

is
ta

nc
e

Training Time (Hours)

RL
WS
ST
LEST
LEST+ST
LEST+ST+WS

Figure 4.2: Experiments exploring properties of PLAD methods on 2D CSG. On the X-axis we plot the
beam size used during the PBEST update (Left), the number of training shapes (Middle), and the training time
(Right). The Y-axis of each plot measures reconstruction accuracy on test-set shapes.

Supervised Pretraining Before fine-tuning, p(z|x) undergoes supervised pretraining on synthetically

generated programs until it has converged on that set. For 2D CSG, we follow CSGNet’s approach. For 3D

CSG, we construct valid programs by (i) sampling a set of primitives within the allotted grid (ii) identify-

ing potential overlaps (iii) constructing a binary tree of boolean operations using these overlaps. For Sha-

peAssembly, we propose programs by sampling random grammar expansions according to the language’s

typing system. We then employ a validation step where a program is rejected if any of its part are not the sole

occupying part of at least 8 voxels (to discourage excessive part overlaps). For 3D CSG and ShapeAssembly

we sample 2 million synthetic programs and train until convergence on a validation set of 1000 programs.

Full details provided in the supplemental.

4.3.3 Reconstruction Accuracy

We evaluate the performance of each fine-tuning method according to reconstruction accuracy: how closely

the output of a shape program matches the input shape from which it was inferred, on a held out set of

test shapes. The specific metric varies by domain. For 2D CSG, we follow CSGNet and use Chamfer

Distance (CD), where lower distances indicate more similar shapes. For 3D CSG and ShapeAssembly, we

use volumetric intersection over union (IoU).

For each domain, we run each fine-tuning method to convergence, starting with the same p(z|x) model

that has undergone supervised pretraining. The reward for RL models follows the similarity metric in each

domain: CD for 2D CSG; IoU for 3D CSG and ShapeAssembly. For PLAD fine-tuning methods, the si-

miliarity metric in each domain determines which program is kept during updates to PBEST. At inference

time, when evaluating the reconstruction performance of each p(z|x), we employ a beam search procedure,

51

SP WS RL ST LEST LEST+ST LEST+ST+WS Target
2D

C
SG

3D
C

SG
SA

Figure 4.3: Qualitative comparisons of shape programs inferred for test-set shapes made by different fine-
tuning methods for 2D CSG (Top), 3D CSG (Middle), and ShapeAssembly (Bottom). We provide additional
qualitative results in the supplemental.

decoding multiple programs in parallel, and choosing the program that achieves the highest similarity to the

target shape. We use a beam size of 10, unless otherwise stated.

We present quantitative results in Table 4.2. Looking at the middle four rows, the two self-training

variants (ST and LEST) outperform RL as a fine-tuning method in all the domains we studied. The wake-

sleep variant (WS) also outperforms RL for both 3D CSG and ShapeAssembly. These are more challenging

domains with larger token spaces, posing difficulties for policy gradient fine-tuning. As demonstrated by

the last two rows, further improvement can be had by combining multiple methods: for each domain, the

best performance is achieved by LEST+ST+WS. In fact, for 2DCSG, the test-set reconstruction accuracy

achieved by LEST+ST+WS (0.811) outperforms previous state-of-the-art results, CSGNet (1.14) [187] and

CSGNetStack (1.02) [188], for paradigms where the executor is treated as a black-box.

52

Mixing updates from multiple PLAD methods is beneficial because, in this joint paradigm, each method

can cover the other’s weaknesses. For instance, employing ST ensures that some samples of X are sourced

from S∗, and employing LEST ensures that some samples of X have paired Z programs which are exact

labels. We present qualitative results in Figure 4.3. The reconstructions from the PLAD combination methods

better reflect the input shapes, reinforcing the quantitative trends.

4.3.4 Inner-loop Search Time

PLAD methods make use of PBEST to generate (X,Z) datasets that train p(z|x). To study how time spent on

inner-loop search affects each technique, we ran an experiment using different beam sizes to update PBEST.

We present results in Figure 4.2, left. On the X-axis we plot beam size; on the Y-axis we plot test-set

reconstruction Chamfer distance. Unsurprisingly, spending more time on the inner-loop search leads to better

performance; finding better programs for training shapes improves test time generalization. That said, across

all beam sizes, we find that it is always best to train under a combination of PLAD methods; the LEST+ST and

the LEST+ST+WS variants always outperform any individual fine-tuning scheme. Note, RL is not included in

this experiment because REINFORCE, as defined, has no inner-loop search mechanism. In this way, PLAD

provides an additional control lever, where time spent on inner-loop search modulates a trade-off between

convergence speed and test-set reconstruction performance.

4.3.5 Number of Training Shapes from S∗

All the fine-tuning methods make use of a training distribution of shapes that are sampled from S∗. For some

domains, the size of available samples from S∗ may be limited. We run an experiment on 2D CSG to see how

different fine-tuning methods are affected by training data size. We present the results of this experiment in

Figure 4.2, middle. We plot the number of training shapes on the X-axis and test set reconstruction accuracy

on the Y-axis. All fine-tuning methods improve as the training size of S∗ increases, but once again, combining

multiple PLAD methods leads to the best performance in all regimes. This study also demonstrates the sample

efficiency of PLAD combinations: LEST+ST and LEST+ST+WS trained on 1,000 shapes achieve better test

set generalization than RL trained on 10,000 shapes.

53

4.3.6 Convergence Speed

Beyond reconstruction accuracy, we are also interested in the convergence properties of a fine-tuning method.

Policy gradient RL is notoriously unstable and slow to converge, which is undesirable. For 2D CSG, we

record the convergence speed of each method and present these results in Figure 4.2, right. We plot recon-

struction accuracy (Y-axis) as a function of training wall-clock time (X-axis); all timing information was

collected on a machine with a GeForce RTX 2080 Ti GPU and an Intel i9-9900K CPU. All PLAD tech-

niques converge faster than policy gradient RL. For instance, RL took 36 hours to reach its converged test-set

CD of 1.097, while LEST matched this performance at 1.1 hours (32x faster) and LEST+ST matched this

performance at 0.85 hours (42x faster).

4.4 Discussion

We presented the PLAD framework to group a family of techniques for fine-tuning shape program inference

models with Pseudo-Labels and Approximate Distributions. Within this framework, we proposed LEST: a

self-training variant that creates a shape distribution X approximating the real distribution S∗ by executing

inferred latent programs. Experiments on 2D CSG, 3D CSG, and ShapeAssembly demonstrate that PLAD

methods achieve better reconstruction accuracy and converge faster than policy gradient RL, the current

standard approach for black-box fine-tuning. Finally, we found that combining updates from multiple PLAD

methods outperforms any individual technique.

Limitations While fine-tuning p(z|x), PLAD methods construct (X,Z) sets approximating the statistics

of S∗, specializing p(z|x) towards S∗. As a consequence, p(z|x) may not generalize as well to shapes

outside of S∗; we explore this phenomenon in B.5. Training a general-purpose inference model for all

shapes expressible under the grammar is an interesting line of future work. While our work focuses on

reconstruction quality, producing programs with ‘good’ structure matters just as much, if the program is to

be used for editing tasks. Currently, the synthetic pretraining data is the only place where knowledge about

what constitutes “good program structure” can be injected. Such knowledge must be expressed in procedural

form, which may be harder to elicit from domain experts than declarative knowledge (i.e. “a good program

has these properties” vs. “this is how you write a good program”).

Chapter 5

Learning to Edit Visual Programs with

Self-Supervision

People seldom write code with a linear workflow. The process of authoring code often involves substantial

trial-and-error: possibly correct programs are evaluated through execution to see if they raise exceptions or

break input-output assumptions. When an error is identified, an edit is made, and this process is repeated. It

is difficult to imagine writing any moderately complex program in a one-shot paradigm, without being able

to debug intermediate program versions.

In this chapter, we present a model that learns how to edit visual programs in a goal-directed manner for

the task of visual program induction (VPI). Our network consumes a complete input program, this program’s

executed state, and a visual target. It then proposes a local edit operation that modifies the input program to

better match the target. In contrast with one-shot approaches, this framing allows our network to explicitly

reason over a complete program and its execution, in order to decide how this program should be modified.

We train our network without access to any ground-truth program annotations. To accomplish this, we

propose an integration of our edit network with the one-shot VPI models produced by PLAD (Chapter 4).

During iterative finetuning rounds, we source paired training data for our edit network by first constructing

pairs of start and end programs, and then using a domain-aware algorithm to find a set of edit operations

that would bring about this transformation. This process jointly finetunes both our edit network and a one-

shot network, and we propose an integrated inference algorithm that leverages the strengths of both of these

paradigms: the one-shot model produces rough estimates that are refined with the edit network. We find

54

55

that this joint self-supervised learning set-up forms a virtuous cycle: the one-shot model provides a good

initialization state for the edit network, and the edit network improves inner-loop inference, creating better

bootstrapped training data for the one-shot model.

We experimentally compare the effectiveness of integrating our edit network into this joint paradigm

against using one-shot models alone. Controlling for equal inference time, over multiple visual programming

domains, we find that using the edit network improves reconstruction performance. Moreover, we find that the

reconstruction gap between these two paradigms widens as more time is spent on test-time program search.

Further, we demonstrate our method performs remarkably well even with very limited data, as learning how

to edit is an inherently more local task compared with learning how to author a complete program. Finally,

we run an ablation study to understand and justify our system design.

We release code for our experiments at: https://github.com/rkjones4/VPI-Edit

5.1 Method

In this section, we present our approach for learning how to edit visual programs. First we formalize our task

of unsupervised visual program induction. For a particular domain, we are given a domain-specific language

(DSL) L and an executor E that converts programs z from L into visual outputs x. Given visual inputs from

a target visual dataset that lacks program annotations, x∗ ∈ X∗, our goal is to find find z∗ ∈ L, such that

E(z∗) ∼ x∗. This measure of similarity is usually checked under a domain specific reconstruction metric M .

A general approach employed by prior visual program induction works is to use an autoregressive model

(e.g. a Transformer) that is conditioned on a visual encoding to predict a well-reconstructing program: p(z|x).

These one-shot models iteratively predict the next program token until the program is complete. We present

a framework that employs a similar autoregressive model, but instead of predicting a complete program from

scratch, we instead predict a local edit that modifies an input program. In the rest of this section, we first

present how we design our edit network (Sec. 5.1.1). Then we discuss our unsupervised training procedure

where we jointly finetune an edit network along with a one-shot network (Sec. 5.1.2. Finally, we describe

how we combine these networks to search for visual programs (Sec. 5.1.3).

5.1.1 Edit Network Design

Our edit network p(e|z, x) learns how to predict a local edit operation that improves an input program towards

a visual target (see Figure 5.1). We provide our network with a triplet input state: the tokens of an input

56

START

Edit Network

START Union Move .5 .5 Scale .2 .2 Circle Difference Rectangle Move .2 -.7 Scale .3 .2 Triangle END

Op Loc Params

 AT 11 Reflect X

 MT 2 0.0 0.4
...

Union Move .5 Diff Rect Move .2 Scale Tri

$AT Reflect X

Target Input Programexecute Edit Operations

-.7 .3 .2 END...
$AT

Tokenize

Encode

Embed

Reflect X END

Parameter Prediction

Tokenize

AT MT MP RT AC RC

Operation Type Prediction

Location Prediction

Figure 5.1: We design a network that learns how to locally edit an input program towards a target. It first
predicts what type of edit operation should be applied, then it predicts where that edit operation should be
applied, and finally it autoregressively samples any parameters the edit operation requires.

program z, this program’s executed output E(z), and a visual target x. From this state, our network is tasked

with predicting an edit operation e that could be applied to the input program.

Edit Operations. There are many ways to parameterize the space of possible program edits. We choose

to constrain the possible edit operations our network can produce by forcing it to select from a set of local

editing operations designed for visual programs. For instance, for functional visual programming DSLs with

transformation and combinator functions, we allow for seven different edit operations: modifying a trans-

form’s parameters (MP), modifying a transform (MT), adding a transform (AT), removing a transform (RT),

modifying a combinator (MC), removing a combinator (RC), or adding a combinator (AC). We provide more

details in Appendix C.4. Some of these edit operations do not take in parameters (removing a transform)

while others require new parameters (e.g. to modify the parameters of a transform we need to know the new

parameters). Each of these edit operations can be applied to a program at a specific token location, and results

in a local change. Subsequently, we task our edit network with predicting three items: an edit operation type,

a location for that edit operation, and any extra parameters that operation requires.

We design our system with this somewhat constrained edit operation set as it has a number of advantages.

First, the application and effect of each edit operation is local; this simplifies the learning task and allows us

flexibility at inference time. Moreover, ensuring that edit operations are tied to the semantics of the underlying

DSL helps to promote program edits that result in syntactically valid modified programs. We compare our

edit operation design against alternative formulations in our experimental results (Sec. 5.2.5).

Architecture. We implement our edit network as a Transformer decoder. This network has full attention

over the conditioning information: each visual input (the executed output of the input program and the target)

57

is encoded into a sequence of visual tokens (e.g. with a CNN) and each token of the input program is lifted

with an embedding layer.

To predict the edit operation type, we take the output Transformer embedding from the first index of

input program sequence. This embedding is sent through a linear layer which predicts a distribution over the

possible edit operation types (yellow boxes, Fig. 5.1).

To predict the edit operation location, we consider the embeddings that the Transformer produces over

the tokens of the input program. Each of these location codes is sent through a linear layer, which predicts a

value for each operation type. For a chosen operation type, we then normalize these values into a probability

distribution across the length of the input program sequence (dark-blue boxes, Fig. 5.1). This distribution

models the likelihood of where a specific edit operation type should be applied.

Finally, we use our network to autoregressively sample any extra parameters that a chosen edit operation

might require. To accomplish this, we first slightly reformat the input program by inserting a special ‘sentinel

token’ [166] associated with the chosen edit operation in two places: (1) at the specified edit operation

location and (2) at the end location of the current program ($AT, Fig. 5.1). This ‘sentinel’ tokens allows the

network to know what operation is being applied to which position. Then, starting from the location of the

second sentinel token, we can use the network to iteratively generate a sequence of parameter predictions

with causal attention-masking, until an ‘END’ token is chosen (green boxes, Fig. 5.1).

Training. Given an input program, how do we know which edit operations are helpful? If we have

access to not only a visual target, but also its corresponding program, we can find a set of edit operations

that would transform the input program into this target. We follow this logic to source training data for our

edit network: given a start program and an end program, we analytically identify a set of edit operations

that would bring about this transformation with a findEdits function. We can then convert this set of edit

operations into a large set of (input, output) pairs that our network can train on. We provide further details

on this algorithm in Appendix C.4. Once we have sourced paired data, through teacher-forcing we can train

our network in a supervised fashion with a cross-entropy loss on the predicted operation type, location, and

each parameter token. Though we lack known programs for the target domain of interest, we next discuss a

bootstrapped finetuning procedure that provides a work-around for this issue.

5.1.2 Learning Paradigm

As we operate in a paradigm where we don’t have access to ground-truth programs for our target set X∗,

we take inspiration from recent self-supervised approaches that employ bootstrapped finetuning for visual

58

Algorithm 1: Network Training
1: p(z|x)← pretrain(L)
2: p(e|z, x)← pretrain(L, p(z|x))
3: P BEST← {}
4: for num rounds do
5: P BEST← Infer(X∗, p(z|x), p(e|z, x))
6: p(z)← trainGen(P BEST)
7: PG← sample(p(z), {})
8: PS← sample(p(z|x), E(PG))
9: ES← findEdits(PS , PG)

10: p(e|z, x)← trainEdit(ES)
11: p(z|x)← trainPLAD(P BEST, PG)
12: end for

...

Ro
un

d
1

Ro
un

d
2

Target x*

Sample p(z|x*)

Sample p(e|z,x*)

Sample p(e|z,x*)

Resample on M

... ...
... ...

... ...

... ...

... ...

Figure 5.2: Left: our bootstrapping algorithm that finetunes an edit network and a one-shot model towards
a target dataset. Right: our inference algorithm that initializes a population with a one-shot model and then
mutates it towards a visual target through iterative rounds of edits and resampling.

program induction [98, 53]. Specifically, we develop an algorithm (Alg. 1) that integrates edit network

training into the PLAD finetuning framework.

PLAD Finetuning. We begin with an overview of the PLAD method, which is depicted with the black

text in Alg. 1 (see Chapter 4 for details). At the start of each round, the program inference network p(z|x) is

run over the target dataset X∗; the results of this inference procedure populate the entries of a best programs

data-structure PBEST according to M . Then an unconditional generative model p(z) is trained over the entries

of PBEST, and a set of ‘dreamed’ programs, PG, are sampled from this network. The weights of p(z|x) are

then finetuned using paired data sourced from PBEST and PG. These steps are repeated for a set number of

rounds, or until convergence.

Edit Model Finetuning. The blue-colored lines in Alg. 1 indicate the modifications we make to the

PLAD algorithm to incorporate our edit network. Lines 8-10 explain the training logic. First we use p(z|x) to

sample a set of programs PS conditioned on the executed outputs of the generated programs PG. Treat-

ing PS as the starting points and PG as the end points, we can then use our findEdits operation to find sets

of edit operations ES that would realize these transformations. This provides us with paired data that we can

use to finetune the weights of the edit network through teacher forcing, as explained in the prior section.

Synthetic Pretraining. PLAD finetuning is typically initialized with a synthetic pretraining phase (Alg. 1,

line 1). During pretraining, random programs are sampled from L, and p(z|x) can be trained on the paired

data produced by executing these samples. Similarly, as we discuss in the results section, we find it useful to

‘pretrain’ the edit network on synthetic data (Alg. 1, line 2). While multiple formulations are possible here,

59

Table 5.1: Across multiple visual programming domains we evaluate test-set reconstruction accuracy. In all
cases, we find that our joint paradigm that integrates an edit network with one-shot models outperforms the
alternative of using only one-shot models.

Layout cIoU ⇑ 2D CSG CD ⇓ 3D CSG IoU ⇑
OS Only 0.94 0.156 83.3
OS + Edit (Ours) 0.98 0.111 85.3

we re-use the same logic shown on lines 8-10, except we replace the set of target programs PG with random

programs sampled from L.

5.1.3 Inference Algorithm

With the above procedure we can train our edit network, but how can we use this network to find improved

visual programs? This question is not only relevant at test-time, but also impacts bootstrapped training, as

we run an inner-loop search to populate the entries of PBEST(Alg. 1, line 5). As depicted on the right side of

Figure 5.2, we design a search procedure that combines the strengths of the one-shot and editing paradigms.

This search procedure maintains a population of programs, which are evolved over a number of rounds. The

initial population is produced by sampling p(z|x) . Then for each round, we use the edit network to sample

sets of edits for every program in the current population. We apply each of these sampled edits, and then

re-sample the population for the next round according to a ranking based on M .

This formulation has a number of advantages. Instead of starting from a blank canvas, or with random

samples, we allow p(z|x) to produce initial rough program estimates. These guesses are then refined through

mutations over a series of editing rounds that are all directed at improving similarity towards the visual target.

In Section 5.2.5 we compare this algorithm against alternative formulations. Critically, by applying this joint

inference procedure during finetuning we form a virtuous cycle: improving the inference strategy leads to

better PBEST entries, which results in better training data for p(z|x) and p(e|z, x), which in turn allows us to

find to better PBEST entries in subsequent finetuning rounds. Finally, we note that this formulation maintains a

nice symmetry between p(z|x) and p(e|z, x): in out joint finetuning algorithm p(e|z, x) trains on sequences

sourced from sampling p(z|x), and in this way its training distribution of edit operations well matches the

population used to initialize the inference algorithm.

60

5.2 Results

We evaluate our edit network with experiments over multiple domains. First we describe our experimental

design (Sec. 5.2.1). Then we compare the ability of different methods to accurately infer visual programs in

terms of reconstruction performance (Sec. 5.2.2). We analyze how this performance changes as a function of

time spent on inference (Sec. 5.2.3) or the size of the training target dataset (Sec. 5.2.4). Finally, we discuss

results of an ablation study on our method in Section 5.2.5.

5.2.1 Experimental Design

We provide a high-level overview of our experimental design. See Appendix C.3 for details.

Methods. We compare our approach (OS+Edit) against the alternative of using only a one-shot model

(OS Only). As described in Section 5.1, our approach jointly finetunes an edit network along with a one-shot

network, and uses both of these networks to infer visual programs (Fig. 5.2). To control for the added time

cost incurred by our inference procedure, we adapt a sampling-based inference loop for the OS Only variant,

which we find results in a surprisingly strong baseline.

Domains. We consider three VPI domains (see Appendix C.2): Layout, 2D CSG, and 3D CSG. In the

Layout domain, scenes are created by placing colored 2D primitives on a canvas, and optionally modifying

them by changing their size, location, or forming a symmetry group. In constructive solid geometry (CSG),

complex shapes are formed by combining simple shapes with boolean set operations (union, intersection,

difference). Our 2D CSG and 3D CSG domains differ in terms of their primitive types (e.g. squares vs

cuboids) and the parameterizations of transformation functions: generalizing notions of scaling, translating,

rotating, and symmetry grouping from R2 to R3.

Network Details. For each domain, we implement p(z|x) as a decoder-only Transformer [209] that

conditions on a set of visual tokens and predicts up to a maximum sequence length SL. Similarly, we imple-

ment p(e|z, x) as a Transformer with the same architecture, except that it conditions on (i) two sets of visual

tokens and (ii) an input program of length SL, and it is only allowed to predict edit parameters up to a length

of EL. Our visual encoders are all standard CNNs. For Layout we use a 2D CNN that takes in an RGB 64x64

image, for 2D CSG we use a 2D CNN that takes in a binary 64x64 image, and for 3D CSG we use a 3D CNN

that takes in a 323 voxel grid.

Reconstruction Metric. The reconstruction metric M guides the inference algorithm and also performs

61

early stopping with respect to a validation set. For Layout we use cIoU, an intersection over union met-

ric which only counts intersections on color matches (see Chapter 6). For 2D CSG we use an edge-based

Chamfer distance (CD) [187]. For 3D CSG we use intersection over union (IoU).

Target Data. Like prior bootstrapping methods, our finetuning algorithm specializes our networks

towards a target dataset of interest, X∗, that lacks known programs. For 2D CSG we use shapes from the

dataset introduced by CSGNet [187], originally sourced from Trimble 3D warehouse. For 3D CSG we use

shapes from the dataset introduced by PLAD, originally sourced from ShapeNet [16]. While we use the same

test-sets as prior work (3000 / 1000 for 2D CSG / 3D CSG), we find that our method is able to offer good

performance with much less training data. In our base experiments, we use 1000/100 train/val shapes for

2D CSG (from 10000 / 3000 available) and and 1000/100 train/val shapes for 3D CSG (from 10000 / 1000

available). For the Layout domain, we use the manually designed scenes sourced from the method described

in Chapter 6 (1000 train / 100 val / 144 test).

5.2.2 Reconstruction Accuracy

We compare our OS+Edit approach against OS Only on each method’s ability to infer visual programs that

accurately reconstruct test-set inputs in Table 5.1. As demonstrated, our joint finetuning paradigm that com-

bines an edit network with a one-shot network consistently improves reconstruction performance. In these

experiments, we ensure that each method gets to spend the same amount of time on inference by setting

search parameters so that the average inference time per shape was equal: ∼ 5, ∼ 10, ∼ 60 seconds per

shape for Layout, 2D CSG, and 3D CSG respectively. For OS Only, we use a sampling-based inference

search where the model samples a population of complete programs for a set number of rounds. Though this

approach provides a strong baseline, it was not as effective as combining our edit networks with one-shot

initializations. In fact, for the 2D CSG domain, our formulation achieves reconstruction scores that surpass

the performance of related methods that assume access to executor-gradients. On the 2D CSG test-set, we

achieve a Chamfer distance (CD) of 0.111 (lower is better), whereas UCSG-Net [101] gets a CD of 0.320,

SIRI [53] gets a CD of 0.260, and ROAP [201] gets a CD of 0.210 . Note that as the DSL, architecture,

objective, and inference procedures differ across these various works, it’s hard to make any absolute claims

from this direct comparison. Nevertheless we would like to emphasize that our method’s reconstruction per-

formance on this task is very strong in the context of the related literature. We visualize reconstructions from

this experiment in Figure 5.3, and find that qualitative evidence supports the quantitative trends.

62

OS Only

OS+Edit

Target

Figure 5.3: Comparing reconstructions of one-shot models (top) against our joint approach (middle).

5.2.3 Search Time

While one-shot models must author new programs from scratch without execution-feedback, our edit network

has the capacity to reason over an input program, compare its execution versus the visual target, and decide

how this program should be modified. As such, we hypothesize that integrating our edit network into our

inference procedure will be increasingly advantageous over the OS Only approach as more time is spent on

test-time search. To validate this hypothesis, we explore how the reconstruction gap between these paradigms

changes as a function of time spent on search (Figure 5.4, left). For 2D CSG we take a subset of the test-

set (300 shapes) and run more rounds of our inference algorithm. As demonstrated, as more time is spent

on test-time search (i.e. as the number of rounds increases) the reconstruction gap between OS Only and

OS+Edit grows wider. Moreover, we note that even on the first round there is a gap between the methods,

as the one-shot network trained in the OS+Edit paradigm had access to better PBEST entries throughout the

finetuning process (i.e. the aforementioned virtuous cycle). We present qualitative results that show how the

edit network evolves the population of programs towards the visual target in Figure 5.5.

5.2.4 Training with limited data

While both OS+Edit and OS Only are unsupervised in the sense that they don’t have access to any ground-

truth program annotations, they do require an input set of visual data to form a target training set. We

hypothesize that our edit network will be especially useful for domains with limited data (even limited unan-

notated data) as the program editing task is inherently more local than trying to author a complete program.

Consider for instance that during finetuning, in a one-shot paradigm each visual datum can only contribute

a single training example, while in our paradigm an entire distribution of edit operations can be sourced by

considering the many possible edit paths one could take to transform a start program into an end program.

63

Figure 5.4: For 2D CSG, we compare reconstruction accuracy (Chamfer distance, lower is better, Y-axis)
between using an edit network and using only a one-shot network while varying time spent on inference (left)
and training set size (right).

We validate this hypothesize with an experiment where we train versions of these systems while varying the

size of the target training set (Fig. 5.4, right). Our joint paradigm offers very strong performance even while

finetuning towards an input set of just 100 training shapes, matching the performance of OS Only when it has

10x more data.

5.2.5 Method Ablations

We run an ablation experiment to evaluate the design of our system on the Layout domain. We present results

of this experiment in Table 5.2. In the rest of this section we detail all of the alternative formulations we

compare against.

Edit Operations. Our default edit networks learn how to predict local edit operations from a limited

set of options. We compare this paradigm with two alternatives. In the next program mode, we task the

edit network with predicting all of the tokens of the program that would be created by applying the target

edit operation to the input program. In the final program mode, we task the edit network with predicting the

tokens of the final program associated with the visual target. This formulation was inspired by the success

of denoising diffusion models for visual synthesis tasks [77], though in our setting this variant is basically

an alternative one-shot model with extra conditioning information but with the same target sequences. As

demonstrated, neither of these approaches is as performant as our formulation where edits are predicted as

local operations. Moreover, predicting an entire program is much slower compared with predicting an edit,

so fewer rounds of our inference algorithm can be run with the same search time budget.

Program Corruption. We source paired training data for our edit network by constructing (start, end)

program pairs and then analytically finding a set of edit operations that would complete this transformation.

64

For an alternative, we can look towards discrete diffusion methods [202, 242, 215, 172]. In our corruption

variant we take inspiration from these works and design a program corruption algorithm for the Layout

domain. This corruption algorithm takes an end program as input, and then samples corruption operations

(i.e. inverse edit operations) that can be used as paired data for our edit network (Appendix C.5). As seen,

this alternative formulation was not as performant as our default approach. One reason for this is that it

hard to design a corruption process that converts end programs (e.g. PG) into the distribution of programs

that we have access to at inference time (e.g. PS). Conversely, by applying our findEdits operation on

PG and PS pairs, we can source paired data for our edit network that does match this distribution.

Pretraining and Finetuning. In our default version there are three training phases. First, p(z|x) under-

goes pretraining on synthetic data. Second, p(e|z, x) undergoes pretraining on synthetic data using samples

from p(z|x). Then both of these networks are jointly finetuned with respect to X∗. In the No FT variant,

we don’t finetune either network, in no one-shot FT we don’t finetune p(z|x), in no edit FT we don’t fine-

tune p(e|z, x), and in no edit PT we don’t pretrain p(e|z, x). While the performance of our system remains

remarkable strong even under these ablations, we get the best results by using all three training phases. In-

terestingly, for settings where p(z|x) is not specialized for X∗, the reconstruction accuracy gap dramatically

increases between the best sample in the starting population and the best sample in the final population of our

inference procedure. For instance, for the no one-shot FT variant, the first round cIoU score is 0.88 which

gets increased to 0.972 (0.092 improvement) through the mutations proposed by the edit model, while in our

default variant the first round cIoU is 0.925 (an improvement of .055).

Inference Algorithm. We compare our inference algorithm with two alternative versions. In Naive

OS we initialize the first population with p(z|x), and make edits to each population member with p(e|z, x),

but we skip the population resampling step according to M , and instead apply the highest likelihood edit

from p(e|z, x). While the edit network is still helpful in this paradigm (0.022 improvement from the first

to the last round), it performs worse compared with our default implementation. In Rand+Edit, we re-

move p(z|x) and instead fill the initial population with random program sampled from L. This provides a

much worse initialization (0.302 cIoU in the first round), and though our edit network successfully mutates

these samples towards the target, better reconstruction performance is gained by combining our edit network

with initial guesses from a one-shot model.

65

Table 5.2: Ablation study comparing our method against alternative formulations.

Method Final cIoU ⇑

Ours 0.980

Next program 0.941
Final program 0.920

Corruption 0.964

No FT 0.955
No one-shot FT 0.972
No edit FT 0.976
No edit PT 0.953

Naive OS 0.947
Rand+Edit 0.906

Start

End

Target

Figure 5.5: Our inference procedure edits samples from an initial population (top) towards a target (bottom).

5.3 Discussion

In this chapter, we’ve introduce VPI-Edit: a system that learns how to edit visual programs in a goal-directed

fashion. We develop a self-supervised bootstrapping approach that allows us to train an edit network for do-

mains that lack ground-truth program annotations. We compare our proposed paradigm, that jointly finetunes

a one-shot model and an edit network, against the alternative of using only a one-shot model, and find that

our approach infers more accurate program reconstructions. Further, we find this performance gap is more

pronounced when more time is spent on program search or when less training data is available. Finally, we

justified the design of our method with an ablation experiment.

66

Limitations Compared with prior work, we need to train another network, this impacts the time required

for both pretraining and finetuning stages. Moreover, the full benefit of using an edit network is best realized

with a more complex program search, and as such we advocate for search-time budgets that are slightly more

costly compared with prior work. Though our formulation would offer improved performance for work-flows

that can afford to spent more time on program search, it would be useful to consider potential speed-ups of

our system [29]. Finally we note that our current formulation requires access to a domain-aware findEdits

operation that can analytically find a set of edits that realizes a transformation from a start program to an end

program.

5.3.1 Relation with SIRI

SIRI [53] is another method for visual program induction that builds off of, and improves upon, the PLAD

framework introduced in Chapter 4. Like the VPI-Edit method, it treats program as structured objects than

can be improved through rewriters. Instead of training a network that learns how to edit programs, it inte-

grates domain-specific analytical code rewriting operations into the bootstrapped finetuning loop of a one-

shot network. It considers three types of rewriting operations: parameter optimization, code pruning, and

code grafting. These sub-modules are interleaved together to find rewritten program versions that improve an

objective function (some combination of reconstruction and program length). While these types of rewrites

are very helpful for correcting certain types of errors (e.g. better alignment by finding improved continuous

valued parameters) they also can lead to rewritten programs that are ‘out-of-distribution’ for the one-shot net-

work. As a result, SIRI only sparsely integrates these rewritten programs during network finetuning, whereas

in our VPI-Edit framework the one-shot network can finetune on the entire set of rewritten programs without

convergence issues. As the ideas of these two methods are largely complimentary, and it would be interesting

to consider ways to integrate these paradigms into a single system.

5.3.2 Relation with Tree Diffusion

Tree Diffusion [102] is a contemporary approach with many similarities to the method we present in this

chapter. This paper takes inspiration from execution-guided visual program synthesis works [41], and like

VPI-Edit trains networks that try to edit ‘complete programs’ in a goal-directed fashion. This editing process

is framed as a sort of discrete diffusion occurring over syntax trees of programs from context-free grammars.

To get training data, the high-level idea is to sample a node in this syntax tree, and then place the node with a

67

same-typed newly sampled expression from the grammar. Much like our corruption ablation condition, this

noising process can then be converted into supervised paired training data for an edit network. In fact, their

edit network does not learn to undo the corruption directly, but instead treats the corrupted program as a start

program, and then computes a minimal set of edits that would convert it into the end program. Though their

version of findEdits is considerably more simple (as their DSLs and edit operations are more limited), this is

otherwise a remarkably similar paradigm as our pretraining phase, where the only difference is in how start

and end program pairs are sourced (Alg 1, L:2).

Beyond implementation/experimental details (network/domain/language design) there are two other ma-

jor philosophical differences between these works. First of all, our VPI-Edit system not only pretrains an

edit network with respect to some DSL, it also finetunes this network towards a target shape distribution

(jointly with a one-shot network). On the other hand, Tree Diffusion only focuses on synthetic pretraining,

and then tries to adapt to a target distribution at inference time. Secondly, different mechanisms are used to

guide test-time search. VPI-Edit initializes a population of programs with the one-shot network, proposes

mutations with an edit network, and then re-samples the next generation according to a reconstruction metric.

Tree diffusion initializes a population of programs by randomly sampling a grammar, proposes mutations

with an edit network, and then re-samples the next generation according to a value network’s prediction. This

value network predicts the edit distance (e.g. how many edit operations would be required) between two

programs, and is trained on the same distribution of data as the edit network. Though well-calibrating this

value network, especially to out-of-distribution samples, might prove challenging, it does offer an intriguing

alternative to the more local signals provided by reconstruction based rewards, and this paradigm is certainly

worthy of further investigation; see Section 10.1 for further discussion.

Chapter 6

Learning to Infer Generative Template

Programs for Visual Concepts

Humans understand the visual world through concepts [143]. Concept-level reasoning allows us to perform

a multitude of tasks over a range of situations, even after seeing a new concept only a few times [205]. In

this Chapter, we propose an inverse procedural modeling scheme that aims to endow machines with similar

abilities to learn flexible, general purpose visual concepts. For instance, to support creative applications, we

would like to be able to feed it a small set of visual exemplars and have it synthesize novel generations that

match the input concept. Or to support analysis tasks, our system should be able to parse the input exemplars

into corresponding parts in a consistent fashion. We desire a system capable of achieving these goals across

different visual domains.

Past work in the field of concept learning has explored systems capable of meeting some of these desider-

ata [116] Some attempts have proposed purely ‘neural’ approaches that learn to perform well on a single

concept-related tasks, like classification [211, 190] or generation [48, 173, 57]. A smaller number of ‘neural’

approaches have investigated how to learn concept representations that support multiple tasks [40, 75]. While

these methods often achieve domain-flexibility by learning from visual data directly, they are data-hungry and

don’t always generalize well to out-of-distribution concepts.

More relevant to the subject matter of this dissertation are concept-learners that construct structured task-

general representations. To the best of our knowledge, such methods have only been successfully developed

for stroke-based drawing domains. BPL [115] fits a structured hierarchical model of handwritten character

68

69

production to human stroke data under a Bayesian framing, achieving human-level performance across gen-

erative and discriminative tasks. GNS [46] extends this framework with a neurosymbolic method, where the

distribution and correlation of strokes are modeled with learned networks. While these approaches demon-

strate impressive performance, their design is specialized for datasets such as Omniglot; we are unaware of

any successful attempts to generalize these approaches to other domains.

Working towards domain and task general concept learning, we introduce the Template Program frame-

work. Our neurosymbolic system learns how to infer programs that capture visual concepts. This framework

extends the ‘single input’ visual program induction method described in Chapter 4, introducing networks that

learn to find procedural models that explain a collection of visual inputs. Beyond simply parsing concepts,

our Template Programs can also be sampled to synthesize new generations from a particular concept.

Template Programs are structured symbolic objects from a domain-specific language that capture struc-

tural and parametric attributes common to a particular concept. They admit instantiated programs that accord

with these constraints, and convert these programs into visual outputs with a domain-specific executor. We

train networks that learn how to infer Template Programs with a training regime that works across visual

domains. This paradigm requires only a domain-specific language (DSL) and a visual dataset (e.g. images)

with concept groupings (e.g. class annotations). Our two-step learning approach first pretrains a series of

inference networks on synthetic data sampled from the DSL, and then specializes these networks towards the

target dataset with a bootstrapped fine-tuning procedure.

We experimentally validate that our method is capable of inferring Template Programs across multiple

visual domains: 2D layouts, Omniglot characters, and 3D shapes. We demonstrate that Template Programs

natively support a number of downstream applications, including few-shot generation and co-segmentation.

We are unaware of any other method that is able to perform these tasks in a domain-general fashion, so we

compare against either task-specific or domain-specific alternatives. With respect to task-specific approaches,

we find that our neurosymbolic method achieves superior performance. For the one domain, Omniglot [115],

where task-general methods have been proposed, we compare our domain-general method against domain-

specific approaches and find that we are able to achieve competitive performance.

We release code for our experiments at: https://github.com/rkjones4/TemplatePrograms

70

START Union Color V0 Scale Prim Scale Color Prim TriangleV4 V5 V6 V7 V8 V0

START Union Color HOLE Scale Color Prim TriangleV0V0Encoder

Encoder

Encoder

TemplateNet

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

ExpansionNetSTART Union Color HOLE0 Scale Color Prim TriangleV0V0 HOLE0

Reflect Move Scale

Move Scale Prim

Scale Prim

ParamNet V0 V1 V2 V3 V4 V5 V6 V7 V8Reflect MoveV1 V2 V3

Red AX .5 -.2 .1 .1 Circle .2 .2

START Union Color V0 Scale Prim Scale Color Prim TriangleV3 V4 V5 V6 V7 V0 ParamNet V0 V1 V2 V3 V4 V5 V6 V7Move V1 V2

Blue 0. -.5 .3 .3 Triangle .3 .3

START Union Color V0 Scale Prim Scale Color Prim TriangleV1 V2 V3 V4 V5 V0 ParamNet V0 V1 V2 V3 V4 V5

Green .5 .5 Square .7 .7

Prim

START Union Color Red Reflect AX Move .5 -.2 Scale .1 .1 Prim Circle Scale .2 .2 Color Red Prim Triangle

START Union Color Blue Move 0 -.5 Scale .3 .3 Prim Triangle Scale .3 .3 Color Blue Prim Triangle

START Union Color Green Scale .5 .5 Prim Square Scale .7 .7 Color Green Prim Triangle

execute

execute

execute

Step 1: Encode Visual Inputs

Step 2: Infer Template Program (TP)

Step 3: Infer Structural Expansion (SE)

Step 4: Infer Complete Programs (z)

Figure 6.1: Our inference process. First, a group of visual inputs are encoded (Step 1). Next, our TemplateNet
uses these encodings to infer a Template Program (TP , Step 2). The TP and each encoding are then sent to
the ExpansionNet to produce a Structural Expansion (SE) for each input (Step 3), which are finally passed
to the ParamNet to produce a set of complete programs that explain the inputs (Step 4).

6.1 Method

Our framework learns how to infer Template Programs (Section 6.1.1) that capture visual concepts. We

describe our inference networks in Section 6.1.2 and our learning paradigm in Section 6.1.3.

6.1.1 Template Programs

Given a collection of related visual inputs, our goal is to find a symbolic structure capable of representing this

group as a concept. This structure must be able to account for both (i) the shared attributes across the group

and (ii) the allowable divergences that differentiate various group members.

Towards this goal, we introduce Template Programs to represent visual concepts. A Template Pro-

gram (TP) is a partial program specification from a domain-specific language (DSL). We assume this DSL

is a functional language, where each function takes other functions or parameter arguments as input. Tem-

plate Programs admit fully instantiated programs (z). These programs can be run through a domain-specific

executor (E) to produce visual outputs.

71

Template Programs are composed of a hierarchy of function calls (i.e an expression tree) and are option-

ally allowed to define relationships between parameter arguments (e.g. variable reuse). All instantiations

from a Template Program must invoke the specified functions and use the described relations. To allow

instantiations to vary structurally (i.e. use different functions), we introduce a special HOLE construct.

Each HOLE in the Template Program can be filled in with an arbitrary expression tree. This process cre-

ates a Structural Expansion (SE), which completely specifies the function call sequence of an instantiation.

Any function parameters that lack a specified relation in the SE are allowed to differ freely in the output

programs.

6.1.2 Inference Networks

We use a learning-based approach to infer Template Programs and their instantiations. Given a group

of visual inputs XG from some concept X̃ , our goal is to infer a Template Program TP , such that for

each x in XG there is a program instantiation z from TP so that E(z) = x.

We solve this difficult inverse structured prediction problem with a series of inference networks pinf that

we depict in Figure 6.1. To start, each x is converted into a latent code with a domain-specific visual encoder

(e.g. a 2D CNN for image inputs). These latent codes are then passed through a series of auto-regressive

networks, explained below.

The TemplateNet, p(TP |XG), is responsible for inferring Template Programs. Attending over all of the

latent codes from XG as conditioning information, it autoregressively predicts a series of tokens that form

the Template Program. We linearize this composition of functions with prefix notation. Using Figure 6.1 as

reference, these tokens are either (i) functions from the DSL (SCALE), (ii) HOLE tokens, or (iii) parametric

relations, such as static variable assignment (Triangle) or variable reuse (V0).

Given the inferred TP , we use the ExpansionNet and ParamNet to instantiate a complete program z.

The ExpansionNet, p(SE|TP ,x) , conditions on TP along with a single visual input x, and autoregressively

produces a SE by filling in HOLE tokens with a series of functions. This SE is then reformatted to expose

any free parameters and their relations. The ParamNet, p(z|SE,x), conditions on this representation and

the same visual input x in order to autoregressively predict the value of each parameter which instantiates a

complete program z.

72

6.1.3 Learning Paradigm

How can we train our inference networks? With ground-truth program annotations, we could employ super-

vised learning, but datasets with this level of annotation do not exist. As our goal is to design a domain-general

framework, our problem formulation assumes the following as input: a target dataset of interest X∗ and a

relevant DSL. We assume that we can sample groups of visual concepts from this dataset (e.g. by using class

annotations), but otherwise assume the visual data is unstructured. Under these assumptions, we employ a

two-step process: we first initialize our networks by pretraining on synthetic data sampled from the DSL, and

then we specialize pinf towards X∗ with bootstrapped finetuning.

Synthetic Pretraining We implement each autoregressive network within pinf as a Transformer decoder

with causal masking (where the conditioning information varies across networks). With paired (input, output)

data, each of these networks can be trained with maximum likelihood updates (i.e. cross-entropy loss).

We can produce (input, output) pairs for all of our networks if we have an associated (XG, TPG, ZG)

group, where targets for the ExpansionNet and ParamNet can be derived by comparing the TPG to each

z ∈ ZG(further details in Appendix D.4.1).

One way to produce paired data is to generate it synthetically. Following previous VPI approaches [206,

187], we sample synthetic data from our DSL and use it to pretrain our inference networks in a supervised

setting. At a high level, this sampling procedure invokes the following steps: (1) sample a full program

from the DSL (e.g. by stochastically expanding the grammar), (2) convert the full program into a TPG (e.g.

by collapsing random expression trees into HOLE tokens and randomly assigning parameter relations), (3)

sampling a group of programs ZG from the TPG (e.g. through random expansion) and recording their

executions, XG = (E(z) ∀ z ∈ ZG).

Bootstrapped Finetuning While synthetic pretraining attunes pinf to the DSL, it produces overly general

networks that make inaccurate predictions when run over concepts from X∗. To specialize pinf towards X∗,

we develop an unsupervised bootstrapped finetuning approach that generalizes the PLAD framework de-

signed for single-input, deterministic programs (Chapter 4).

Our algorithm oscillates between inference and training steps. In each inference step, we run pinf over

groups of visual inputs XG drawn from concepts in the target dataset X̃ ∈X∗. We run a beam-search to find

the Template Program whose instantiations best match XG under an objective O (Eq. 6.1). For each XG, we

record the best inferred (TPG, ZG) pair for use in the training step.

The training step uses this paired data to finetune pinf. Specifically, we convert (XG, TPG, ZG) inferred

73

2D Primitive Layouts

Inp

Seg

Gen

Omniglot Characters

Inp

Seg

Gen

3D Shape Structures

Inp

Seg

Gen

Figure 6.2: We learn to infer Template Programs that capture input concepts (Inp). Template Programs
produce consistent concept parses (Seg) and synthesize new generations (Gen). Our framework flexibly
extends across different visual domains and input representations.

groups into paired training data for pinf under different self-supervised learning formulations. In the self-

training (ST) formulation, we leave the group as is. In the latent execution self-training formulation (LEST),

we replace XG by executing each program in ZG. Our wake-sleep formulation (WS) first trains a generative

model pgen(Appendix D.3.3). This model is a modified variant of pinf, where the visual latent codes are

masked out, so that visual information does not affect the conditioning. We train pgen to model the inferred

(TPG, ZG) data, and then we sample a collection of synthesized (TPG, ZG) pairings from the network.

Finally, we produce an associated XG for each generation by employing our program executor, following the

same procedure as in LEST.

From these three self-supervised approaches (ST, LEST, WS), we get three distinct datasets of (XG,

TPG, ZG) groups. We use these datasets to finetune pinf, using the same maximum likelihood updates as in

our synthetic pretraining phase. We randomly sample batches from each of these datasets in a training loop

until we reach convergence with respect to concepts from the validation set of X∗.

Objective Our inference procedure takes in a visual group XG and tries to find a Template Program TPG whose

instantiations ZG best explain the group. We formalize this notion of best with an objective composed of two

74

terms (i) reconstruction error (under a domain-specific metric M) and (ii) the description length difference

between each z and the TP it originated from. Specifically, we try to minimize:

O = λ1 ∗
∑

(x,z)∈(XG,ZG)

M(x,E(z)) + λ2 ∗
∑
z∈ZG

|z| − |TPG| (6.1)

In short, we search for Template Programs that encode as much commonality as possible while still producing

instantiations that capture the visual input.

6.2 Results

We validate the benefits of our method through comparisons with alternative approaches across three visual

domains. We describe the domains in Section 6.2.1 and our experimental design in Section 6.2.2. Next,

we evaluate performance on downstream tasks: few-shot generative modeling (Section 6.2.3, Figure 6.2

Gen rows) and parsing-based cosegmentation (Section 6.2.4, Figure 6.2 Seg rows). Finally, we discuss out-

of-distribution generalization, method ablations, and additional capabilities of Template Programs in Sec-

tion 6.2.5.

6.2.1 Visual Domains

We experiment over three visual domains that differ in input modality and concept groupings. We provide an

overview of each domain here, and further information in Appendix D.2.

2D Primitive Layouts We design a procedurally generated domain where concepts are represented with

a layout of simple 2D colored primitives. In addition to functions that move, scale, and color primitives,

our DSL also contains simple symmetry functions (e.g. REFLECT, Fig. 6.1). We hand-design 20 high-

level meta-procedures that correspond with manufactured or organic concepts (e.g. cats or clocks). Each

meta-procedure creates a distribution of concepts by expressing different combinations of four attributes,

allowing us to produce 384 distinct concepts. We divide these into 216 training-validation concepts and 168

testing concepts, where this split is designed to investigate out-of-distribution generalization performance

(Section 6.2.5).

Omniglot Characters [115] introduced the Omniglot dataset which contains handwritten characters

from 50 languages. These characters are split between a background set (964 characters) and a generalization

75

Table 6.1: Across multiple visual domains we quantitatively evaluate few-shot generation and co-
segmentation performance. Our method outperforms domain-general but task-specific alternatives, and is
competitive against approaches that specialize for Omniglot.

Domain Omniglot 2D Layouts 3D Shapes
Task Few-shot gen Co-seg Few-shot gen Co-seg Few-shot gen Co-seg

Method FD⇓Conf⇑MMD⇓ Cov⇑ mIoU⇑ FD⇓Conf⇑MMD⇓ Cov⇑ mIoU⇑ FD⇓MMD⇓Cov⇑mIoU⇑

Domain BPL 130 57.9 9.58 61.1 79.9 - - - - - - - - -
Specific GNS 123 55.0 9.47 58.1 73.8 - - - - - - - - -

FSDM 196 5.17 12.6 48.6 - - - - - - - - - -
Task VHE 139 2.46 10.4 52.0 - 81.9 59.0 8.06 22.4 - - - - -
Specific arVHE 137 12.3 10.2 55.8 - 45.3 77.0 6.34 45.1 - 128 8.57 53.6 -

BAE - - - - 34.3 - - - - 34.5 - - - 53.2

Ours 115 59.9 9.40 50.7 78.7 30.7 90.9 5.49 50.6 82.5 84.5 6.49 53.9 68.6

set (659 characters), where each concept comes with 20 examples. We use the background characters for

training and validation, and test on the generalization characters. Our DSL for drawing characters produces

strokes by moving a virtual pen. The pen moves at an angle, for varying distances, optionally bowing inwards

or outwards. It can be lifted up or put down and has the option to back-track to previous positions. As we are

more interested in modeling stroke structure than physical handwriting dynamics, we adopt a simplified ink

model compared with previous work: any pixel the pen passes through is filled completely.

3D Shape Structures Beyond 2D domains, we also run experiments on a dataset of 3D shapes. Following

past work, we use a structured part-based representation, where 3D shapes are modeled as a combination of

primitives (i.e. cuboids) [18, 80]. For our DSL, we use the ShapeAssembly modeling language (Chapter 3),

which creates complex 3D shapes by instantiating cuboids and assembling them together through attachment

and symmetry operators. We source 10,000 3D shape structures from the chair, table, and storage categories

of PartNet [141], holding out 1000 of these for our test set. We use the associated structural annotations

in PartNet to identify groupings of these shapes that correspond to concepts that are more fine-grained than

object category. While we use annotations to partition the dataset into groups, our networks receive only a

visual representation of each shape during training: either an unordered collection of primitives or a 3D voxel

grid.

6.2.2 Experimental Design

Networks We implement each autoregressive component of pinf with Transformer decoder models that have

8 layers, 16 heads, and a hidden dimension of 256. We use causal attention masks with a prefix that contains

conditioning information (see Section 6.1.2, Appendix D.3). For the 2D layout and Omniglot domains we

76

model our visual encoders with 2D CNNs that respectively take in RGB images of size 64x64 and binary

images of size 28x28. We train two different versions of pinf for 3D shapes. When shapes are represented

as an unordered collection of primitives (primitive soup), we use a Transformer encoder with order-invariant

positional encodings (Fig. 6.2, left & middle). We additionally explore using a 3D CNN that takes in a 643

occupancy grid of voxels (Fig. 6.2, right). For each domain, we train pinf with the procedure described in

Sec. 6.1.3 until we reach convergence on the validation set (additional training details in Appendix D.4).

Inference logic We infer Template Programs and their instantiations with a beam search. This algorithm

has two parameters: BMTP controls the size of the beam used to find Template Programs under p(TP |XG),

while BMz controls the size of the beam used to find instantiated programs under p(SE|TP ,x) and p(z|SE,x).

This search concludes by evaluating each candidate under O, which requires a domain-specific reconstruction

metric. We use a color-based IoU for 2D layouts, an edge-based Chamfer distance for Omniglot, and either

a primitive-matching score or IoU for 3D shapes depending on the input format (details in Appendix D.2).

During fine-tuning, we set BMTP and BMz to 5 (∼1 second for inference per input group). For evaluation

tasks, we set BMTP to 40 and BMz to 10 (∼20 seconds for inference per input group).

Comparison Conditions We compare how our method performs on concept-related tasks against alter-

native approaches. For the Omniglot domain, we compare against the task-general but domain-specific

BPL [115] and GNS [46] methods. Though they are designed to operate under one-shot paradigms, we

adapt them for our task settings. We also compare against alternatives that are domain-general but task-

specific. For few-shot generation, we compare against FSDM [57] and VHE [75]. These approaches both

train deep generative networks that condition on a group of input images but use different generative models:

VHE uses a VAE [107], while FSDM uses diffusion [77]). During our experiments, we found VAE training

to be highly unstable, so we also introduced an autoregressive VHE variant: arVHE. Our arVHE model first

tokenizes visual data (e.g. through vector-quantization [208]) then learns an autoregressive model over this

tokenization that is conditioned on groups of visual inputs. For co-segmentation tasks, we compare against

BAE-NET [25]. BAE-NET forms consistent parses by training a parameter-constrained implicit network to

solve an occupancy reconstruction task. Though this method is designed primarily for 2D and 3D shapes,

we adapt it to create segmentations across all of our domains. We provide additional details for all of our

comparisons conditions in Appendix D.6.

77

6.2.3 Concept Few-shot generation

For few-shot generation, a method is given a set of examples from a concept as input and is tasked with

producing new instances that demonstrate variety while maintaining concept membership. Our method ac-

complishes this with a two step process: first we infer a Template Program that explains the input group, then

we sample new instantiations from the Template Program. To sample these instantiations, we use variants

of our p(SE|TP ,x) and p(z|SE,x) that condition on a mean-pooled visual encoding of the input group

(Appendix D.3.3). Across our three domains, we show examples of our method’s few-shot generative capa-

bilities in Figure 6.2, Gen rows. Our method is able to capture input concepts and synthesize new outputs

that demonstrate interesting variations while preserving concept identity.

We present quantitative few-shot generation results in Table 6.1 (details in App. D.5). For each domain

and test-set concept, we provide every method with a group of 5 visual inputs and ask it to synthesize 5

generations. Comparing these generations to a reference set of held-out examples from the same concept, we

compute the following metrics using the latent space of a domain-specific auto-encoder: Frechet Distance

(FD), Minimum Matching Distance (MMD), and Coverage (Cov). For the Omniglot and 2D layout domains,

we also report class confidence (Conf), the average predicted probability of each generation being a member

of the target class under a classifier trained on all domain concepts.

As demonstrated, our method vastly outperforms task-specific alternatives (FSDM, VHE, arVHE) for

few-shot generation. Over all domains, we find that our method scores much better along metrics that measure

output concept consistency (Conf) and fidelity to the reference set (FD, MMD), while maintaining reasonable

output variability (Cov). Moreover, our domain-general method is able to largely match, and even somewhat

outperform, domain-specialized approaches (BPL, GNS) along measurements of concept consistency and

fidelity to the reference set.

We visualize few-shot generation results for Omniglot characters in Figure 6.3. While we again offer

much improved performance over the task-specific alternatives, we note that the methods that specialize for

Omniglot typically demonstrate a wider range of output variability, which confirms the trend we observe

with the Cov metric. We hypothesize this difference is due to BPL and GNS learning priors over human

stroke patterns (learning how people typically produce characters). In contrast, our method finds a Template

Program attuned to the visual data present in the input group without regard for structured priors beyond the

input DSL.

78

In
pu

t
O

ur
s

B
PL

G
N

S
FS

D
M

ar
V

H
E

Figure 6.3: Comparing few-shot generations of Omniglot characters.

Perceptual Study To further investigate few-shot generative performance, we designed a two-alternative

forced-choice perceptual study (Appendix D.5.2). We recruited 20 participants, and presented a series of

questions that compared generations from competing methods to the input group. We report results for

this study in Table 6.2. For the Omniglot domain, we compared our method against our best performing

task-general method (arVHE) and the domain-specific GNS method. We additionally compared our method

against arVHE for the shape domain. We observed that there was an overwhelming preference for our method

compared with task-specific alternatives (our generations were preferred at rates of 94% and 84% against

those produced by arVHE). Even when our method was compared with GNS, we found participants had

a slight preference for the few-shot generations our system produced, with 64% preference rate. We point

to this result as another strong indication of the impressive performance that our domain-general method is

capable of achieving.

6.2.4 Concept Co-segmentation

Our method also natively supports co-analysis tasks. When we infer a Template Program and instantiations

that explain an input visual group, we can use the shared structure of the Template Program to parse the group

members in a consistent fashion. We visualize this capability in the Seg rows of Figure 6.2. This consistent

parsing allows us to perform a co-segmentation task: given an input visual group, where exactly one member

79

Input

BAE

Ours

GT

Figure 6.4: We compare co-segmentations produced from voxelized shapes (Input) to ground-truth annota-
tions (GT)

of the group has a labeled segmentation, our goal is to propagate this labeling to the other group members.

We provide further details in Appendix D.5.3.

We compare how our method does on co-segmentation tasks across domains. Our main comparison is

against BAE-NET [25], which is designed specifically for this task. For Omniglot, BPL and GNS can also

perform this task by parsing visual inputs to ordered strokes. We report results of our experiments in Table 6.1.

We evaluate performance with a mean intersection over union metric (mIoU) that measures how closely the

output segmentation predictions match the ground-truth labelings. Despite the fact that our method never

trains on human stroke data, we achieve a better mIoU on this co-segmentation task compared with GNS,

and nearly match the metric value achieved by BPL. Though our output co-segmentations are less structured

compared with the ordered stroke parses BPL and GNS can produce, we are encouraged by our method’s

performance in this task. For our 3D shapes domain, as BAE-NET was originally designed to operate over

voxels, our comparisons against it use a variant of our method that also takes in voxel inputs. We visualize an

example co-segmentation of each method in Figure 6.4. Across domains and input modalities, we find that

we outperform BAE-NET for this task.

80

6.2.5 Discussion

Out-of-distribution generalization Different domains require different levels of generalization. For in-

stance, in the Omniglot dataset there is no alphabet overlap between train and test characters, so strong

generalization capabilities are required for each test concept. As we procedurally generated the 2D layout

domain, we are able to control and evaluate the level of out-of-distribution generalization required for each

test-set concept. We consider three settings. Easy concepts have a new combination of attributes, but each

attribute has been seen before (e.g. chair back, top-left of Fig. 6.2). Medium concepts have a new attribute

not seen during training (e.g. double-sided leaves, top-middle of Fig. 6.2). Hard concepts are from a meta-

procedure that was not used at all during training (e.g. turtles, top-right of Fig. 6.2). We find that while

our method does become worse when evaluated on more difficult concepts, its performance remains more

consistent compared with alternative approaches. We explore this phenomenon further in Appendix D.1.1.

Ablations We consider the effect of different design decisions on our method with an ablation study. We

provide the details of this study and quantitative results in Appendix D.1.2. We find that our bootstrapped fine-

tuning process is critical to adapting networks pretrained on synthetic data towards a target dataset of interest.

We validate that our scheme of allowing the Template Program to capture parametric relationships improves

performance on downstream tasks. Finally we compare our three step inference approach (TP → SE → z)

against a two step alternative where each z is predicted directly from the TP . In this comparison, we find

that our formulation, which allows the ParamNet to attend over the complete expression tree, outperforms

this alternative formulation.

Unconditional Concept Generation Though we mainly evaluate our method on few-shot generation and

co-segmentation, these are not the only concept-related tasks our framework can support. For Omniglot,

we explore how our approach can be used for unconditional concept generation. In fact, this is a task we

naturally solve as part of our fine-tuning procedure: the wake-sleep component of each training loop uses

an unconditional generative model to sample Template Programs that represent new concepts. We visualize

some of these generations in Figure 6.5.

81

Table 6.2: Perceptual study results evaluating few-shot generation performance. Our method is greatly pre-
ferred over task-specific alternatives and slightly preferred over domain-specific alternatives.

Domain Omniglot 3D Shapes
arVHE GNS arVHE

Ours vs. 94% 64% 84%

6.3 Discussion

We presented the Template Programs framework: a neurosymbolic method that learns to capture visual con-

cepts with structured symbolic objects. We demonstrated that our method flexibly learns to infer Template

Programs across multiple visual domains: 2D primitive layouts, Omniglot characters, and 3D shape struc-

tures. Our approach supports multiple downstream tasks of interest, such as few-shot generation and co-

segmentation. On these tasks, we achieve superior performance over other domain-general, task-specific

alternatives, and find that we match, and in some cases slightly outperform, domain-specific, task-general

alternatives for the limited areas where they exist.

82

Figure 6.5: Qualitative examples of unconditional concept generations on the Omniglot domain. We show
30 concepts synthesized by our method where each concept is associated with two rows of five images. The
bottom five images depict five samples from each concept, and the top five images show the nearest neighbor
in the training set by Chamfer distance to each sample.

Chapter 7

Macro Operation Discovery for Shape

Programs

...
def chair_2_base():
bbox = Cuboid(.9, .7, .8)
leg1 = Cuboid(.25, .7, .25)
squeeze(bbox, bbox, top, .15, .15)
reflect(X)
leg2 = Cuboid(.25, .67, .25)
squeeze(bbox, bbox, top, .15, .85)
reflect(X)

...

def reflection_group(A, B):
leg = Cuboid(A, bbox_height, A)
squeeze(bbox, bbox, bot, .6 * A, B)
reflect(X)

def four_leg_base(A, B):
leg1 = reflection_group(A, B)
leg2 = reflection_group(A, 1 - B)

ShapeMOD

Generative
Model

...
def chair_1_base():
bbox = Cuboid(1.2, .2, 1.2)
leg1 = Cuboid(.05, .2, .05)
squeeze(bbox, bbox, top, .03, .02)
reflect(X)
leg2 = Cuboid(.05, .2, .05)
squeeze(bbox, bbox, top, .03, .98)
reflect(X)

...

four_leg_base (,) four_leg_base (,) four_leg_base (,)

...
def gen_chair_1(…):
…
four_leg_base(A, B)
…

def gen_chair_2(…):
…
four_leg_base(A, B)
…

def gen_chair_3(…):
…
four_leg_base(A, B)
…

Figure 7.1: We propose ShapeMOD, an algorithm which takes as input a collection of 3D shape programs
and makes them more compact by automatically discovering common macros which can be re-used across
the collection. We apply ShapeMOD to datasets of ShapeAssembly programs and find that generative models
which train on refactored programs containing these macros produce more plausible output shapes than those
trained on the original programs. The discovered macros also facilitate shape editing by exposing only a
small number of meaningful parameters for manipulating shape attributes. For example, the four leg base
macro exposes two parameters (visualized as sliders with red handles); one parameter controls leg size, while
the other controls leg spacing.

To maximally realize the benefits of its representation, a good shape program should be compact and

expressed at a high level while still exposing important degrees of freedom for editing. One way to create

83

84

such programs is to introduce higher-level functions, or macros, into the shape DSL. We define a macro to be

a function that, when executed, expands into a series of commands from the base DSL.

In this chapter, we present ShapeMOD, an algorithm for automatically discovering such macros from

a collection of shape programs. ShapeMOD operates on any imperative, statement-based language whose

commands are parameterized by discrete and continuous parameters. It is designed around the principle of

discovering macros that make programs more compact, where compactness is measured by the number of

function calls and number of free parameters required to represent the input shape collection.

In pursuit of compactness, one must consider the cost incurred by adding more functions (i.e., macros)

to the DSL. At one extreme, one could use no macros, which results in the maximum number of free param-

eters (i.e., minimal compactness). At the other extreme, one could define a macro for each shape program

in the input collection—this is maximally compact, but makes applications such as shape manipulation or

learning to generate novel shape programs impossible. Our insight is that the trade-off space between these

extremes can be navigated via optimization to find a middle-ground where a small set of macros explain a

high percentage of variations across the input collection of shape programs. Critically, these frequently-used

macros expose sufficient degrees of freedom to allow for shape manipulation and exploration across a shape

collection.

To demonstrate the benefits of ShapeMOD, in this chapter we apply it to collections of ShapeAssembly

programs (Chapter 3), where, in order to discover more useful macros, we modify the grammar slightly,

as described in Appendix E.1. In its original form, ShapeAssembly contains two base functions and three

macro functions. The base functions are Cuboid, which creates an cuboid part proxy, and attach, which

moves a Cuboid to satisfy the described spatial relationship. The squeeze, reflect and translate

commands are expert-defined macros that abstract common patterns of structural and geometric variation.

Each of these macros expands into a sequence of lower-level Cuboid and attach commands. As we

observed that these macros improved downstream task performance, in this chapter we explore how such

similarly beneficial macro operations could be automatically identified. ShapeMOD is the first approach

that discovers macro operations capturing parametric relationships between continuous parameters across a

collection of imperative programs. While specialized data structures such as version spaces and E-graphs

can efficiently reason about rewrites of functional programs [42, 31], they cannot efficiently reason over

semantic line re-orderings of imperative programs (i.e. maintaining correct execution behavior) and thus are

not applicable to languages such as ShapeAssembly.

We run ShapeMOD on multiple collections of shape programs expressed in the ShapeAssembly DSL to

85

use

refactor add

analyze propose

evaluate

Library

. . .

macros
Dataset

Figure 7.2: ShapeMOD consists of two alternating phases: proposing new candidate macros (top) and refac-
toring programs to use some of the proposed macros (bottom).

discover new libraries of macros. For example, in Figure 7.1, starting from a set of chair shape programs,

ShapeMOD discovers a reusable macro for four leg chair bases which exposes a compact set of associ-

ated control sliders. We demonstrate the benefits of working with these discovered macros, by evaluating

how adding the discovered macros into the language affects performance on downstream tasks: learning

a generative model for shape programs, learning to infer shape programs from unstructured geometry, and

goal-directed editing of shapes via their programs. In all cases, task performance is improved by using auto-

matically discovered macros. Finally, we show that ShapeMOD can find useful macros even when trained on

a set of ShapeAssembly programs from multiple categories.

We provide code for our method at https://github.com/rkjones4/ShapeMOD .

7.1 Macro Operator Discovery

ShapeMOD’s goal is to take a dataset of programs D and the library of DSL functions used to express

them L, and return a new library (with additional macros) which is able to express the programs in D with

fewer free parameters. The motivation here is that macros should remove free parameters that correspond to

extraneous degrees of freedom, i.e. degrees of freedom that can create implausible output shapes, such as

86

𝓓

𝓛
Cuboid
attach
squeeze
translate
reflect

Propose + Integrate

Cuboid
attach
squeeze
translate
reflect
macro1
...

def macro1(fv_0, fv_1, fv_2, fv_3):
c0 = Cuboid(fv_0, fv_1, fv_2, T)
attach(bbox, .5, 0, .5, .5, 0, fv_3)

Propose + Integrate

Cuboid
attach
squeeze
translate
reflect
macro1
macro2
...

def macro2(fv_0, fv_1, fv_2, fv_3, fv_4, dv_0):
macro1(fv_0, fv_1, fv_2, fv_3)
attach(dv_0, 0, .5, .5, fv_4, 0, .5)
reflect(Y)

...

...

Round 1 Round 2

𝓓 𝓓

𝓛 𝓛

Figure 7.3: Running ShapeMOD for multiple rounds allows for discovery of increasingly complex macros.
Here, a macro discovered in Round 2 uses a macro previously found in Round 1 as part of its function body.

independently changing the length of each leg of a table. At the same time, we want to keep the number of

functions in our library relatively small, so as not to remove necessary degrees of freedom that can create

meaningful shape manipulations. We formalize this trade-off in an objective function f which the algorithm

attempts to minimize.

7.1.1 Overview

The ShapeMOD algorithm has two phases. First, a proposal phase (Section 7.2) finds clusters of similar

programs and uses these clusters to propose a set of candidate macros. Then, an integration phase (Section

7.3) greedily iterates through a ranked list of these candidate macros and adds them to the library L whenever

it would improve the objective function f . These phases can be alternated one after the other for multiple

rounds, with the output of one phase treated as the input for the next (Fig. 7.2). By iterating this procedure

for multiple rounds, increasingly complex macros can be found; as a macro discovered in round t can use a

previously-discovered macro from round t− 1 in its definition (Fig. 7.3).

Working with imperative programs that contain real-valued parameters presents unique challenges. For

instance, it is difficult to reason about valid line re-orderings of imperative programs when discovering macros

and deciding when they can be applied. ShapeMOD uses a sampling-based approach to discover macros

by creating clusters of shapes with shared program structure (Section 7.2.1) and a beam search procedure

to decide how to apply discovered macros to existing programs (Section 7.1.4). Moreover, when dealing

with real-valued parameters, it is challenging to find meaningful (non-spurious) parametric relationships,

especially within a single program. To achieve generality, ShapeMOD finds abstracted expressions that

simultaneously describe multiple programs from a cluster of related shapes (Section 7.2.2).

87

Algorithm 2: ShapeMOD
Input: Library of functions L, Program dataset D, Objective f
Output: Updated L with macros, best programs P∗(D,L)

1: for num rounds do
2: candidate macros← Set() {Proposal Phase}
3: for num proposal steps do
4: z, o← sampleProgAndOrder(D) {Sec 7.2.1}
5: Pmatches ← findMatchingProgs(D, z, o)
6: Pcluster ← sampleByParamSim(Pmatches)
7: zabs ← findAbstractProg(Pcluster,L) {Sec 7.2.2}
8: M← proposeMacrosForProg(zabs) {Sec 7.2.3}
9: M← generalize(M) {Sec 7.2.4}

10: candidate macros +=M
11: end for
12: D̃ ← subsample(D) {Integration Phase}
13: for num integration steps do
14: M ← getTopRankedMacro(candidate macros) {Sec 7.3.1}
15: L′ ← optimize(f , L, L+ {M}, D̃) {Sec 7.3.2}
16: if L′ ̸= L then
17: L ← L′; continue
18: end if
19: Minfreq ← findInfrequentMacros(D̃, L, L+ {M})
20: ifMinfreq = ∅ then
21: continue
22: end if
23: L′ ← optimize(f , L, L+ {M} −Minfreq, D̃)
24: if L′ ̸= L then
25: L ← L′

26: for M ∈Minfreq do
27: L ← optimize(f , L, L+ {M}, D̃)
28: end for
29: end if
30: end for
31: for M ∈ L do
32: L ← optimize(f , L, L − {M}, D̃)
33: end for
34: D ← filterBadOrders(f , D, L) {Sec 7.3.3}
35: end for
36: return L, P∗(D,L) {Sec 7.1.4}

Complete pseudocode for ShapeMOD is shown in Algorithm 2; Sections 7.2 and 7.3 explain this proce-

dure in more detail. As input, it takes in a starting library of functions L, a dataset of imperative programs D

and an objective function f to be minimized. Each element of D is a tuple (z,Oz) containing program lines

z and the set of valid orderings for those lines Oz (i.e. re-orderings of the lines which produce the correct

output when executed).

88

7.1.2 Initialization

In our experiments, the library L is initialized with the 5 manually designed functions from the ShapeAssem-

bly grammar. Then, starting with a collection of hierarchically-organized 3D cuboid structures from PartNet

[141], we use ShapeAssembly’s data parsing algorithm to find program lines z which recreate each shape.

We then developed a procedure to determine the set of valid orderings Oz for that program (i.e. all order-

ings which produce the correct output geometry) to form our input dataset D. Further details about the data

parsing and valid ordering procedures can be found in the supplemental (Section A.3).

7.1.3 Objective Function

Our goal is to represent an entire dataset of programs compactly (removing free parameters) while also

keeping the number of functions in the library small. Specifically, our objective is to minimize a weighted

sum of the number of functions in L and the number of free parameters needed to represent programs in the

dataset D. For ShapeAssembly, free parameters can have multiple types T: Choice of function per line (fn),

cuboid ID (cid), float/continuous (f), discrete (d), Boolean (b). One may care about compressing these types

differently, we allow each parameter type to be weighed differently in the objective defined as,

f = λn|L|+
1

|D|
∑
τ∈T

λτ |τ(P∗(D,L))|+ λϵϵ(τ,D,P∗(D,L))

where P∗(D,L) returns the best programs for D using the functions in L (Section 7.1.4), τ(P) returns the

set of all τ -typed free parameters in the programs P , and ϵ(τ,D,P) returns the sum of errors in τ -typed

parameters incurred by using P∗(D,L) in place of the original programs in D. The weights λn, {λτ |τ ∈ T}

and λϵ can be adjusted to express preferences for the types of macros the algorithm aims to find. In our

experiments, we use λn = 1, λfn = 8, λcid = 8, λf = 1, λd = 0.5, λb = 0.25, and λϵ = 10.

7.1.4 Finding the Best Program for a Given Library

Calculating the value of f over a dataset of shapes requires finding the program under L that minimizes the

objective function for each program (z,Oz) ∈ D. As Oz is a collection of valid orderings of the program

lines z, we solve this problem by finding the best scoring program under L for every o ∈ Oz . Combining

an ordering o with program lines z produces a program expressed in terms of base library functions zo. We

then want to find the best program, z∗, that uses the functions in L (including macros, if L contains them)

89

...

Input Dataset Form Program Cluster (4.1)

Sample Program
& Order

Program lines:

bb = Cuboid(.5, .8, .1, T)
c0 = Cuboid(.1, .8, .1, T)
c1 = Cuboid(.35, .1, .05, T)
squeeze(c0,bb,bb,bot,.06,.5)
attach(c1,c0,0,.5,.5,1,.2,.5)
reflect(c0, X)
translate(c1, Y, 1, .6)

Find matching
programs

...

Sample by
parameter similarity

...

Abstract Cluster Program (4.2)

...

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0, bb_h, fv_0, T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2, T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

Abstracted Program

...

Propose Macros (4.3) Generalize Macros (4.4)

...

Generalizes

Ge
ne
ral
ize
s

Ge
ne
ra
liz
es

Order: 1, 2, 5, 6, 3, 4, 7

bb = Cuboid(.5, .8, .1, T)
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.5, .8, .1, T)
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.5, .8, .1, T)
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(1.0,.4,1.0,T)
c0 = Cuboid(.2,.4,1.0,T)
squeeze(bb,bb,bot,.2,.5)
reflect(X)
c1 = Cuboid(.6,.2,.2,T)
attach(c0,0,.5,.5,1,.5,.2)
translate(Z, 3, .8)

bb = Cuboid(.8, .6, .15, T)
c0 = Cuboid(.15, .6, .15, T)
squeeze(bb, bb, bot, .1, .5)
reflect(X)
c1 = Cuboid(.5, .05, .1, T)
attach(c0, 0, .5, .5, 1, .3, .5)
translate(Y, 2, .4)

bb = Cuboid(.5, .8, .1, T)
c0 = Cuboid(.1, .8, .1, T)
squeeze(bb, bb, bot, .06, .5)
reflect(X)
c1 = Cuboid(.35, .1, .05, T)
attach(c0, 0, .5, .5, 1, .2, .5)
translate(Y, 1, .6)

bb = Cuboid(.8, .6, .15, T)
c0 = Cuboid(.15, .6, .15, T)
squeeze(bb, bb, bot, .1, .5)
reflect(X)
c1 = Cuboid(.5, .05, .1, T)
attach(c0, 0, .5, .5, 1, .3, .5)
translate(Y, 2, .4)

def macro_1(
bb, fv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot,
fv_0 * .6, .5

)
reflect(X)

def macro_2(
bb, fv_0, fv_1

):
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, T

)

def macro_3(
fv_0, fv_1,
dv_0, dv_1

):
attach(
dv_0, 0, .5, .5,
1, fv_0, 0.5

)
translate(
dv_1, fv_1,
1- 2 * fv_0

)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def abs_prog(
bb, fv_0, fv_1, fv_2, fv_3, fv_4, dv_0

):
c0 = Cuboid(fv_0,bb_h,fv_0,T)
squeeze(bb, bb, bot, fv_0 * .6, .5)
reflect(X)
c1 = Cuboid(fv_1, bb_h * .1, fv_2,T)
attach(c0, 0, .5, .5, 1, fv_3, .5)
translate(dv_0, fv_4, 1 - 2 * fv_3)

def macro_1_gen_2(
bb, fv_0, fv_1, dv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, dv_0,
fv_0 * .6, fv_1

)
reflect(X)

def macro_1_gen_1(
bb, fv_0, fv_1

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot,
fv_0 * .6, fv_1

)
reflect(X)

def macro_1(
bb, fv_0

):
c0 = Cuboid(
fv_0, bb_h, fv_0, T

)
squeeze(
bb, bb, bot,
fv_0 * .6, .5

)
reflect(X)

def macro_2_gen_1(
bb, fv_0, fv_1, bv_0

):
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, bv_0

)

def macro_2(
bb, fv_0, fv_1

):
c0 = Cuboid(
fv_0, bb_h * .1,
fv_1, T

) ...

bb = Cuboid(.7, .8, .1, T)
c0 = Cuboid(.7, .3, .08, T)
c1 = Cuboid(.05, .7, .06, T)
c2 = Cuboid(.6, .05, .05, T)
attach(c1,bb,.5,1,.5,.1, .95, .6)
attach(c1,bb,.5,0,.5, .1, 0, .25)
attach(c2,bb,.5, 1, .5, .5, 1, .2)
attach(c0,c1,.1,.1, .1, 1, .5, .5)
reflect(c1, X)

Program

{1, 3, 5, 6, 9, 2, 8, 4, 7}
{1, 3, 6, 5, 9, 2, 8, 4, 7}
{1, 3, 5, 6, 9, 4, 7, 2, 8}
. . .

Orders

Figure 7.4: ShapeMOD’s proposal phase, which proposes candidate macros to be added into L. Each round
of this phase begins by identifying a cluster of structurally-identical programs with similar parameter values
within the input dataset (Section 7.2.1). It then finds a single abstracted program which subsumes most or all
of the programs in this cluster (Section 7.2.2); here, gray parameter values are abstracted as constants, blue
ones as continuous free variables, and pink ones as discrete free variables. Subsequences of lines in this
abstracted program (shown in green) are isolated to form potential macros which could be used to re-write
the program (Section 7.2.3). Finally, this set of candidate macros is expanded by including generalizations of
the initial set (Section 7.2.4); purple lines show lines that are generalized. Best viewed on a high-resolution
screen.

to recreate zo while minimizing f . We implement this procedure with a beam search that iteratively builds

partial programs in the beam by adding calls to functions from L whose expansions cover lines in zo. For a

function expansion to cover a sequence of program lines, the expansion must match those lines on command

type, the values of the discrete / Boolean parameters must match exactly, and the continuous parameters must

differ by an amount no greater than ϵ. We set ϵ = 0.05, finding that larger values lead to abstracted programs

with degenerate geometry. We rank partial programs in the beam by their objective value, normalized by the

number of lines in zo it is covering. This search runs until all programs in the beam have no more lines in

zo to cover; the program with lowest objective value is returned as the best program z∗. In the case of ties,

we choose the program with the most canonical ordering, as explained in the supplemental material. In our

implementation, we use a beam width of 10. Other search strategies could be applied here; we chose beam

search as it was relatively fast and found good solutions.

7.2 Proposal Phase

The goal of ShapeMOD’s proposal phase is to construct a set of candidate macros which might be useful

for compressing the dataset of shape programs D. A schematic overview of the proposal phase is shown in

90

Figure 7.4. In each proposal round, the algorithm first forms a cluster of similar programs sampled from D

(Section 7.2.1). Then, using the functions of L, it finds an abstracted program that explains the majority of

examples in the cluster while trying to remove free parameters whenever possible (Section 7.2.2). It converts

this abstracted program into a set of candidate macros (Section 7.2.3) and finds potential generalizations of

these macros (Section 7.2.4). This process is repeated for num proposal steps (we use 10000) to build up a

large collection of candidate macros.

7.2.1 Form a Program Cluster

The goal of the cluster formation step is to find a set of programs from D that can be represented by a single

abstracted program, i.e. a program with free variables. The blue box in Fig. 7.4 illustrates the procedure.

The algorithm first randomly samples a program z from D and then randomly samples an order o from

the possible valid orderings in Oz (Algorithm 2, line 4). It then finds the set of programs Pmatches from

D that structurally match z and also have o as one of their valid orderings in (Algorithm 2, line 5). In

ShapeAssembly, two programs structurally match if they use the same set of commands which refer to the

same cuboid IDs (though their other parameters may vary).

For each program in Pmatches, we record the norm n of the difference of its continuous parameters com-

pared with those in z. We then form a probability distribution over Pmatches, where each program is given

a weight proportional to 1 − n
n∗ , where n∗ was the maximum observed n. Taking the parameter distance

between programs into account results in clusters that are more semantically consistent, which increases the

likelihood the abstracted program we produce can discover meaningful parametric relationships. Finally, we

sample k programs from Pmatches using this probability distribution in order to form Pcluster (line 6). We use

k = 20 in our implementation.

7.2.2 Find Abstracted Program for Cluster

Given the cluster of programs Pcluster identified in the previous section, the next step is to use the library

of functions L to find the most compact program (fewest free parameters) that can represent the majority

of programs in Pcluster (Algorithm 2, line 7). By construction, the sequence of functions and cuboid IDs

is the same across all programs in Pcluster. To build up the abstracted program zabs, the algorithm uses a

similar procedure to the best-program-finding routine in Section 7.1.4: covering each line in the cluster by

choosing functions from L. However, instead of using a beam search to find the sequence of functions, here

91

def...

def...

def...

...

Candidate
macros

def top_macro(
bb, fv_0, fv_1, fv_2

):
c0 = Cuboid(bb_w, fv_0, bb_d, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(

fv_1, bb_h – fv_0, fv_2, T
)
squeeze(bb, c0, bot, 0.5, 0.5)

Pop top-ranked
macro (5.1)

Cuboid(…)
attach(…)
squeeze(...)
reflect(…)
translate(…)
top_macro(…)

Add to macro library
ℒ! = ℒ + {M}

Find best programs given
updated library (3.4)

Evaluate new programs under
objective function (5.2)

𝑓 𝒟, ℒ! < 𝑓 𝒟, ℒ
?

YE
S

NO

Keep macro
return ℒ!

Discard macro
return ℒ

def table_root_2():
bb = Cuboid(1.8, .7, .75, T)
c0 = Cuboid(1.8, .08, .75, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.3, .62, .53, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.08, 1.3, .53)

def table_root_1():
bb = Cuboid(1.2, 1, .35, T)
c0 = Cuboid(1.2, .04, .35, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.1, .96, .3, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.04, 1.1, .3)

def table_root_3():
bb = Cuboid(1.4, .5, 1.4, T)
c0 = Cuboid(1.4, .05, .4, T)
attach(bb, .5, 1, .5, .5, 1, .5)
c1 = Cuboid(1.2, .45, 1.2, T)
squeeze(bb, c0, bot, 0.5, 0.5)
top_macro(bb, 0.05, 1.2, 1.2)

Figure 7.5: ShapeMOD’s integration phase, which chooses which candidate macros to add to the DSL library
L. On each round of this phase, the algorithm heuristically ranks candidate macros based on which are likely
to improve program compression, adds the top-ranked macro to the library, then finds the best refactored
program for each program in the input datasetD under this new library. If this refactoring lowers the objective
value f(D,L), then the macro is kept in the library; otherwise, it is discarded.

we employ a greedy strategy. We create a preference ordering over the functions of L based on how many

free parameters each function constrains (weighted by their respective λτ weights). Then, whenever we need

to pick a function, we step through this ordering, until we find a function that is able to match the parameters

of at least p = 70% of the next lines from Pcluster.

For each function added to the abstracted program, we iterate through its parameter slots to see if we

can remove more degrees of freedom. For discrete parameters, a constant can be used, a previously defined

parameter can be used, or a new free parameter can be declared. For continuous parameters, a constant can be

used, an expression over previously defined parameters can be used, or a new free parameter can be declared.

The details of this logic can be found in the supplemental material (Section B.1). In all cases, the value chosen

for each parameter must still be valid for at least p percent of programs in Pcluster. This process iterates until

there are no remaining uncovered lines in the programs of Pcluster. At this point, zabs is complete. The green

box in Fig. 7.4 shows an example of finding a single abstracted program for two base programs.

7.2.3 Proposing Candidate Macros

The abstracted program zabs found in the previous step represents multiple shape programs from our dataset

(via leaving some of its parameters as free parameters). Thus, its function body likely contains re-usable

shape programming patterns—in other words, it is a good source of potential macrosM (Algorithm 2, line

8). In this next step, the algorithm iterates through the lines of zabs and finds all line sequences that could

be turned into a valid macro (yellow box in Fig. 7.4). A valid macro M is a sequence of program lines

that simplifies the program, i.e. it must remove some degree of freedom from the program lines it aims to

cover. For both computational efficiency, and to encourage the creation of more meaningful macros, we

impose some additional restrictions on the definition of a valid macro; see the supplemental material (Section

92

B.2). For each created candidate macro, we record what cluster it was found in and the lines of the cluster it

covered, in order to calculate frequency statistics used later in the integration phase (Section 7.3).

7.2.4 Generalizing Macros

As zabs is designed to maximally condense all of the programs in Pcluster, the generated candidate macro

operatorsM may be somewhat overly-specific to the subset of programs in Pcluster. Furthermore, M may

also contain some very similar macros that are treated as distinct. To get around these issues, the proposal

phase concludes with a generalization step, where for each discovered candidate macro, we also find all

generalizing macros that are within n program edits (Algorithm 2, line 9). We set n = 2 due to running time

constraints; in principle, higher values of n will lead to better solutions. For a given macro M , another macro

M ′ is defined to be generalizing if for every parameterization of M , M ′could be parameterized to produce

the same output. From this generalization procedure we form a graph where each node is a macro and edges

between two nodes indicates a generalizing relationship (orange box in Fig. 7.4). This graph is used to update

frequency statistics (in that generalizing macros also cover all lines covered by macros they generalize) which

influences the candidate macro ranking logic used by the integration phase (Section 7.3).

7.3 Integration phase

Given candidate macros from the proposal phase, the integration phase chooses which macros to add to the

library L in order to minimize its objective function f . Figure 7.5 shows an overview. Solving such a subset

selection problem optimally is intractable, so this phase instead employees a greedy approximation. It iterates

through the candidate macro operators, on each iteration taking the highest ranked macro based on expected

improvement to f (Section 7.3.1). It then decides whether to add the macro into the library L by evaluating

its effect on the objective function (Section 7.3.2).

7.3.1 Ranking Candidate Macros

The proposal phase can generate tens of thousands of candidate macros; it is computationally intractable

to consider all of them. To prioritize which candidate macros to consider within a finite time budget, the

algorithm employs a heuristic ranking scheme (Algorithm 2, line 13). The rank of a candidate macro M is

based on an estimate of how much using M would improve the score of the objective function. The ranking

scheme first calculates the gain of the macro over the functions already in L. The gain g of a macro M is

93

the weighted sum of the number of free parameters (weighted by their respective λτ weights) that would be

removed each time M were used in a program instead of the lowest-cost sequence of functions currently in

L that is equivalent to or generalizes M . Then our ranking scheme calculates the percentage of shapes p that

produced M as a candidate macro during the proposal phase. The ranking score of M is then simply p · g.

This score is a simple estimate of the effect on the actual objective value f(D,L+{M}) that does not require

the expensive step of finding the best programs for the whole dataset.

7.3.2 Evaluating & Selecting Candidate Macros

Given a candidate macro operator M , the next step is to see if adding it to L would actually improve the value

of the objective function f . For this, we define a function optimize which takes in f , the current library L,

a modified version of the library L+ , and a subset of programs from the dataset D̃ ⊂ D. It returns whichever

version of the library has the lower objective value, i.e. argmin(f(D̃,L+) < f(D̃,L)). Using a subsample

D̃ of the full dataset reduces computation time, i.e. we are using an unbiased estimator of the true objective

value for the dataset.

The algorithm first calls optimize with a modified library where M is added to L (line 14). If this

leads to a library change, then it continues to the next candidate macro operator (lines 15-16). If L remains

unchanged, it checks if any of the functions currently in L are used significantly less in finding the best

programs over D̃ when the modified library version is used (line 17). If the set of functions in L whose

frequency decreased significantly, Minfreq, is not empty, then it runs optimize once again with a modified

version of the library that includes M but removes all elements of Minfreq (lines 18-20). This step allows the

algorithm to avoid a local minima where M would not be added to L, even if it could ultimately improve f ,

because similar macros to M had been added to L earlier. If this step changes the library, then L has been

updated to include M , but it does not include any of the functions in Minfreq. Thus, the algorithm attempts

to add each M ∈ Minfreq back into L, by once again calling optimize and keeping the library version

with the better score (lines 23-24). Finally, after evaluating num integration steps=20 macros, the algorithm

checks if f can be improved by removing any of the functions in L (lines 25-26). This can be beneficial, for

instance, when a macro discovered in an early round becomes a sub-routine of a macro discovered in a later

round, and therefore appears less frequently (or not at all) in P∗(D,L).

94

7.3.3 Removing Bad Program Orders

When L is composed of only original library functions, any valid ordering in Oz for z will lead to a program

that produces the same score under f . As macros are added into L, using different line orderings in Oz may

result in different scores under f (as some line orders will prohibit certain macros from being applied). As

such, after each integration round, the algorithm removes any orders from Oz that lead to objective function

scores that are significantly worse (using a threshold of τo = 1) then the score produced by the order, o∗;

the order that leads to the best objective function score for z (Algorithm 2, line 27). The following proposal

rounds will then only be able to use orderings that have not been filtered out of D. Keeping the orderings

that perform best during the preceding integration phase produces more accurate heuristic rankings of macros

from the proposal phase (Section 7.3.1). We found this encouraged the discovery of complex macros, e.g.

without this step, the ‘four leg base’ macro was not discovered.

7.4 Results and Evaluation

We experimentally evaluate ShapeMOD’s effectiveness at compressing shape programs and at supporting

downstream tasks. Our experiments use three categories of manufactured shapes (Chairs, Tables, Storage)

from CAD models in PartNet. We use the same data parsing procedure as described in Chapter 3 to produce

3836 Chair programs, 6536 Table programs, and 1551 Storage programs. In Section 7.4.1, we examine

the properties of ShapeMOD’s discovered macros on dataset compression. In Section 7.4.2, we show that

using these macros improves the performance of generative models of 3D shape structures. In Section 7.4.3,

we demonstrate that macros aid in visual program induction tasks. And finally, in Section 7.4.4, we report

the results of a user study comparing performance on goal-directed shape editing tasks with and without

discovered macros.

7.4.1 Discovered Macros

For each shape category, we run ShapeMOD until fstops decreasing (5 rounds in all cases) to discover a

small set of macro operators. Instead of applying ShapeMOD directly on hierarchical programs, we form

D by decomposing each ShapeAssembly program into a collection of non-hierarchical sub-programs (e.g.,

a single Chair might contribute one program for its back sub-part and one program for its base sub-part). We

implement ShapeMOD in Python and run the algorithm on a computer with an Intel i9-9900K CPU, which

95

Table 7.1: We measure how well different libraries can compress a dataset of shape programs (metric details
in Section 7.4.1). For all compression metrics, lower values are better, as our goal is to find a small collection
of functions that remove many degrees of freedom from the underlying shape programs. ShapeMOD operates
by attempting to minimize f , and we show that it does in fact improve f compared to the No Macros version.

Category Method f |L| fn(P∗) d(P∗) f(P∗) b(P∗)

Chair
No Macros 411 5 29.8 17.8 84.4 11.3
Baseline Macros 312 36 21.7 7.0 80.2 4.2
ShapeMOD 260 17 21.0 6.4 58.1 8.6

Table
No Macros 356 5 25.6 16.3 70.7 9.6
Baseline Macros 263 36 18.0 6.4 65.8 3.2
ShapeMOD 214 15 17.4 5.1 48.7 5.6

Storage
No Macros 453 5 30.4 21.6 92.2 11.7
Baseline Macros 314 48 18.4 7.6 88.45 2.65
ShapeMOD 283 17 21.1 7.6 68.9 4.0

def Table_1(1.1, 1.1, 1.1):
cube0 = Cuboid(1.1, .05, 1.1, T)
attach(bbox, .5, 1, .5, .5, .0, .5)
Prog_1 = Cuboid(.72, 1.05, .72, T)
squeeze(bbox, cube0, bot, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(0.12, 1.05, .69, T)
squeeze(bbox, bbox, bot, .08, .48)
reflect(X)
cube1 = Cuboid(.69, .18, .04, T)
attach(bbox, .5, 1, .5, .52, 0, .02)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

def Table_1(1.1, 1.1, 1.1):
cube0, Prog_1 = macro_1(.05, .72, .72, T)

def Prog_1(bbox):
Prog_2 = macro_18(.12, .69, .08, .48, X)
cube1 = macro_17(.69, .18, .04, .52, .02)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…def Table_1(2.0, 0.8, 1.2):

cube0 = Cuboid(1.1, .2, 1.1, T)
attach(bbox, .5, 1, .5, .5, .0, .5)
Prog_1 = Cuboid(1.9, 1.05, 1.2, T)
squeeze(bbox, cube0, bot, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(0.12, 1.05, .69, T)
squeeze(bbox, bbox, bot, .08, .48)
reflect(X)
cube1 = Cuboid(1.65, .18, .04, T)
attach(bbox, .5, 1, .5, .52, 0, .25)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

def Table_1(2.0, 0.8, 1.2):
cube0, Prog_1 = macro_1(.2, 1.9, 1.2, T)

def Prog_1(bbox):
Prog_2 = macro_18(.12, .69, .08, .48, X)
cube1 = macro_17(1.65, .18, .04, .52, .25)
attach(Prog_2, 0, .5, .5, .25, .91, .03)
reflect(Z)

def Prog_2(bbox):
…

EDIT

EDIT

ShapeMOD
Def Table_2(1.58, 0.9, 1):
cube0, Prog_1 = macro_12(.01, 1.4, .9, .86, .5)
def Prog_1(bbox):
Prog_2, Prog_3 = macro_20(.1, .1, .05)
cube2 = macro_9(1.4, .04, .86, Prog_2, .05, .1, .5, .1, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

Def Table_2(1.58, 0.9, 1):
cube0 = Cuboid(1.58, .01, 1, T)
attach(bbox, .5, 1, .5, .5, 0, .5)
Prog_1 = Cuboid(1.4, .9, .86, T)
attach(bbox, .5, 0, .5, .5, 1, .5)
attach(cube0, .5, 1, .5, .5, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .05, 0.1)
reflect(X)
Prog_3 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .05, .9)
reflect(X)
cube2 = Cuboid(1.4, .04, .86, T)
attach(Prog_2, .05, .5, .1, .5, .1, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

Def Table_2(0.8, 1.2, 1.6):
cube0 = Cuboid(1.58, .01, 1, T)
attach(bbox, .5, 1, .5, .5, 0, .5)
Prog_1 = Cuboid(1.4, .9, 1.6, T)
attach(bbox, .5, 0, .5, .5, 1, .5)
attach(cube0, .5, 1, .5, .5, .5, .5)

def Prog_1(bbox):
Prog_2 = Cuboid(.25, .89, .1, T)
squeeze(bbox, bbox, bot, .05, .15)
reflect(X)
Prog_3 = Cuboid(.1, .89, .1, T)
squeeze(bbox, bbox, bot, .1, .9)
reflect(X)
cube2 = Cuboid(.45, .04, 1.4, T)
attach(Prog_2, .05, .5, .1, .9, .2, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

EDIT

Def Table_2(0.8, 1.2, 1.6):
cube0, Prog_1 = macro_12(.01, 1.4, .9, 1.6, .5)
def Prog_1(bbox):
Prog_2, Prog_3 = macro_20(.25, .15, .1)
cube2 = macro_9(.45, .04, 1.4, Prog_2, .05, .1, .9, .2, .5)
translate(Y, 1, 0.68)

def Prog_2(bbox):
…

EDIT

ShapeMOD

def macro_18(
bb, fv_0, fv_1, fv_2, fv_3, dv_0

):
c0 = Cuboid(fv_0, bb_h, fv_1, T)
squeeze(bb, bb, bot, fv_2, fv_3)
reflect(dv_0)

def macro_20(
bb, fv_0, fv_1, fv_2

):
macro_18(
bb, fv_0, fv_0, fv_0 * .4, fv_1, X)
macro_18(
bb, fv_0, fv_0, fv_2, 1 – fv_1, X)

def macro_1(
bb, fv_0, fv_1, fv_2, bv_1

):
c0 = Cuboid(bb_w, fv_0, bb_d, T)
attach(bb, .5, 1, .5, .5, 0, .5)
c1 = Cuboid(fv_1, bb_h – fv_0, fv_2, bv_1)
squeeze(bb, c0, bot, .5, .5)

Library of Discovered Macros

…

Figure 7.6: We show some macros (top-middle) that ShapeMOD discovered when run on the Table dataset,
and program refactors that use these macros to significantly compress the number of exposed free parame-
ters (ShapeMOD arrows from outside to inside). We show program edits (down arrows) of corresponding
parameters in both programs with macros (green) and without macros (red). The discovered macros capture
parametric relationships that better preserve shape plausibility under manipulation; for example, all chair legs
remain the same size in the third column (macros), while the shape in the fourth column (no macros) becomes
disconnected and physically implausible .

takes 5 hours for Chairs, 12 hours for Storage, and 19 hours for Tables.

Fig. 7.6 shows examples of some of the macros discovered for Tables; see the supplemental material for

complete discovered libraries for all shape categories (Section F). These macros are used by multiple shape

programs in our dataset, explaining common patterns and shortening programs that use them. They also

better facilitate editing: making edits to a few parameters in macro-refactored programs tends to produce

more plausible shape variations than edits to the corresponding parameters of the macro-free program. For

instance, discovered macro 1 introduces a relationship that the heights of the table base and the table top

96

should sum to the height of the table bounding box. Without this macro, edits to base ShapeAssembly

functions can easily cause the table top to overlap and intersect parts of the table base in an implausible

manner (left side of figure).

We compare the library of functions generated by our ShapeMOD procedure to two baselines:

1. No Macros: The base library of functions from ShapeAssembly that is used to initialize our ShapeMOD

procedure.

2. Baseline Macros: A naive single-pass approach for macro discovery that creates macros out of the

most common structural sequences present in the dataset and replaces parameters with constants when-

ever a high percentage of its parameterizations share similar values. See Appendix E.2 for details.

Table 7.1 compares these baselines to ShapeMOD’s discovered language on the task of compressing a dataset

of 3D Shape programs. We consider the following metrics:

• Value of ShapeMOD’s objective function (f)

• Number of functions in library (|L|)

• Average number of lines in the best programs (fn(P∗))

• Average number of discrete parameters in the best programs (d(P∗)

• Average number of continuous parameters in the best programs (f(P∗))

• Average number of Boolean parameters in the best programs (b(P∗))

By adding only a handful of macros to the language, ShapeMOD significantly compresses programs in terms

of number of lines and number of free parameters. For instance, the 12 Chair macros discovered remove

30% of program lines, 64% of the discrete parameters, and 30% of the continuous parameters needed to

represent the same dataset without macros. In total, these macro functions are able to decrease the value of

the objective function we aim to minimize by 37%. Moreover, ShapeMOD is able to compress programs to

a greater degree than the baseline approach, especially for continuous parameters, while using half as many

(or fewer) new macros.

The examples shown in Fig. 7.6 suggest that programs refactored using ShapeMOD macros produce more

plausible shapes under variations of their free parameters. We ran an experiment to quantify this behavior.

Given a set of ground-truth Chair programs, we run ShapeMOD and our baseline macros procedure on them

to create a set of macro-refactored programs. We then perturb the free parameters of both macro refactored

and no macro programs by increasingly large perturbations, and we check how distributionally similar the

outputs of the perturbed programs are to a held-out validation set of Chair shapes using Frechet Distance [73]

97

Figure 7.7: We measure distributional similarity (Frechet Distance [73]) between a set of reference chairs
and a set of chair programs subjected to perturbations. We simulate perturbations by adding noise from a
normal distribution (x-axis is standard deviation) to continuous parameters in the programs. Programs with
ShapeMOD macros retain more similarity under larger perturbations, suggesting the macros remove degrees
of freedom that permit shapes to move outside of their original distribution.

Geom NN

ShapeMOD

Prog NN

Figure 7.8: Some example outputs of generative models trained to produce ShapeAssembly programs ex-
pressed with macros discovered by ShapeMOD, along with their training set nearest neighbors (NN) by geo-
metric and program similarity. Each cuboid represents a part proxy bounding volume. Structures are formed
through attaching parts to one another (red dots). The generative models produce a variety of plausible struc-
tures without memorizing their training data. All corresponding programs can be found in supplemental
material.

in the feature space of a PointNet classifier pre-trained on ShapeNet [162, 16]. Figure 7.7 plots this distance

against the magnitude of parameter perturbation. Frechet Distance increases more slowly for programs that

use macros, and increases the slowest for macros found using ShapeMOD. This indicates that the modes of

variation in programs expressed with our method’s macros are better at producing plausible output shapes

that stay within the distribution that the collection of input programs originally came from. In Section 7.4.4,

98

we conduct a shape-editing user study to further validate this behavior.

7.4.2 Generating 3D Shapes

We are interested in how well ShapeMOD’s discovered macros support the downstream task of generative

shape modeling. Our hypothesis is that using macros will restrict the output space of a program-generating

model, making it harder to output ‘garbage’ shapes. To test this hypothesis, we train generative models on

programs with and without ShapeMOD macros.

For our generative model, we use the variational autoencoder architecture from Chapter 3, modified

slightly to support programs that use an arbitrary number of functions as opposed to a fixed, predefined

set (see Appendix E.3 for details). We train each model for 5000 epochs with a learning rate of 2e−4 and a

batch size of 64. At the end of training, we choose the model from whichever training epoch produced the

lowest Frechet Distance [73] to the training set; we report all other metrics on a held out set. Training was

done on a computer with a GeForce RTX 2080 Ti GPU with an Intel i9-9900K CPU, consumed 2GB of GPU

memory, and takes approximately 14 hours for Chairs, 22 hours for Tables, and 8 hours for Storage.

Fig. 7.8 shows some examples of novel shapes synthesized by these generative models, as well as their

nearest neighbor from the training set according to both program similarity and geometric similarity. The

generative models are capable of producing valid, plausible output shapes, and they do not simply memorize

their training data.

We quantitatively assess the quality of the generative models’ output shapes using the following metrics

(additional details in supplemental Section C):

• Rootedness ⇑ (% rooted): percentage of shapes whose leaf parts all have a path to the ground.

• Stability ⇑ (% stable): percentage of shapes which remain upright when subjected to a small vertical

drop.

• Realism ⇑ (% fool): percentage of test set shapes classified as “generated” by a PointNet [162] trained

to distinguish between generated shapes and training set shapes.

• Frechet Distance ⇓ (FD): distributional similarity between generated shapes and training set shapes

in the feature space of a pre-trained PointNet [73].

Table 7.2 shows the results of this experiment. Metrics related to realism/plausibility (% fool, FD) are

always best for programs that use ShapeMOD macros as opposed to other language variants. Complexity

(# Parts) and validity (% rooted, % stable) metrics also generally improve. The simple baseline macros are

99

Table 7.2: Comparing the quality of programs sampled from a learned generative model. Generative models
trained on programs with ShapeMOD macros tend to produce more visually plausible, physically valid, and
complex shapes than those trained on programs expressed with other libraries.

Category Method % fool ⇑ FD ⇓ # Parts ⇑ % rooted ⇑ % stable ⇑

Chair
No Macros 21.2 17.8 7.6 93.9 82.3
Baseline Macros 16.9 24.1 8.5 89.8 74.2
ShapeMOD 25.6 16.7 8.6 92.7 79.5

Table
No Macros 27.7 26.0 8.0 88.8 76.1
Baseline Macros 11.5 38.1 7.0 90.2 79.6
ShapeMOD 29.2 23.2 7.8 93.2 84.3

Storage
No Macros 4.9 70.0 6.0 92.4 85.5
Baseline Macros 5.5 78.9 7.6 86.2 78.3
ShapeMOD 11.1 38.1 7.7 95.1 90.5

Point Cloud

No Macros

ShapeMOD

Figure 7.9: Example visual program induction results from our point cloud → program inference experi-
ment. ShapeMOD macros are especially helpful for the heterogeneous Storage category. All corresponding
programs can be found in the supplemental material.

considerably worse; worse, in fact, than using no macros at all. We provide some qualitative comparisons of

generated outputs from ShapeMOD vs No Macros in Appendix E.4.

7.4.3 Inferring 3D Shape Structures

Another downstream task is visual program induction: inferring a shape program from unstructured input

geometry. Here, we consider inferring ShapeAssembly programs from a point cloud. As with generative

modeling, our hypothesis is that macros will regularize this problem, making it harder to output invalid

shapes.

We train the program inference networks end-to-end in an encoder-decoder paradigm. The encoder uses

100

Table 7.3: Quantitative results from our visual program induction experiment, where we train encoder-
decoder models that learn to infer ShapeAssembly programs from point clouds. ShapeMOD macros reg-
ularize the output program space, leading to significant and consistent improvement in both reconstruction
accuracy and physical validity. Note: Chamfer Distance (CD) values are multiplied by 1000 for clarity and
we use a F-Score threshold of 0.03 [108].

Category Method CD ⇓ F-Score ⇑ % rooted ⇑ % stable ⇑

Chair
No Macros 44.2 54.8 93.7 83.6
ShapeMOD 41.7 56.1 96.9 88.0

Table
No Macros 41.1 64.0 92.8 78.2
ShapeMOD 36.7 68.7 95.2 88.5

Storage
No Macros 56.5 41.1 95.0 87.7
ShapeMOD 47.0 53.0 97.6 92.6

a PointNet++ architecture to embed a point cloud sampled from dense surface geometry into a latent space.

The decoder is identical the one used for generative modeling, it converts a point in this latent space into a

hierarchical shape program. We create a 80/10/10 training/validation/test set split for all categories. Each

network is trained for 2000 epochs with a learning rate of 2e-4 and a batch size of 32. We report metrics on

test set shapes, and choose the model that reported the best Chamfer distance on the validation set.

Table 7.3 shows the results of this experiment. As with generative modeling, using ShapeMOD macros

results in significantly better performance. Using ShapeMOD macros leads to better reconstruction accuracy,

in terms of Chamfer distance and F-score, for all categories (average relative improvement for both is 11%).

Moreover, the programs that are inferred with macros also always result in shapes that are more physically

valid in terms of stability and rootedness. Fig. 7.9 shows some example input point clouds and the shapes

produced by their inferred programs. Macros help considerably, especially for Storage, which is the most

structurally- and geometrically-heterogeneous category and thus most likely to cause structured prediction

models to output garbage.

7.4.4 Interactive Shape Editing

Our final downstream task is interactive shape editing. We hypothesize that programs with macros will

support easier, more efficient shape editing. To test this hypothesis, we built an interactive ShapeAssembly

editor and conducted a user study with it.

Editing interface We designed an interactive editing interface tailored to the goal-directed editing task of

modifying a ShapeAssembly program such that its output shape matches a target output shape as closely

101

Figure 7.10: A screenshot of our editing interface. The key elements are: (1) A view of the ShapeAssembly
program’s text. (2) Contextual sliders (enlarged in the figure) that allow the user to edit program parameters.
(3) A view of the current program’s output. Note the optional wireframe of the target shape and the ability to
highlight correspondences between cuboids in the text and the 3D viewer (blue highlights shown). (4) The
target shape.

as possible. Fig. 7.10 shows our interactive editing interface. The left panel shows the text of the current

ShapeAssembly program. The top-right panel shows the current output shape produced by this program; the

bottom-right panel shows the target shape. The cameras of the two shape view panels are synchronized, such

that if a user moves the viewpoint of one, the other one follows. The user also has the option of toggling a

wireframe display of the target shape overlaid on the current output shape, which can assist with making fine-

tuning edits. Finally, in this interface, the text of the program is frozen: users are only allowed to manipulate

the continuous programs parameters via contextual slider widgets that appear when a parameter is clicked.

See the supplemental video for a demonstration of the interface.

Experiment design Our study asked participants to perform a series of goal-directed editing tasks. To

ensure that it was possible to complete these tasks, we selected each target shape by finding a program in our

dataset that was identical to the input program up to continuous parameters. We recruited 38 participants, all

of whom were university students with some programming background. Participants were randomly divided

into one of two conditions: editing programs with ShapeMOD macros or programs without them. Participants

were not told the meaning of their assigned condition. First, each participant was shown a short tutorial which

102

Figure 7.11: Top row: the initial program output shape (gray) and target shape (yellow) for each task in our
goal-directed editing study. Bottom row: plots of how quickly participants were able to edit a program’s
parameters to match the target shape, with 95% confidence intervals shown. The x axis is time elapsed in
minutes, while the y axis is the mean of the running minimum of each participant’s corner distance to the
target shape. In general, participants using ShapeMOD macros more quickly converged to the target shape
and achieved a closer fit. To allow users to take breaks between tasks, time starts when the user makes their
first edit for each task .

explained the features of ShapeAssembly and allowed them to become familiar with the editing interface.

Then, participants completed six editing tasks (two for each of Chair, Table, and Storage). Participants were

given 10 minutes to complete each task. After completing these tasks, participants completed an exit survey

which asked them to rate the ease of each task (1-5, with 5 being easiest) as well as to provide qualitative

feedback about their experience.

Results We first ask the question: how long did it take participants to edit the program to produce a close

match to the target shape? Fig. 7.11 plots the running lowest corner distance of the program output to the

target shape as a function of task time elapsed, for each of the six study tasks, averaged across participants

in each condition. For all tasks, participants using ShapeMOD macros more quickly converged to the target

shape.

We also examined the participants’ responses to survey questions. Fig. 7.12 shows the ease rating given

to each task, averaged across participants in each condition. For most tasks, participants using ShapeMOD

macros rated the task as slightly easier to complete.

7.4.5 Cross-category Macro Discovery

We also wondered: can one discover useful macros from a dataset consisting of multiple categories of shapes?

To answer this question, we ran the ShapeMOD algorithm on the union of our Chair, Table, and Storage

103

Figure 7.12: Participants in our user study rated the ease of completing each task; here, we plot each task’s
average difficult rating for each condition (5 = very easy, 1 = very difficult) with 95% confidence intervals
shown. Participants using ShapeMOD macros generally rated tasks as easier to complete.

datasets, and report full quantitative results in the supplemental material (Section E). Interestingly, the library

of functions discovered across multiple categories led to better program compression statistics, but slightly

degraded performance on novel shape generation and program inference tasks, compared with libraries dis-

covered by category specific ShapeMOD runs. These experiments show that for downstream tasks it is

slightly better to run ShapeMOD on a per-category basis, although the marginal performance gap provides

evidence that the discovered macros can generalize.

7.5 Discussion

We presented ShapeMOD, an algorithm for discovering useful macros across a dataset of shape programs. To

our knowledge, ShapeMOD is the first method that discovers common abstractions from a set of imperative

programs with relationships between continuous variables. The macros ShapeMOD finds significantly com-

press the input programs, and these compressed programs lead to better results when used to train models for

generating shape structures and inferring shape programs from point clouds. We also conducted a user study

which showed that compressed programs allow for more efficient shape program editing.

Limitations The abstractions that ShapeMOD currently considers when proposing macros are relatively

simple refactorings of free parameters (e.g. into constants or expressions of other variables).

104

As mentioned in Section 7.3, ShapeMOD’s integration step is intractable to solve optimally. But even the

greedy approximation we use can be slow for large collections of shape programs. The major computational

bottleneck is the cost of finding optimal programs z∗(D,L).

While ShapeMOD finds macros that are useful across shape program collections, it does not give them

semantic names. In fact, some users in our editing study found the base ShapeAssembly functions easier to

work with than the macros for this reason (even though they edited more efficiently with the macros).

Chapter 8

Discovering Abstractions for Visual

Programs from Unstructured Primitives

ShapeCoder

Dataset of Shapes
Collections of

unstructured primitives !

Abstractions
!"#$%&'!"()*$&*$+*$,*$"-.
!"#$"%
&'(!"%)*+'*+,-*
&'(#%.*+)*+'/)012*+3-

-

!"#$%&'#$()*$&*$+*$,-.
456738%
9$:3%
;<'$#.%)*+)*+'-*
,*+.*+)=.
-*+&>
-

!"#$

!"#$"%
&'(!"%)*+,)-.,)//,.)01,)//2,
&'(#$%)*/,)+,3)14,)5/2,
&'(#%)*+,)*+,)+1,)502,
&'(##%)+0,)*/,)112,
2

!"#$"%
&'(!"%)*-,.,)-,.,)-2,
&'(#$%)*-,.,3)-,)-2,
&'(#%.)*-,)*-,.)*-,)--2,
&'(##%.,)*-,.2,
2

!"#$"%
&'(!"%)*1,)+-,3)0.,.)5/,)0.2,
&'(#$%)*1,)45,)+5,)562,
&'(#%.)/1,)*/,)6.,)/.2,
&'(!!%)*/,)4,)+-,)5,.)55,3)052,
2

!"#$"%
&'(!"%)*-,)+,)/6,.)/1,)/62,
&'(#$%)*1,)1+,)+0,)5-2,
&'(%%.)/1,)*12
2

Figure 8.1: ShapeCoder automatically discovers abstraction functions, and infers visual programs that use
these abstractions, to compactly explain an input dataset of shapes represented with unstructured primitives.
For example, the orange abstraction uses only five parameters to encode a distribution of 4-legged table bases
with adjoining horizontal support bars.

In Chapter 7, we demonstrated that not all visual programs are equally useful. Well-structured programs

that capture and constrain properties of the visual data they represent typically benefit downstream applica-

tions (e.g. editing, generation, analysis). On the other hand, badly written programs lose this advantage. For

instance, given an input visual scene composed of a collection of primitives, a visual program that simply

unions instantiated primitives together might achieve a perfect reconstruction, but would lose all of the afore-

mentioned benefits of the underlying representation. The functions a DSL contains influences the types of

programs it can represent, and access to a ‘good’ collection of functions is often a prerequisite for finding

105

106

well-structured programs. Abstraction functions that extract out common patterns of structural and paramet-

ric use for a particular domain, can significantly improve visual program quality, but these types of programs

(and their abstractions) are hard to obtain without expert manual design.

In this chapter, we present ShapeCoder, a method that is able to discover useful abstractions for visual

data under relaxed assumptions. ShapeCoder consumes a base DSL and a dataset of shapes represented as

collections of primitives without any additional annotations. It discovers a collection of abstraction functions

(a library) over the base DSL that is tailored to the input distribution. It uses the discovered library to find

programs with abstractions that explain the shapes from the dataset (Figure 8.1).

Our approach is inspired by, and improves upon, other abstraction discovery approaches, especially

DreamCoder [42] and ShapeMOD (Chapter 7). ShapeMOD can discover abstractions that extract out mean-

ingful relationships in terms of both parametric expressions and program structure. Yet, it does not solve

the problem completely. ShapeMOD is able to find these abstractions under fairly stringent input assump-

tions: it requires a collection of imperative programs as input, as its integration stage relies on enumerative

search over a limited, curated subset of possible program line-orderings. ShapeCoder shares the same goals

as ShapeMOD, but aims to discover useful abstractions while making much weaker assumptions: it does

not assume access to ground-truth programs, canonical line-orderings, or hierarchy decompositions. Instead

ShapeCoder takes in a dataset where each shape is expressed as an unordered set of primitives. Discovering

abstractions under these assumptions requires both developing logic to infer programs that explain the input

shapes, along with extending the abstraction phase so that it is able to reason over arbitrary reorderings of the

inferred programs. We solve the latter problem through the use of e-graphs and a conditional rewrite scheme.

We provide a more detailed discussion comparing ShapeCoder and DreamCoder in Section 8.6.1

We run ShapeCoder over multiple visual domains, and demonstrate that across all domains ShapeCoder

finds abstractions that dramatically simplify the input datasets by discovering meaningful parametric and

structural relationships. With respect to an objective function that tracks how well the input dataset has

been abstracted, we find that ShapeCoder significantly outperforms ShapeMOD (even when given access

to our wake phase) and DreamCoder (which fails to converge without a curriculum of tasks). In a series

of ablation experiments, we justify the design decisions of our method, and demonstrate the importance of

our conditional rewrite scheme and bottom-up recognition network. Finally, we investigate combining our

approach with methods that automatically convert 3D shapes into primitives in an unsupervised fashion,

allowing us to discover programs and abstraction functions directly from ‘in the wild’ 3D meshes [16].

In this setting, we observe ShapeCoder still discovers interesting, high-level abstractions, even over noisy,

107

1. Absn ← CandidateAbstractions.top_score()

2. L’ = { L + Absn }

3. P’ = { refactor(p, L’) for p in P }

4. If F(L’, P’) < F(L, P) : L, P = L’, P’

Library L

Dream Phase
(Fig 3)

Wake Phase
(Fig 3)

Proposal Phase
(Fig 4)Net P

Candidate
Abstractions

DataD

Refactor
(Fig 5)

Integration Phase

Sample

Train Infer
Programs

Optimize

Repeat
F

Objective

F F

F

Figure 8.2: Overview. ShapeCoder consumes an initial library L, an objective F , and a dataset of shapes D
(brown boxes). Each round of the algorithm iterates through a series of phases that progressively add abstrac-
tions into L to improve F . A dream phase trains a recognition network by sampling from L. A wake phase
infers programs for shapes in D. A proposal phase produces candidate abstractions. An integration phase
uses a refactor operation to decide when these abstractions should be added into L.

inconsistent primitive decompositions.

We provide code for our method at https://github.com/rkjones4/ShapeCoder .

8.1 Overview

ShapeCoder automatically discovers a library of abstraction functions tailored for an input dataset of shapes.

It takes the following as input: a library L describing a functional domain-specific language, a dataset of

shapes D, and an objective function F . Each d ∈ D is represented as a collection of unstructured primitives,

and we assume that there exists some program expansion of L, z, such that executing zwould recreate d.

ShapeCoder’s goal is to minimize F (Section 8.1.1), which expresses a trade-off between how well-

suited L is for D (program complexity) and how many abstractions functions have been added to L (library

complexity). We break this task into multiple steps that each tackle a tractable sub-problem. We depict the

distinct phases of ShapeCoder in Figure 8.2. The dream phase (Section 8.2.2) samples scenes from L to

train a program recognition network. The wake phase (Section 8.2.3) uses this network to infer programs P

that recreate shapes in D. The proposal phase (Section 8.3.1) consumes P as input, and generates candidate

abstraction functions. Finally, the integration phase (Section 8.3.2) considers proposed candidate abstractions

and finds modified versions of L to improve F , which can be passed in to a subsequent dream phase. Of note,

the integration phase uses a refactor function (Section 8.4) to find minimal cost equivalent programs under

different libraries in a tractable manner through use of e-graphs and a novel conditional rewriting scheme.

108

In the following sections, we walk-through these various stages, where examples in the text and figures

use programs from a toy 2D grammar for rectilinear shapes (Appendix F.1). Further implementation details

are provided in Appendix F.2.

8.1.1 Optimization Objective F

ShapeCoder’s objective function F takes in two arguments: a library L and a collection of programs from

L that correspond with a shape dataset D. F measures the trade-off between two competing terms: the

complexity of L and P .

The complexity of each z∈ P is computed according to Occam’s razor: all else equal, shorter programs

are better. We compute program length with a weighted sum of program tokens: if L has token types T (e.g.

booleans, floats, etc.), we allow users to specify a weight λ for each τ ∈ T. Further, ShapeCoder employs a

geometric error function, err, that compares the executed geometry of each z ∈ P against its corresponding

shape, d ∈ D. If err(z, d) returns a value above a user-defined threshold, F returns∞. Otherwise, the error

is added into F with weight λe.

Library complexity can be measured by tracking the number of functions that L contains. ShapeCoder

allows users to specify a function weighting scheme, ω. ω consumes a function f from L and returns a value

in the range (0, ∞). Lower ω values make it easier to add f into L. As an example, we find it useful to

increase the ω of f according to the number of input parameters f consumes, as this often indicates an overly

general pattern.

With this machinery, where τ (z) expresses the number of tokens in zthat have type τ , we can express

ShapeCoder’s objective as:

F(L,P) = 1

|P|

(∑
z∈P

(∑
τ∈T

λτ ∗ τ(z)

)
+ λe ∗ err(z, d)

)
+
∑
f∈L

ω(f) .

8.2 Inferring Visual Programs

While ShapeCoder consumes a shape dataset D as input, it doesn’t know what programs P from a given

library version L can best represent d ∈ D. To solve this problem, ShapeCoder uses a program recognition

network (Section 8.2.1), trained on randomly sampled programs from L (dream phase, Section 8.2.2), to infer

P that minimize F (wake phase, Section 8.2.3).

109

Dream Phase (Training) Wake Phase (Inference)

-4 → t0
-2 → t1
0 → t2
2 → t3
4 → t4
6 → t5

Absk(2,6,4)

Absk t3START t5

Absk t3 t5 t4

t3 t5 t0 t1 t5 t3 t2 t5 t3 t5 t4 t3

Token
MappingRect(2,6,-4,-2)

Rect(6,2,0,6)
Rect(2,6,4,2)

Net

Input Absa ()

Net

Absa(1, 2, 4)

Absb(4, 3)

Absa(1, 2, 4)

Absa(3, 4, 1)

Absb(4, 3)

Absb(5, 2)

Absb () Sample

Sample

Input
Scene

Target Expressions

Sample &
Combine

Library
Functions

Dreams

…

…
…

Union{ , }

Sample

Error Cost

…
Absa(1, 2, 4)

Absb(3, 4)

Absd(1, -2)

SymRef(Move(
Rect(1,1),-2,-2),AX)

Net

Net
Sample

…

p5 p6

Input

.01 1.1

.1

0 1.4

0 8.0

Prediction Absa(1, 2, 4) Absd(1, -2)

Recognition Network

X
Output

Expressions

Figure 8.3: Dream and Wake Phases. (Left) ShapeCoder’s recognition network is a Transformer decoder
that attends over tokenized input primitives and autoregressively predicts functions and parameterizations.
(Middle) The dream phase trains the recognition network by sampling expressions from library functions,
which are randomly combined together to form (input, target) training pairs. (Right) The wake phase uses
the recognition network to find programs that explain input shapes. In a series of iterative steps, it samples
expressions, chooses the expression that achieves the best cost, and removes covered primitives from the
input canvas, until the canvas is empty.

To simplify this search, our recognition network learns to infer partial solutions: expressions from L

that recreate a subset of input primitives. Found expressions are then combined together to form a complete

program that explains an input scene. This framing requires that L contains a combinator operation (e.g.

Union). To ensure that our search procedure never fails to find some solution, we assume access to an

analytical procedure for finding expressions in L that can recreate any primitive in d (e.g. any cuboid can be

represented with a scale, rotation, and translation sequence).

8.2.1 Recognition Network

We depict ShapeCoder’s recognition network on the left side of Figure 8.3. The recognition network con-

sumes a scene of geometric primitives as input, and aims to output an expression from L that corresponds

with a subset of the input primitives. We implement this network as a Transformer [209] decoder that au-

toregressively predicts a sequence of tokens from L. The network is conditioned (through causal-masking)

on an encoding of the input primitives: if M primitives are each represented with K parameters, the network

attends over K ×M conditioning tokens (M = 3 and K = 4 in the figure example). To convert expressions

into token sequences, discrete elements of L are given a unique index. To tokenize real-valued parameters,

we employ a simple mapping procedure: for a given input scene, we take all real values in the primitive pa-

rameterizations, bin them through rounding (to 2 decimal places), and sort them to produce a token mapping

(light-blue box). This mapping is used to form the conditioning tokens, and converts network predictions

back into real values.

110

8.2.2 Dream Phase

The dream phase trains the recognition network by randomly sampling example scenes from L. We show

this process in the middle box of Figure 8.3. To begin the dream phase, for each function f ∈ L, ShapeCoder

creates ND number of dreams for f . Dreams are generated by sampling random instantiations of each

parameter slot of f . Rejection sampling is employed to avoid dreams that create bad geometry by checking

easy to enforce properties (geometry outside scene bounds, primitives with negative dimensions, primitives

wholly contained by other primitive, etc.).

However, as shapes in D often contain scenes best explained by more than one function, its not enough

to train on function-specific dreams directly. We solve this issue with composite scenes formed by sampling

function-specific dreams and combining their output primitives together (blue arrow). If a composite scene

was formed by combining K sampled dreams, then we can derive K paired training examples for the recog-

nition network: the input to the network will be the composite scene, and each of the K sampled dreams

would be a target output. For instance, given the input scene with orange and green primitives in Figure

8.3, we would train the network to predict both the green and orange expression sequences (i.e. there is a

one-to-many mapping). Once this paired data has been assembled, by ensuring that each f ∈ L appears in

at least ND target sequences, the recognition network can be trained in a supervised fashion with maximum

likelihood updates.

8.2.3 Wake Phase

The wake phase takes an input shape d and aims to infer a program zthat minimizes F using the recognition

network. We depict this process on the right side of Figure 8.3.

To begin, the scene is initialized to contain the primitives of d. Then the wake phase performs the fol-

lowing steps in an iterative fashion. First the input scene is used to condition the recognition network, which

samples a large set of expressions from L according to its output probabilities, up to a timeout (1 second).

For every sampled expression, e, we record its cost: the program complexity of e under F , normalized by

the number primitives it explains. Note that if e does not recreate a subset of primitives in the input scene, it

will have a high geometric error, and F will return∞ (red X in figure). The wake phase chooses the lowest

cost e∗ (dotted green lines), and removes all primitives it covers from the input scene, which is then fed back

into the recognition network. These steps are repeated until the canvas is empty. Once this condition is met,

the final program zexplaining d is formed by applying the combinator operation in L over each e∗ (e.g. the

111

Input Programs Structures Cluster
Greedy Abstraction Search

Absa(6, 3)

Absc(1, AY)

Abse(6, 2)

Union{

}

Absa(4, 2)

Abse(4, 3)

Union{

}…

Absa(P0, P1)

Union(,)Abse(P2, P3)

P0
6
4
…

Abse(P0, P1)

P1
3
2
…

P0
6
4
…

P1
2
3
…

P0
6
4
4
6
3
6
5
…

P1
3
2
2
3
2
4

2.5
…

P2
6
4
4
6
2
6
5
…

P3
2
3
4
4
6
1
3
…

…

P0
6
4
6
5

P1
3
2
4

2.5

P2
6
4
6
5

P3
2
4
1
3

Union(,)

def abs(V0, V1):
Union(
Absa(V0, V0 / 2),
Abse(V0, V1)

)

Candidate Abstractions

Record

Sample Structure
and Parameters

Repeat

Parameters
Partial

Abstraction
Expression Gain Freq Score

Union(Absa(?

Union(Absa(V0, ?

Union(Absa(V0, V0 / 2.),
Abse(?

P0

0.0

0.0 1.0 0.0

1.0 0.0 X

…
P1

P0 / 2

0.0 1.0 0.0
1.0 0.75 0.75

P0 – 2 1.0 0.5 0.5

…

P2

P0

1.0 0.75 0.75
2.0 0.75 1.5

(P0 / 2) + 2. 2.0 0.25 0.5

…

…

Absa(P0, P1) Abse(P2, P3)

Absa(P0, P1)

Figure 8.4: Proposal Phase. The proposal phase consumes a collection of programs and outputs a set of
candidate abstractions. First, possible structures and their parameterizations are recorded from the input
programs. Then clusters are formed by sampling a structure and a subset of parameterizations. For each
cluster, a greedy abstraction search generates a possible abstraction, which is recorded.

Union of the orange and green expressions in the bottom-row). For every input scene, the ‘naive’ expression

for a single primitive under L is added to the sampled set of expressions, so that a valid solution is guaranteed

to be found.

During each ShapeCoder round, the wake phase uses the recognition network to infer a set of programs

that explain D. But should we treat these predictions independently? One option is to clear all program

entries in P before every wake phase. However, this would cause ShapeCoder to ‘forget’ good solutions

discovered in previous rounds. Instead, we use the following approach: for round r, r > 0, if P contains

previously discovered programs, and Pr contain programs discovered in round r’s wake phase, then we set

each entry of P to be the result of combine(z, zr), where combine performs a greedy replacement search to

optimize F .

8.3 Proposing and Integrating Abstractions

Together, the dream and wake phases train and use a recognition network to infer a set of programs P that

explain the shapes of the input dataset D. The proposal phase (Section 8.3.1) reasons over P to suggest

candidate abstractions functions, used by the integration phase (Section 8.3.2) to find library variants that

improve F .

8.3.1 Proposal Phase

The goal of the proposal phase is to search over P for abstraction functions that would improve F if added

into L. As this search is computationally intractable to solve globally, ShapeCoder’s proposal phase instead

112

solves more tractable sub-problems (subsets of P), and aggregates local solutions. Figure 8.4 outlines this

process.

Identifying Structures and Parameters. As L is a functional language, generating an abstraction a re-

quires two steps: deciding the structure of a (what are its sub-functions) and deciding how a is parameterized

(what input does a take, and how are those mapped to its sub-functions). What structures should we con-

sider for possible abstractions? Each program z∈ P is found in the wake phase by combining expressions

that solve sub-tasks, so zwill have no consistent or canonical ordering. Therefore, we would like to factor

out expression ordering by considering structural variants over any possible function reordering of each z∈

P . However, as the general solution is intractable, we instead consider a limited set of potential abstraction

structures: singleton and paired combinations of sub-expressions found in P . We record all such observed

structures as keys and how those structures were parameterized as values (see bracketed data structure in

figure). We additionally find it useful to apply a simple filtering step that removes infrequently observed

structures in P from this mapping (seen in less than 5% of P).

Cluster Sampling and Search. Once potential structures and their observed parameterizations have been

recorded, the proposal phase begins an iterative process. To convert the global problem into a local one, a

random structure and a subset of its parameterizations are sampled to form a cluster. Then a greedy search

is run over this cluster to find an abstraction a that would optimize F . The generated function is recorded

into a candidate abstraction data structure that keeps track of a coverage set of z∈ P that could be simplified

through applications of a. This procedure is repeated many times, and coverage sets are expanded whenever

the candidate abstraction data structure receives a previously observed abstraction.

Greedy Abstraction Search We employ a greedy search to find an abstraction a for a given cluster (right

side Figure 8.4) This search is guided by a score function that provides a heuristic estimate of how a would

improve F if it were added into L. The score of a is a product of two terms: the frequency and the gain. The

frequency (Freq column in figure) is the percentage of instances in the cluster that a could recreate (with the

correct parameterization). The gain tracks the number of parameters removed from a program z, whenever

zcould be rewritten with a, denoted as za. For instance, the proposed abstraction in Figure 8.4 would remove

two float-typed parameters whenever it could be applied, corresponding with slots P1 and P3 in the cluster.

113

Abstraction Rewrite:

SymRef(Move(Rect(?a, ?b), ?c, ?d), AX)) → AbsN(?a, ?b) IF
(?c = ?a + ?b AND ?d = ?b - ?a)

Refactor

Library L

Semantic Rewrites:

Union(Move(?S, ?a, ?b), Move(?S, ?c, ?b)) -> SymRef(Move(?s, ?a, ?b, AX) IF
(?c = -1 * ?a)

SymRef(Move(?s, ?a, ?b), AX) -> SymRef(Move(?s, Mul(?a, -1.0), ?b), AX)

Program p :
Union(

Move(Rect(.1, .2), -.3, .1),
Move(Rect(.1, .2), .3, .1))

AbsN(.1, .2)
def AbsN(a, b):

SymRef(Move(Rect(a, b), a+b, b-a), AX)

Union

Move Move

Rect

V2
-.3

V3
.1

V1
.2

Rect

V6
.3

V7
.1

V0
.1

V5
.2

V4
.1

Union

Move

SymRef SymRef

Move MoveAX

Rect

V2
-.3

V3
.1

V1
.2

Rect

V6 V7V0
.1

V5V4

Mul
.3

-1
-1

Union

Move

SymRef SymRefAbsN

Move MoveAX

Rect

V2 V3V1
.2

Rect

V6 V7V0
.1

V5V4

Mul

-1

Convert to e-graph

Input

Extract from e-graph

Output

Parametric Operator
Nodes (Table 1)

Net

F…

Shape d

Figure 8.5: Refactor. The refactor operation uses e-graphs to identify when abstractions can be applied.
Input programs are converted into e-graphs, which are expanded with semantic and library-specific rewrites
to uncover lower-cost equivalent expressions that can be extracted. We develop a conditional rewrite scheme
that reasons over parametric relationships (green highlights) without adding excessive e-nodes for parametric
operators (red box).

Using the weighting from F (Section 8.1.1), we have:

gain(a) =
∑
τ∈T

λτ ∗ (τ(z)− τ(za)) .

The function sequence in the proposed abstraction is determined by the structure of the sampled cluster,

but how should we fill in the parameter slots? For each slot, we consider a set of possible expressions,

calculate the score of each option, and add the expression with the highest score into the partial abstraction.

If the frequency is ever zero, then the score is voided. For float-typed parameter slots, ShapeCoder produces

expressions by iterating over a preference ordering of possible parametric relationships. For discrete-typed

parameter slots, a previously instantiated parameter can be reused, or a static value can be assigned. This

search always includes defining a new free parameter (e.g. using the parameterization in the sampled cluster)

as an option (depicted as the top-row of each step).

8.3.2 Integration Phase

The integration phase takes in a library L, a set of programs P , and candidate abstractions from the proposal

phase. It searches for modified version of L that can be used to refactor P to improve F . The refactor opera-

tion (Section 8.4) uses e-graphs to efficiently search for minimal cost equivalent programs under different L

variants.

The integration phase begins by first recording the starting objective value: F (L, P). It then iterates

114

through a series of steps in an attempt to greedily improve this value. First, a new library variant L’ is formed

by sampling a candidate abstraction and adding it into L. The abstraction with the top score value is chosen,

where the notion of frequency is generalized from clusters to all of P . Then a new program set, P’, is formed

by applying the refactor operation over each z∈ P under L’. Finally, if F (L’, P’) is better than F (L, P),

both L and P are replaced with their modified versions.

Evaluating a modified library L’ is expensive, as it requires running the refactor operation for every z∈

P , so we usually consider a small number, NA, of top-ranked candidate abstractions during each integration

phase. To keep the score heuristic as accurate as possible, whenever L’, that added a to L, improves F , we

check which z∈ P contributed to the frequency of a and discount the frequency of other abstractions that

overlapped on the covered set.

Beyond this greedy search, two other forms of library variants are also considered during the integration

phase. Whenever adding a to L does not improve F , we compute the set of functions whose frequency

between P and P’ decreased significantly; call this set fdec. We then consider Ldec = { L + a - fdec }

as a library variant. This procedure allows the greedy integration search to avoid a local minima where a

would not be added to L because similar (but worse) functions already exist in L. In addition, to finish the

integration phase, we consider library variants where each f ∈ L is removed one at time. In all comparisons,

the library variant becomes the new default if it improves the objective function. At the end of the integration

phase, the L that achieved the best F score is then passed into the subsequent dream phase to begin a new

ShapeCoder round.

8.4 Refactoring Programs with E-Graphs

ShapeCoder’s integration phase evaluates how library variants can be used to compactly represent P but how

does it know when abstractions can be applied? For this task, we use the refactor operation: it takes as input a

program, z, and aims to find p∗, an equivalent program to zthat minimizes F . This is a hard search problem,

which we make tractable through the use of e-graphs [204] and a conditional rewriting scheme. In the rest

of this section, we provide a quick background on e-graphs, and walk-through their role in refactor with a

running example, depicted in Figure 8.5.

Background on e-graphs. E-graphs are a specialized data structure capable of efficiently representing a

large set of equivalent programs. We show an example e-graph in the left call-out of the figure. E-graphs

115

are made up of e-nodes (solid boxes) and e-classes (dotted boxes) Each e-node is associated with a term

from L and has a pointer (arrows) to e-class children, if that term is a function. Each e-class contains a set

of equivalent e-nodes. The root of the e-graph is the e-class that contains the e-node associated with the

outermost operator in the input expression (Union in the figure).

This representation becomes useful when it is combined with rewrite rules. Rewrite rules are domain-

specific, pattern matching program transformations that maintain semantic equivalence. For instance, for any

?a and ?b: Union(?a, ?b) is equivalent to Union (?b, ?a). E-graphs are expanded by iteratively applying

rewrite rules to create new e-classes and new e-nodes. These newly created constructs reference existing

e-class and e-nodes, allowing the e-graph to represent a large set of equivalent programs in a space-efficient

manner. Importantly, e-graphs also provide support for quickly finding minimal cost rewritten versions of a

starting expression, by running a greedy recursive algorithm starting at the root e-class.

Refactor Operation. The refactor operation consumes an input program zfrom the wake phase. First, it

converts zinto an e-graph, as depicted in the left call-out of Figure 8.5. In this step, each float-typed token is

replaced with an independent variable (V0 to V7).

The operation also consumes a library L as input. It uses L to source two types of rewrite operations.

Semantic rewrites express domain-knowledge over base DSL functions and are provided as part of the lan-

guage definition. For instance, the blue rewrite expresses the following logic: a sub-expression ?s moved

to xy position (?a, ?b) and reflected over the X axis is equivalent to moving ?s to xy position (-1 × ?a, ?b)

and reflecting it over the X axis. Abstraction rewrites correspond with the abstractions in L, where rewrites

express the conditions that need to be met in order for the abstraction to be applied. For instance, AbsN

(top-middle) in the input library creates the purple highlighted abstraction rewrite (lower-right).

ShapeCoder expands the e-graph by iteratively applying these rewrite operators. In the middle-frame, the

orange rewrite first introduces a new AX e-node into a new e-class and a new SymRef e-node into the root

e-class. Following this, the blue rewrite can be applied, matching on the orange e-nodes, to add the blue

highlighted e-nodes. At this point, the purple abstraction rewrite can be applied, and a new AbsN e-node is

added into the root e-class. The refactor operation will continue expanding the e-graph until it is saturated

(nothing can be added) or a timeout is reached.

Once the rewrites have expanded the e-graph, we can run an extraction procedure on the root e-class to

find the minimum cost expression p∗ in the e-graph equivalent to the starting program z. In this example,

p∗ will be equal to AbsN (V0, V1), which we can rewrite to AbsN (.1, .2) using the reverse of the parameter

116

mapping we used to convert the initial program into an e-graph.

Conditional Rewrite Scheme. The above explanation is complete up to one critical step: how do know

when rewrites can be applied? E-graphs typically search for structural pattern-based matches, and some

semantic rewrites can be included in this framework (e.g. the blue rewrite). However, other rewrites, such

as the purple abstraction rewrite, require both structural and parametric matches. For instance, the structural

matching requirement to apply AbsN would be finding some sub-graph of e-classes that matches the pattern

of: SymRef(Move(Rect(?a,?b),?c,?d),AX), where ?a through ?d can be filled in with any e-class.

Beyond this, applications of AbsN also require parametric matching with logic expressed in green highlights:

the ?c spot must be equal to the sum of the ?a and ?b slots, and the ?d spot must be equal to the ?b slot minus

the ?a slot.

How we can support this type of parametric matching? A naive solution would convert parametric con-

straints into structural ones:

SymRef(Move(Rect(?a,?b),Add(?a,?b),Sub(?b,?a)),AX). The issue with this approach is

that it requires adding e-nodes for parametric operations (e.g. Add or Sub) into the e-graph, before it is

known whether or not that e-node will be useful. When there are many input parameters (Vi’s) this naive

solution will blow up the size of the e-graph, making the refactor operation ineffective. We visualize our

choice to avoid this blowup with the disconnected red box in the figure.

ShapeCoder addresses this issue of exploding e-graph size by leveraging a conditional rewrite scheme.

Conditional rewrites are rewrite operations that first find structural matches but only make a rewrite applica-

tion if additional checks pass. In this way, each parametric relationship (green highlights on rewrites) is only

evaluated lazily, after a structural match has been identified.

Concretely, in the working example applying the purple rewrite will find the following matches: ?a with

V0, ?b with V1, ?c with Mul (V2,-1), and ?d with V3. To check that the parametric relationships hold, we

need to know the real value associated with each matched e-class. Then to check a relationship such as ?d

= ?b - ?a, we can simply compare the difference in values between V3 and V1 - V0. This check does not

enforce exact matches, but rather allows the user to specify a maximum error threshold, allowing us to apply

approximately-equivalent rewrites, which is typically a limitation of e-graphs.

For some e-classes, finding their associated real-values is trivial: for each e-class associated with a float-

typed parameter e-node (V0 to V7) we record a mapping between e-class ids and values. This procedure is

complicated by the fact that some rewrites create new float-typed nodes (e.g. the blue Mul e-class). We handle

117

Table 8.1: Comparing our conditional rewriting scheme against the naive alternative. The conditional scheme
is able to quickly saturate the e-graph (time reported in seconds), even for complex input expressions with
many parameters. The naive approach times out when the complexity is too high.

Rewrite Scheme 8 params 16 params 32 params

Naive .22 2.6 X
Conditional .01 0.04 2.1

this case by dynamically updating the e-class-to-real-value mapping during all rewrite steps (represented with

green-highlights on e-classes), which is a constant time operation. Our conditional rewrite step is just as fast

as a non-conditional rewrite step and critically avoids unnecessarily expanding the e-graph with unneeded

parametric operator e-nodes. In sum, conditional rewrites provide a dramatic speedup over the naive approach

for the kinds of refactoring problems that ShapeCoder typically reasons over (see Table 8.1).

8.5 Results and Evaluation

We run ShapeCoder over distributions of visual shapes represented as collections of unstructured primi-

tives. We describe these domains in Section 8.5.1. In Section 8.5.2, we compare how well the abstractions

discovered by ShapeCoder improve the objective function compared to alternative approaches. Our main

comparison is against ShapeMOD (Chapter 7). In the main text, we do not include comparisons against

DreamCoder [42], as we found it performed poorly on a toy grammar with parametric relationships (see

supplemental). In Section 8.5.3, we analyze properties of the discovered abstractions and investigate their

generality with a post hoc inference procedure. In Section 8.5.4, we run an ablation experiment to investi-

gate the importance of various algorithm components. In Section 8.5.5 we show another application of our

method: inferring visual programs, that contain abstractions, given only a dataset of 3D meshes as input,

where we leverage noisy primitives sourced from a pretrained unsupervised cuboid decomposition approach

[230]. Finally, in Section 8.5.6 we explore how ShapeCoder’s discovered abstractions benefit downstream

tasks.

8.5.1 Experimental Domains

For the main result section, we consider domains of 3D shapes. We provide experimental results over a

toy dataset of 2D shapes in the supplemental. Our experiments use manufactured objects sourced from

PartNet [141], where manual annotations are used to convert each 3D object into an unstructured collection

of cuboids, that represent part bounding boxes. We follow past-work in the 3D shape abstraction discovery

118

Table 8.2: Abstraction discovery performance, measured with objective function F , for libraries of abstrac-
tions discovered by different methods.

Category Method F ⇓ |L| Num Struct Num Param

Chair

Input Prims 146.0 6 29 61
ShapeMOD+Input 109.0 21 16 46
ShapeMOD+Wake 83.0 21 12 36
ShapeCoder 63.6 33 10 27

Table

Input Prims 125.0 6 25 51
ShapeMOD+Input 84.2 25 11 34
ShapeMOD+Wake 69.1 17 10 30
ShapeCoder 40.9 37 8 18

Storage

Input Prims 154.0 6 30 62
ShapeMOD+Input 119.0 16 20 48
ShapeMOD+Wake 103.0 10 19 45
ShapeCoder 71.3 31 11 33

space, and run experiments on shapes from the Chair, Table, and Storage categories of PartNet. We perform

the cuboid simplification steps outlined in ShapeAssembly (Chapter 3), so that our starting primitive set is

the same as that used by ShapeMOD, except we remove all hierarchy and canonical ordering information.

The DSL (Appendix F.1) we use for our experiments has 4 low-level operations: (i) instantiating a prim-

itive (Cuboid); (ii) moving a shape (Move); (iii) rotating a shape (Rotate); and (iv) unioning two shapes

together (Union). We also provide two mid-level symmetry operations in the base DSL, that correspond

with (v) reflectional and (vi) translational symmetry (SymRef and SymTrans).

8.5.2 Discovering Abstractions

For each PartNet category, we run ShapeCoder for four rounds over 400 shapes from that category. ShapeCoder

is implemented in Python and Rust, using PyTorch and Egg, an e-graph library [218]. We run ShapeCoder

on a machine with a GeForce RTX 3090 Ti GPU and an Intel i7-11700K CPU, and find that it takes less than

24 hours to finish discovering abstractions for a single category (taking at most 4GB of GPU memory).

Discovering abstractions that improve our objective We report how the abstractions discovered from

ShapeCoder impact the objective function we optimize over, in Table 8.2. From left to right, the columns

express the objective function score (F , where lower is better), the number of functions that the library

contains (|L|), and the average number of operations (Num Struct) and parameters (Num Param) that are

needed to represent the input dataset of shapes using programs that make use of the discovered abstractions.

The top Input Prims row for each category conveys the starting objective function value for ShapeCoder.

This row reports the cost of using ‘naive’ programs to cover the primitives of the input shapes, where each

119

primitive is rotated, moved, and instantiated, whenever that command would have an effect (e.g. moving zero

distance would be ignored). The final objective function score found by ShapeCoder, in the bottom rows, is

dramatically better than this starting point. For Chairs, Tables, and Storage, the starting objective function

value drops by 56%, 67%, and 53%, respectively. This improvement is achieved by adding abstraction

functions (2nd column) that remove degrees of freedom needed to represent the shapes of the input set (3rd

and 4th columns).

We also compare how ShapeCoder performs against ShapeMOD in this setting. The ShapeMOD algo-

rithm requires a dataset of imperative programs as input, along with the possible ways that the lines of the

programs can be ordered. As we lack ground-truth programs for our problem setting, we compare against

two versions of ShapeMOD, that attempt to optimize the same objective function as ShapeCoder:

• ShapeMOD+Input: We take the ‘naive’ programs that can be directly parsed from the input collection

of primitives, and provide this as input to ShapeMOD.

• ShapeMOD+Wake: We take the output from ShapeCoder’s first wake phase as the input to Shape-

MOD. Note that the only ‘non-trivial’ functions in the library for the first wake phase are the symmetry

operations, roughly equivalent to running symmetry detection on the ‘naive’ programs.

For both program datasets, we have no way of knowing how the various expressions (e.g. sub-shapes com-

bined through Union) should be ordered, so we pass a random subset of all possible valid orderings to

ShapeMOD, as without limiting the set of orders ShapeMOD takes prohibitively long to run (see supplemen-

tal).

Comparing ShapeMOD variants and ShapeCoder in Table 8.2, it is clear that ShapeCoder finds abstrac-

tions that significantly improve the objective function over those found by ShapeMOD. While ShapeCoder’s

wake phase provides a better starting point than the ‘naive’ programs, in either case, the complexity of the in-

put programs is too high for ShapeMOD to handle-well when canonical orderings and hierarchy annotations

are absent.

We also compare ShapeCoder against approaches that operate over single programs, like Szalinski [145].

Szalinski also uses e-graphs in the context of visual programs, and while its fixed rewrite rules are well-suited

for simplifying a single heuristically-inferred CAD program of a mechanical object, we found that these rules

did not significantly compress shape programs in our domain: Szalinksi’s rewrites improved our objective

function from 146 to 131, for chairs, whereas ShapeCoder reached 63.

120

Table 8.3: We measure the generality of the abstractions that ShapeCoder discovers by comparing how well it
can compress shapes (objective functionF) from a held-out set (Val) with post hoc inference (PHI) compared
with the programs it discovers during normal operation (top-row).

Shape Set Inference Method F Abs Count

Train ShapeCoder 63.6 4.31
Train PHI 67.5 4.67
Val PHI 70.6 4.77

8.5.3 Analysis of Discovered Abstractions

We visualize a subset of abstractions discovered by ShapeCoder when run over PartNet shapes in Figure

8.6. The recognition network learns how to use these abstractions to explain shapes in the input dataset

(first three columns). Programs rewritten with these abstractions can be edited to create new shapes, as we

show in the fourth column. The discovered abstractions contain many desirable properties: they capture

diverse geometric expressions and constrain many extraneous degrees of freedom by introducing parametric

relationships. Abstractions in later rounds of ShapeCoder can reference previously discovered abstractions

in sub-function calls, forming a nesting hierarchy of abstractions. In extreme cases, ShapeCoder can even

discover single abstractions that explain entire input shapes, e.g., in the first and third columns of the top-row,

a single abstraction function, that consumes five input parameters can output an entire chair when executed.

Access to these types of abstractions can even be helpful for structural analysis of 3D shapes. For instance,

the shown abstraction for tables (2nd row) is consistently mapped to the same semantic part (regular table

legs), even though the part has a wide range of possible output geometries. For each abstraction, we also

visualize a subset of random parameterizations (i.e. dreams), to give a sense of the possible output space

described by each function.

Post hoc inference During the course of abstraction discovery, ShapeCoder finds programs that use abstrac-

tions to explain the shapes in its input dataset. We investigate if these abstractions can generalize to shapes

from the same distribution that were not included in its optimization procedure. We leverage ShapeCoder’s

recognition network to find programs that explain shapes that were not included in the ‘training’ phase of

abstraction discovery. We run the wake phase over these shapes, to find programs that explain the input set of

primitives. These programs are then passed through the refactor operation, to see if any of the library rewrites

can further improve the program.

We present the results of this post hoc inference (PHI) procedure in Table 8.3, for shapes from the Chair

121

!"#!"$%&'(%)'(*%)&(!+(%)', !"#!"#$%&-(%.(/%'0(!+(%)1, !"#!"#$%&(%02(/%'-(!+(%)1, !"#!"#$%'-(%--(/%)(!+(%',!"#$%&'!"()*&*+*,*"-.
/0120(
%&'#!(
)*$&*$+*$+3(&45-*$,

-*
%&'#$(
)$6 (7$3$+-*
589$4$(+$:$789-*
+$3$7$3$()$; 589-*
"*$
("$3$789-$6 &*
("$:$789-4&

-
-

!"#$%$%32(/%12(%34, !"#$%#$%3-(/%0)(/%'2,
…

!"#$%#$%&'(%)4(/%-',
…

…
!"#$%#$%3-(%-(/%'-,

…
!"#$%&'#%()*&*+-.
/0120(
%&'&(
)*$$
()$4$589-:789*
&*$)$3$&*$$+*$
%<
-*$
%&'&(
)*$$
()$4$589-$:$789*
&*$)$3$&*$;5$3$+*$
%<

-
-

!"#!&$&%)&(%44(%30(/%2)(%., !"#!&#$%0-(&%31(%32(%1.(&%)&,
…

!"#!&#$%41(%--(%3'(%)2(%04,
…

…
!"#!&#$'(%2-(%3'(%)2(%04,

…
!"#$%&'!'()*&*+*,*"-.
/0120(
%&'#(
)*$&*$+*$
+$:$789*$
,*$
%=

-*
%&'%(
+*
&*
"*
+$6)$:$789

-
-

!"#*$$$
&%24(3%(%&0(/%&(!5(1(&%24,

!"#$$$
&%3.(%3.(3%-&(/%21(!5('(%.0,

…
!"#$$$%.(%3)(%&)(/%32(!5()(%0-,

…
!"#$%&'##()*&*+*,*"*#*>-.
/0120(
?2@"(
AB&21,()*$&*$+-*
&3(+$; 589-$:$789*$
,*
&3(,$:$789-
-*$
CDEFG)0'(
AB&21,()*$&*$+-*
"*$
#*$
>

-
-

Data

Data

Data

Data

Net

Net

Net

Net

Dream

Dream

Dream

Dream

Edit

Edit

Edit

Edit

…
!"#$$$&(%3-(%2(/%'-(!5('(%),

…

Figure 8.6: Qualitative examples of discovered abstractions. We show one abstraction each for Chair and
Table, and two abstractions for Storage furniture. The abstraction code is shown on the left, followed by three
different usages of the abstraction in our shape dataset discovered by ShapeCoder. In the right-most column,
we manually edit the discovered program to create a new shape. Along the bottom, we visualize randomly
sampled dreams.

122

Table 8.4: (Left) Ablating design decisions of ShapeCoder by tracking objective function improvement (see
condition details in Section 8.5.4). Our default configuration (bottom) performs best. (Right) Measuring
output execution validity (with Frechet Distance) under increasing perturbations (Noise Level) for programs
with, or without, abstractions. Abstractions help keep shapes ‘in distribution’ under parameter edits.

Condition F ⇓

No Abstraction 104.9
Single Iter 81.6
No Dream+Wake 99.0
No Semantic Rws 75.2
No Conditional Rws 100.0
No Abs Preferences 70.7
ShapeCoder 63.6

Noise Level No Abs With Abs

0.1 8 8
0.2 18 13
0.3 40 27
0.4 88 48
0.5 157 84

category of PartNet. The top row of this table shows the objective function values, and the average number of

abstraction-uses, for the programs that were iteratively built up during ShapeCoder ‘training’ (e.g., abstraction

discovery). In the middle row, we take this same set of shapes, ‘forget’ the programs discovered during

abstraction discovery, and run the PHI procedure, which aims to infer programs from scratch. In the last row,

we run PHI on validation shapes, never before seen by ShapeCoder. While doing inference post hoc is slightly

worse than iteratively discovering programs over multiple rounds, the difference between running PHI over

the ‘training’ shapes and ‘validation’ shapes, is relatively small. This fact, along with the consistently high-

values in the abstraction usage column, indicates that many of the abstractions that ShapeCoder discovers can

generalize beyond the dataset of shapes it optimizes over.

8.5.4 ShapeCoder Ablations

To evaluate the design decisions behind ShapeCoder, we run an ablation experiment, by tracking how the

removal of different components of our method impacts the types of abstractions we discover, and how those

abstractions impact the optimization of the objective function. We consider the following ablation conditions:

• No Abstraction: We report the results of running just the wake phase, once, without an abstraction

phase.

• Single Iter: We only run ShapeCoder for a single round.

• No Dream+Wake: We run multiple rounds of ShapeCoder without access to a recognition network.

Instead ‘naive’ programs are used to initialize the algorithm.

• No Semantic Rws: We remove all of the semantic rewrites associated with our base DSL in the refactor

operation.

123

!"#$%&'!"()*&*+*,-.
/0120(
%&'#$()*$&*$+-*
%&'%((+345-675*$)*$,*$84$9$+*$)3+-
-

!"#!"$%&'(%')(*%+,(%,,-

!"#$%&'!!()*&*+*,*"-.
/0120(
%&'#$()*$&*$+-*
%&'&()*$,*$"*$)$6$75:*$()8&-675:*$%;-
-

!"#!"$%&'(%,.(*%./(%,.- !"#!!$%&'(%',(*%+.(%')(%./- !"#!!$%&0(%')(*%+)(%'1(%.0-

Cuboid Decomposition

Primitive
Decomposition

!"#$%&'(%)

*#+#,%+-'.-
/0$1+-2%,"%,

Figure 8.7: We leverage an unsupervised primitive decomposition approach [230] to run ShapeCoder over
datasets of 3D meshes. Even on these noisy primitive decompositions, our method still finds high-level, useful
abstractions that capture meaningful degrees of shape variation. Interestingly, the two top-level abstractions
we show, in orange and blue, both make use of the same abstraction sub-function (highlighted in yellow) to
create a four-leg base.

• No Conditional Rws: We replace our conditional rewriting scheme with the ‘naive’ approach described

in Section 8.4.

• No Abs Preferences: We remove the preference weighting ω, described in Section 8.1.1.

We report how these different variants perform in Table 8.4, left, using shapes from the Chair category of

PartNet. All ablation conditions lead to worse optimization behavior than our default configuration (bottom

row). Without an abstraction phase, the programs returned from wake can’t leverage higher-order functions.

With just a single iteration of ShapeCoder, hierarchical abstractions can’t be discovered, and the wake phase

can’t learn to apply the discovered abstractions more broadly. When the abstraction phase is run without a

dream or wake phase, the method runs into a similar problem, where the abstractions can be underutilized, and

won’t be integrated into all of the shapes that they could be used to represent. The semantic rewrites allow e-

graphs to represent a large set of equivalent programs that we efficiently search over during refactoring; when

we don’t consider this large set of equivalent programs, we, once again, under-apply proposed abstractions.

The importance of our conditional rewrite scheme is made evident by the no conditional rewrite ablation:

within the computational budget allotted for this ablation experiment (3 days) the version of ShapeCoder that

used the ‘naive’ rewrite scheme failed to finish a complete abstraction phase. As such, we report its objective

124

function value at this 3-day cut-off. Finally, our preference weighting scheme helps ShapeCoder avoid local

minima: mostly by down-weighting obviously bad (e.g. too constrained or too general) candidate abstraction

functions.

8.5.5 Discovering Abstractions from Unstructured Shapes

As an illustrative application of ShapeCoder, we investigate its ability to jointly discover a library of ab-

straction functions and programs that use those abstractions, when run over a dataset of 3D meshes. To

source this kind of input data, we use a method that performs unsupervised cuboid decomposition of 3D

shapes [230]. Specifically, we employ this approach to convert sets of ShapeNet meshes into arrangements

of unstructured, noisy primitives – a data format that ShapeCoder can reason over. We provide details of this

data preprocessing in Appendix F.2.8

Similar to the experiments in Section 8.5.2, we construct a dataset of 400 shapes, with primitives produced

by this unsupervised algorithm. We run ShapeCoder over a dataset of chairs sourced from ShapeNet [16] for

three rounds and show results of some of the discovered abstractions in Figure 8.7. Even though the primitive

decompositions that ShapeCoder receives are noisy and irregular, it still manages to discover a collection

of meaningful abstraction functions that expose higher-order properties and can be applied across instances

of the input distribution. For instance, the discovered Abs20, captures the same fundamental chair structure

found by ShapeCoder when run over PartNet annotations (Abs24, Figure 8.6). In fact, over the course of 3

rounds, ShapeCoder improves the objective function score by 61% (140 → 53.9), which is similar to the

quantitative improvement observed when ShapeCoder operates over clean, manually annotated parts. These

results are promising, and indicate that systems like ShapeCoder can be used to discover useful high-level

programmatic representations of complex visual phenomena, without reliance on manual annotations.

8.5.6 Downstream Benefits of Abstractions

In this section, we investigate how ShapeCoder’s discovered abstractions can benefit downstream applications

with two experiments: maintaining validity under perturbations and novel shape synthesis.

Maintaining validity under perturbation As we aim to discover abstractions that remove extraneous de-

grees of freedom, we can evaluate success by perturbing degrees of freedom in shape programs, and checking

whether they ‘stay in distribution’. We take two shape program datasets, where programs are written with or

without abstractions, and perturb their parameters under different noise levels. Specifically, the noise level

125

modulates the standard deviation of Gaussian noise distributions fit to each parameter slot of each DSL func-

tion. For each perturbed set of programs, we measure how similar their output executions are to a validation

set with Frechet Distance (FD) in the feature space of a pretrained model. We report results of this experi-

ment in Table 8.4, right. We find that rewriting programs with abstractions discovered by ShapeCoder helps to

keep shapes ‘in distribution’ under parameters perturbations, which is an important property for goal-directed

editing tasks.

Novel Shape Synthesis We evaluate if generative models that learn to write novel shape-programs benefit

from training over programs that have been rewritten with discovered abstractions. For this experiment, we

use the PHI procedure (Section 8.5.3) to construct a dataset of 3600 chair-programs written with ShapeCoder

discovered abstractions. We use this dataset to train an auto-regressive network, a Transformer decoder,

that learns to generate sub-programs conditioned on a canvas that tracks the execution output of previously

predicted program parts (Appendix F.2.9). To synthesize novel shapes, the network starts with a blank canvas,

and then gradually builds up a complex program by iteratively sampling expressions, and adding their outputs

to the canvas, until a STOP token is predicted.

We visualize outputs of this model in Figure 8.8. Qualitatively, we find that this model can create new

shapes not observed from the training set, that clearly stay within the training-distribution. Quantitatively, we

compare the outputs of this model against an ablated version that trains over programs without abstractions,

and find that learning over programs written with abstractions improves Frechet Distance (against a validation

set) from 17.1 to 13.8, a 19% improvement. Moreover, generative models of visual programs that learn over

abstractions are particularly attractive, because the programs they output have less extraneous degrees of

freedom, and will be better suited for downstream tasks.

8.6 Discussion

We have presented ShapeCoder, a system capable of discovering visual program abstractions in a collection

of shapes represented as unstructured primitives. Our method does not require any additional supervision

such as ground truth programs, any specific ordering of program operations, or any program curriculum.

We have shown that ShapeCoder discovers high-level abstractions, that result in significant compression, on

domains that other state-of-the-art methods cannot handle. ShapeCoder can find programs that use these

abstractions to explain shapes not observed during optimization, compactly. Finally, we demonstrated the

126

Figure 8.8: Sampled programs (top) from a generative model that writes programs containing abstractions,
along with nearest neighbors (bottom).

flexibility of ShapeCoder by showing that it can discover useful abstractions, that capture meaningful degrees

of freedom when run over noisy primitive decompositions produced by an unsupervised method.

8.6.1 Relation with DreamCoder

DreamCoder proposes a system that jointly discovers abstractions and performs program induction over arbi-

trary functional programming languages [42]. At its core DreamCoder uses three phases to perform this hard

task. A dream phase samples random programs from a library (optionally augmented with abstractions). A

wake phase trains a recognition network to infer programs based on the dream samples. An abstraction phase

looks over a corpus of returned programs from the wake phase, and proposes and integrates abstractions that

improve an objective function. The objective function trade-offs program likelihood under the library with

the complexity of the library.

Similar to this framing, ShapeCoder employs an iterative procedure with interleaved phases (dream, wake,

proposal, and integration). These phases are run repeatedly, gradually discovering a library of abstraction

functions that minimize a compression-based objective function. The dream phase trains a recognition net-

work, which is used by the wake phase to infer visual programs that explain input shapes. Critically, we

design our recognition network in a way that allows it to find partial solutions for difficult input scenes. This

allows ShapeCoder to still work on input datasets that lack a curriculum of examples (some inputs are easy

to solve under the base DSL).

127

While DreamCoder’s generality allows it to effectively scale across a wide-variety of program inference

tasks, its abstractions are purely structural, treating real-valued program components as discretizations. This

means that it is not well-suited for shapes (or other visual domains) where ideally abstractions would capture

both complex parametric and structural relationships. Another challenge of applying DreamCoder to shape

programs is that its iterative procedure is reliant on a curriculum to solve tasks: all of its stages (dreaming,

waking, abstraction) rely on the assumption that solutions to at least some of the input tasks have a high

probability under the current library functions. When the input tasks form a curriculum (e.g. some tasks

are very easy to solve under the base DSL), then this procedure works very nicely, gradually discovering

more and more abstractions that allow it to solve increasingly complex VPI tasks. Unfortunately, when this

curriculum assumption is broken, DreamCoder can fail to discover any programs or abstractions for a given

domain. Based on these properties, we ran investigations of how DreamCoder fairs on a simple grammar with

parametric relationships, and found that it wasn’t able to discover the kinds of abstractions that ShapeCoder

is able to find. We provide details in the Appendix F.4.

8.6.2 ShapeCoder Limitations

While ShapeCoder is the first method to discover non-trivial program abstractions directly from unstructured

primitives, it does have some important limitations:

(i) Redundant abstractions. We find multiple abstractions that explain the same concept. While these can

be seen as structural variations for the same semantic concept (e.g. pedestal chair bases and four-leg chair

bases), the abstracted programs can feel redundant for downstream tasks. This is hard to avoid as, at present,

we do not ‘execute’ the programs to compare their geometric output.

(ii) Unsaturated e-graphs. For complicated input expressions, it can be computationally infeasible to fully

saturate e-graphs, as they lack the ability to efficiently represent associativity-commutativity constraints.

While ShapeCoder doesn’t offer a direct solution to this issue, our use of conditional rewrites avoids inserting

extraneous parametric operation nodes. This helps to alleviate exponential blowup, and allows ShapeCoder

to explore a much richer range of possible program structures than prior work. Despite this, we cannot

always saturate our e-graphs within the allotted computational budget. This implies that some possibly useful

rewrites go unexplored and never get appended to the abstraction library.

128

(iii) Bottom-up wake network. ShapeCoder’s recognition network (used in the wake phase) solves sub-

problems that are stitched together through combinator operations. A downside of this design decision is that

the recognition network must be retrained whenever the library version changes. Further, as the network does

not predict an entire program in one-shot, inference can be expensive to run, and there is less consistency in

how programs will be inferred across a dataset.

Chapter 9

Designing a Library of Procedural

Shape Abstractions with LLMs

Add a framed chair seat
function that ...

Add a panel chair back
function that ...

Add a cantilever base
function that can be used
to create a base for chair
objects. The base should
include two vertical front
legs and two lateral
runners positioned on
the ground ...

def framed_seat(...)

def cantilever_base(
 CF: CoordFrame, vertical_leg_size: float,
 runner_height: float, ...) -> List[Parts]:
 leg_height = CF.height - runner_height # Calc vertical legs

 y_leg = CF.y_pos + runner_height / 2 # Center y pos of legs
 ...

def panel_back(...)

Exemplar
Shapes

Function Descriptions

Design
Intent

ShapeLib
Edit request: “Make the chair more narrow,

raise the seat a lot, and reduce the height of the back panel”Library of Procedural Functions

......

cantilever_base(
 vertical_leg_size=0.05,
 runner_height=0.03, ...)

panel_back (
 frame_thickness=0.05,
 panel_thickness=0.17,
 layout='sides_only’, ...)
...

x 20 cantilever_base(
 vertical_leg_size=0.09,
 runner_height=0.05, ...)

panel_back (
 frame_thickness=0.14,
 panel_thickness=0.14,
 layout='sides_only’, ...)
...

LLM

LLM

Figure 9.1: ShapeLib guides an LLM to design a library of procedural shape functions from a given set of
(20) seed shapes and textual descriptions. Using an LLM prior makes the functions semantically interpretable
and easy to edit, while aligning them with the seed shapes specializes the functions to a given domain and
reduces LLM hallucinations. The library can be used to train a network for visual program induction that
generalizes well beyond the seed shapes.

Methods like ShapeMOD (Chapter 7) and ShapeCoder (Chapter 8) aim to automatically discover good li-

braries of procedural shape functions. These methods use data-driven approaches to optimize a compression-

based objective. They operate in a ‘bottom-up’ fashion, starting from a base modeling language with ele-

mentary functions, and gradually grow their library, in a greedy manner, by defining new and more domain-

specific abstraction functions based on how much they help to compress shapes from a large dataset. While

these approaches can successfully optimize their compression objective, they base their library development

129

130

solely on compressing out common geometric patterns over a large shape dataset, without any semantic ‘top-

down’ guidance. As a result, the functions they produce can only align to shape semantics by chance, making

them difficult to interpret and meaningfully manipulate.

As an alternative, we investigate how Large Language Models (LLMs) can help with this procedural lan-

guage design problem. LLMs have demonstrated remarkable success over a surprisingly diverse range of

tasks, from 3D layout synthesis [81] to general code generation [88]. There are reasons to believe they might

be useful in helping to design procedural models. They have top-down world knowledge about the semantic

relationships of parts within shapes and they are proficient at writing code. Despite these properties, LLMs

also have limitations that temper their procedural modeling capabilities. As we demonstrate experimentally,

latest frontier LLMs still struggle to understand complex geometric layouts and often misinterpret or mis-

attribute constraints and relations between parametric controls. Their mistakes manifest as hallucinations,

leading to implausible geometry or structures that cannot represent assets in existing 3D datasets.

In this Chapter, we introduce ShapeLib, a hybrid system that guides an LLM through the creation of a

library of procedural abstraction functions from a specified design intent. An expert user provides this design

intent to our system with two modalities: (i) function descriptions in natural language, and (ii) a seed set of

exemplar shapes. The two modalities are complementary: the first mode allows the user to specify the kinds

of functions they would like to interface with; while the second mode provides geometric references that

guide and constrain library development.

ShapeLib breaks the complex library design process into a series of sub-problems. First, we use an

LLM to design the library interface with a prompting workflow conditioned on the function descriptions.

Next, we task an LLM with proposing applications of these functions to explain shapes from the seed set

(from the interface only, without any actual implementations). We then use these proposed applications

to automatically formulate input/output examples that guide the LLM to propose implementations of each

function. We finalize the library with a validation step that performs a geometric analysis over the proposed

function implementations and applications. To apply these functions to represent shapes beyond the seed set,

we additionally train a recognition network that learns to map input shapes to output programs written with

the library functions. To train this network, we create a synthetic data generator by prompting an LLM with

the finalized library implementation and asking it to produce a function that randomly generates an input

shape using the abstraction functions. In this way, even starting from only a small seed set, ShapeLib can find

programs that use these abstraction functions to explain a much larger collection of shapes (see 9.1).

131

We evaluate ShapeLib by using it to design libraries of procedural functions over multiple shape cat-

egories (chair, table, storage, lamp, faucet). We find that our method generates functions that

(i) adhere to the top-down semantics provided by the natural language descriptions, and (ii) produce geomet-

ric outputs that reflect structures observed from the exemplar shapes. Beyond this, we experimentally validate

that our discovered library helps us to realize the benefits of representing shapes procedurally along a number

of axes. Generalization (a): they are useful for modeling shapes outside of the seed set; Interpretability (b):

they are aligned with semantics and expose a small number of parameters that produce predictable edits;

Plausibility (c): they constrain outputs to maintain shape semantics under manipulation. We compare against

alternative problem framings, and find that our dual modality design intent is crucial for our success. When

semantic information from (i) is missing, systems like ShapeCoder find abstractions that improve compres-

sion, but lack interpretability and do not maintain plausibility. When reference geometry from (ii) is missing,

LLMs design sensible library interfaces, but produce function implementations that can not generalize across

shape distributions.

9.1 Overview

ShapeLib guides an LLM through the process of developing a library of procedural functions that matches

an input design intent. In our problem framing, we assume that a user has a procedural modeling domain

in mind (e.g., a particular category of shapes). The user will communicate their design intent to our system,

which is then tasked with producing a fully realized library of abstraction functions that meet our desiderata:

(a) they should generalize, (b) they should be interpretable, and (c) they should produce plausible outputs.

Our system receives a number of benefits from the prior knowledge encoded in LLMs. Since LLMs have

been trained extensively on human-written code, they are able to author functions with meaningful names

and parameters. This exposes an interface that a person can easily work with and understand. However, we

also find that LLMs are prone to hallucinate, generating mismatches from ‘real’ distributions of shapes (e.g.,

collections of 3D assets).

To overcome this issue, we guide and ground the LLM outputs under the supervision of the user provided

design intent, consisting of a textual description and a set of seed shapes. Textual descriptions of desired

function properties help constrain the interface design, prompting the semantic prior of the LLM to attune

towards a particular modeling task. Each seed set we consider is composed of twenty 3D shapes with part-

level semantic segmentations and textured renders. Our system validates the plausibility of its productions by

132

Input: ladder_chair_back(
 CF=back_CF, bar_count=?, ...)

Output: [P1, P2, ...]

Add a four_leg_base function
that can be used to create a
base structure for chairs ...

Add a ladder_back function that
can be used to create a backrest

for chairs. It should support...

The seat is rectangular and supported by
four straight vertical legs at each corner.

The back extends upward from the ...

P1 =Part(.2, .9, .1, -.3, .4, -.2) # vertical bar
 P2 =Part(.2, .9, .1, .3, .4, -.2) # vertical bar
 P3 = Part(.1, .7, .1, -.3, -.5, -.2) # leg
 P4 = Part(.1, .7, .1, -.3, -.4, .4) # leg
 ...

(a) Interface Creation

(c) Propose Implementations (d) Validate Library

2
‘top_only’

.2

...

fn v1

fn v2

Seed
Set

Function Descriptions

Input: ladder_chair_back(
 CF=back_CF, bar_count=?, ...)

Output: [P1, P2, ...]

interface

Write a program that
reconstructs the shape

Implement the function
described by the
interface using the
examples as a guide

convert this text into
a function signature
and doc-string

Application ProgramApplication Program

Library Design
What parts are in the shape?

Using the Library

Library of Procedural Functions

Author a new function that randomly produces new
procedural chair shapes using the abstractions in the library

armrests(...)

sled_base(...)

panel_back(...)

armrests(...)

panel_back(...)

pedestal_base(...)

pedestal_base

ladder_chair_back

sled_base

armrests

ladder_back(...)

pedestal_base(...)

framed_seat(...)

training data

def program():
 parts = []
 base_CF = group_parts([P3, P4, ...])
 parts += four_leg_base(base_CF, ...)
 back_CF = group_parts([P1, P2, ...])
 parts += ladder_chair_back(back_CF,
 bar_count=3, frame_style=‘left_right’,
 ...

interface

Synthetic data
Generator

recognition
network

def ladder_chair_back(CF: CoordFrame,
 bar_count, frame_style, ...) -> List[Part]:
 """
Description: Creates ... multiple evenly
spaced parallel bars supported by ...

Parts: When frame_style is 'left_right'
returns two framing bars and bar_count
number of slats ...

Parameters:
- bar_count: specifies the number of
parallel bars in the ladder
- frame_style: specifies the support style.
Valid options: (‘left_right', 'top_only’, ...
"""

def four_leg_base(CF: CoordFrame,
 leg_size, stretcher_offset,...) -> List[Part]:
 """
Description: Creates ... four vertical legs
positioned at the corners of ...

Parts: Always returns four legs. When
stretcher_orientation is

Parameters:
- leg_size: controls the cross-sectional
size (width and depth) of each leg part
- stretcher_offset: controls the vertical
position of the stretchers relative to ...
...
"""

def ladder_chair_back(CF: CoordFrame,
 bar_count, frame_style, ...) -> List[Part]:
 """
Description: Creates ... multiple evenly
spaced parallel bars supported by ...

 ...
"""

def ladder_chair_back(CF: CoordFrame,
 bar_count, frame_style, ...) -> List[Part]:
 """
Description: Creates ... multiple evenly
spaced parallel bars supported by ...
 ...
"""

...
if frame_style == 'left_right’:
 # Calculate starting y position for parallels
 total_spacing = (bar_count - 1) * spacing
 available_height = CF.height - 2 *
 frame_thickness
 start_y = CF.y_pos - (total_spacing / 2)
 # Add the ladder back
 for i in range(bar_count):
 y = start_y + i * spacing
 horizontal_bar = Part(
 width=CF.width - 2 *
 frame_thickness,
 height=bar_thickness,

(b) Propose Applications

input-output
examples

import random

 def sample_shape():
 ...

3
‘left_right’

.15
...

3
‘left_right’

.05
...

ladder_back(...)

four_leg_base(...)

LLM LLM

VLM

LLM

LLM

LLM

Figure 9.2: Method overview. We design a function library in four steps, starting from a user intent (light
blue) that consists of function descriptions and a set of seed shapes. First, (a) we prompt an LLM to create
function interfaces that define parameters and annotate the function’s purpose. Then, (b) the LLM is prompted
to propose multiple applications of the functions that reconstruct the seed shapes. Next, (c) we use this
information to guide the LLM to propose multiple function implementations. The library is finalized with a
validation step (d) that searches for pairs of applications and implementations that best reconstruct the seed
shapes. We can use the library to extend beyond the seed shapes by guiding the LLM to author a synthetic
data generator with the library functions, and using the resulting paired data to train a recognition network
for visual program induction.

searching for function implementations and applications that can explain sub-structures in these exemplars.

In the following, we explain how ShapeLib solves this problem. In Section 9.2, we describe how we

convert design intent into a fully realized library of abstraction functions. In Section 9.3, we describe how we

can expand the usage of this library beyond the seed set by training a recognition network on synthetic data.

9.2 Library Design

ShapeLib converts design intent into a library of functions through a series of steps, which we depict in

Figure 9.2. The interface creation step converts function descriptions into a library interface (Section 9.2.1).

The application proposal step identifies which library functions should model which seed set shapes (Sec-

tion 9.2.2). The implementation proposal step generates candidate function implementations (Section 9.2.3).

133

The library is then finalized with a validation step that checks combinations of proposed function applications

and implementations against seed set examples (Section 9.2.4).

9.2.1 Interface Creation

ShapeLib first converts user function descriptions into a library interface (Fig. 9.2, a). We prompt an LLM to

produce a structured interface, where for each function it produces a typed signature and an accompanying

doc-string.

We provide the LLM with two default classes: a ‘Part’ class that creates primitives that abstract detailed

geometry and a ‘CoordFrame’ class that defines a local bounding volume. Our prompt contains task instruc-

tions and in-context expert demonstrations sourced from different categories. By default, we use axis-aligned

cuboid primitives, though this design decision could be generalized by modifying prompt instructions and

examples.

The LLM produces function signatures that expose parametric handles, e.g. the numbers of bars in a

ladder back or the height of base runner. Each function is instructed to take in a special first parameter, CF,

a ‘CoordFrame’ that specifies the expected extents of the functions outputs. Functions are typed so that they

return a List of ‘Part’ objects.

Through our in-context examples and instructions, we prompt the doc-string to have a particular structure.

First, it defines a description field to explain the high-level goals of the function. Then, it defines a parts

field, that specifies what parts should be produced depending on the input parameters. Finally, it defines a

parameter field, that explains how they should affect the output structure. This interface is then used to guide

the library development.

9.2.2 Proposing Function Applications

As LLMs are prone to hallucinate, we do not directly implement each function following the prior step.

Instead, we would like to ground each function implementation by referencing structures from the seed set.

To find such references, we propose programs that apply library functions that explain exemplar shapes

(Fig. 9.2, b).

This step begins by sampling a shape from the seed set. We ask a VLM to describe the parts that is sees

from a render of the shape. We also convert the 3D semantic part annotations into a list of labeled ‘Part’

objects. We combine these inputs together, and task an LLM with deciding what parts should be explained by

134

which library functions (even though these functions lack implementations). The LLM outputs this decision

by authoring a ‘program()’ function that proposes library function applications (along with parameters). We

ask the LLM to use a special ‘group parts’ function when constructing this program, that consumes a list

of input ‘Part’ objects and returns a bounding ‘CoordFrame’ object. In this way, the ‘program’ provides

information about which parts of the input shape should be explained by which library functions.

As we later demonstrate empirically, the accuracy of individual LLM calls has a high variance which

makes them hard to trust. Therefore, instead of finding a single program for each shape, we run this procedure

K times for each shape in the seed set (K=5).

9.2.3 Propose Function Implementations

ShapeLib now has the information from the prior steps it needs to author good function implementations:

typed signatures, doc-string guidance, and input-output examples. These input-output example pairs can be

automatically found from the proposed function applications. From this input, we ask the LLM to complete

the implementation of each function so that it matches the signature type, meets the doc-string specification,

and respects the observed patterns present in the usage examples (Fig. 9.2, c).

Of note, we find that the LLM predictions in the previous application proposal step do a good job of

identifying which functions should explain which parts, but do a much worse job at predicting parameter

values. With this in mind, we mask out parameter values with a special token ‘?’ in all input-output examples.

We do this for every parameter value, except for the first CF ‘CoordFrame’, as the correct value for this

parameter can be found automatically with the ‘group parts’ function.

Similar to previous step, we find that some implementations produced by the LLM produce better or

worse matches against the input specification. So for each function in our library, we propose K different

ways that it could be implemented (K=4).

9.2.4 Library Validation

At this point we are close to having a fully realized library. From the prior steps we have (a) function

doc-strings and signatures, (b) proposals of how the functions should be applied to explain groups of parts

in seed-set shapes, and (c) proposals of how the function should be implemented. This validation step is

responsible for deciding which of these proposals are ‘good’, and not just LLM hallucinations (Fig 9.2, d).

To make this decision, we search over pairs of proposed implementations and parameterizations, and

135

record those that geometrically match structures present in the seed set shapes. For each proposed function

implementation from (c) we check which of proposed part groups from (b) this implementation can explain.

Specifically, we try executing the function with the proposed parameterizations sourced from (b), calculate

the observed error between the target parts and function output, and record the parameterization that achieves

the best error. Our error metric compares corner-to-corner distances between sets of geometric primitives,

and mark function applications as invalid if the paired structures are not similar enough (see Appendix G.1.1

for details).

At this point, for each group of parts from (b) we know which implementation from (c) best matches the

observed part structure. We keep the implementation that achieves the best error across the most part groups,

and remove all others proposals. If this best implementation found valid applications across multiple seed

set shapes, we update the library interface entry with its implementation logic. Otherwise, we remove the

function entry from the interface.

9.3 Using the Library for Program Synthesis

In Section 9.2, we constructed a library of functions that have meaningful signatures and structured doc-

strings. Each function has an implementation that is capable of producing structures that capture patterns

observed in the seed set, but a question remains: how can we use these functions to represent new shapes?

In this section, we describe our strategy for expanding library function usage beyond the seed set (Fig. 9.2,

right). To begin, we once again make use of the strong prior of LLMs by providing it with our library interface

and asking it to design a procedure that uses the abstraction functions to randomly synthesize synthetic

shapes. Once we’ve developed this synthetic data sampler, we can use it to produce paired training data for a

recognition network that learns how to solve an inverse task: given an input shape structure, write a program

using the library functions that explain its parts.

Generating a synthetic shape sampler In this step, we design a prompt that describes the library we’ve

developed, including the interface of each function and examples of how to use it (sourced from the validation

stage). We give this prompt to an LLM and ask it to write a ‘sample shape’ function that randomly produces

new shapes using the provided abstractions. Interestingly, we find that frontier LLMs are able to provide

useful implementations of such a ‘sample shape’ function. A shown in Figure 9.2, some of these random

outputs produce good shape abstractions, while other random samples violate class semantics. With this in

136

mind, instead of attempting to get the LLM to perfect its implementation, we treat its output as a synthetic data

generator for a recognition network. To broaden the coverage and variety of structures that these ‘sample -

shape’ functions produce, we employ an iterative refinement loop that provides automatic feedback to the

LLM. This refinement procedure ensures that all functions and parameters in the library get used, and instructs

the ‘sample shape’ function to produce outputs spanning the observed structures from validation step (see

Appendix G.1.3).

Training a recognition network Once we’ve improved the ‘sample shape’ function through rounds of

iterative refinement, we can use it to produce training data for a recognition network. This network takes as

input a shape represented as a set of unordered primitives (e.g., Cuboid dimensions and positions). It outputs

a program that uses library functions to reconstruct this input shape. We implement this network as an

autoregressive Transformer decoder [209] with a causal prefix mask over the input shape representation. We

train this network from scratch, streaming random samples from the synthetic data generator: each program

we sample becomes a target output and we execute the program to find the corresponding input. Once

trained, we can use this network to find library function applications that explain shapes from outside of the

starting seed set (Fig. 9.2, right-bottom). Our inference procedure prompts the network with an input set of

unordered primitives and samples a large number of programs according the network’s predicted distribution.

We try executing each program, and we record its complexity (the number of tokens it uses) and its geometric

error against the input set. We choose the program that minimizes an objective that is a simple weighted

combination of these two values.

9.4 Results and Evaluation

We run experiments over multiple categories of 3D shapes (chair, table, storage, lamp, faucet).

For each category, an expert user provides design intent as (a) natural language descriptions of functions

that would be useful for this category and (b) a set of 20 seed shapes sourced from PartNet [141], which

has per-part annotations. We obtain corresponding renders of each shape from ShapeNet [16]. This input

is provided to ShapeLib, which then produces libraries of abstraction functions for each category. Unless

otherwise noted, we use OpenAI’s o1-mini as the LLM.

We find that ShapeLib discovers libraries that match the design intent, with validated implementations for

almost all of the functions specified in natural language (chair 8/8, table 5/6, storage 6/6, faucet

137

Table 9.1: We compare how well ShapeLib’s library of abstraction functions can generalize from the seed
set to held-out validation shapes. We report the objective score achieved by our method compared with
alternatives. Obj is a weighted average of the program DoF and the geometric error.

Set Method Obj ↓ Prog DoF ↓ Error ↓ # Lib Fns ↓ Dev Time ↓

Seed

Prims 73.0 73.0 0.000 0 0 h
LLM-Direct 64.0 61.6 0.242 5.6 0.25 h
ShapeCoder 43.8 39.9 0.389 19.2 20.26 h

ShapeLib 43.5 39.6 0.393 5.6 0.85 h

Method Obj ↓ Prog DoF ↓ Error ↓ # Shape Fns ↓ Inf Time ↓

Val

Prims 71.5 71.5 0.000 17.133 5.137 s
LLM-Direct 65.3 63.5 0.184 14.482 4.792 s
ShapeCoder 52.1 48.6 0.354 13.485 7.361 s

ShapeLib 51.5 47.8 0.369 9.592 5.137 s

5/5, lamp 4/4). Figure 9.3 shows examples of these implementations and applications.

We verify that our method is able to help realize the benefits of representing shapes in a procedural fashion

with experiments that match our stated desiderata (see Figure 9.4.). To evaluate generalization, we compare

recognition networks that infer programs from structured inputs (Section 9.4.1) and from unstructured ge-

ometry (Section 9.4.2). We then evaluate how well function applications are aligned with class semantics

(Section 9.4.3). Finally, we show that our interface is interpretable and maintains plausibility under manipu-

lations with a perceptual study that evaluates how well an LLM can edit our shape programs compared to a

baseline (Section 9.4.4)

9.4.1 Library Function Generalization

We measure how well our library generalizes beyond the patterns in the seed shapes. We compare against

three alternatives: Prims, LLM-Direct, and ShapeCoder. Prims refers to our representation of input shapes as

collection of unordered primitives – it is used as lower performance bound; LLM-Direct is an ablated version

of our method that only reasons over the natural language descriptions to discover a library of abstraction

and does not use seed shapes; while ShapeCoder only uses seed shapes. In our evaluations we show that

ShapeLib, which uses both forms of design intent, offers clear advantages over these alternatives.

We evaluate the ability of different methods to compress programs in Table 9.1. We report this over two

different shape sets: the seed set (20 shapes per category) and a held-out validation set (400-1000 shapes

per category). For ShapeLib and LLM-Direct, program applications are found for validation shapes using

the recognition network that takes as input a shape represented as a collection of unordered primitives (Sec-

tion 9.3). ShapeCoder develops and learns such a recognition network during its ‘library learning’ stage.

138

Table 9.2: We train networks that learn to map unstructured geometry (point clouds or voxels) to shape
programs. Learning with ShapeLib functions improves reconstruction Chamfer distance and voxel IoU.

Method CD ↓ (Point Clouds) IoU ↑ (Voxels)

ShapeCoder 0.0490 0.5708
ShapeLib 0.0467 0.6404

For both the seed set and the validation set, we report the total compression objective value (Obj). This is a

weighted sum of the degrees of freedom the program exposes (Prog DoF, weight 1), and the geometric error

of the reconstructions (Error, weight 10). We also report the number of functions used in each library (# Lib

fns), the time it took to discover each library (Dev time), the number of functions used per shape (# Shape

fns) and the average time it takes to infer a program for a validation shape (Inf Time).

From the results, we note LLM-Direct performs poorly, and its function implementations can’t find

applications that match well to real geometry (resulting in its limited objective improvement over Prims).

ShapeCoder is designed solely to perform well at program compression, but despite this, ShapeLib is able

to match or slightly outperform ShapeCoder with respect to the objective. Moreover, we achieve this result

much faster, using a smaller collection of library functions, and require less function calls to reconstruct

shapes during inference. We find library implementations in under an hour, whereas ShapeCoder’s bottom

up procedure takes around a day to converge (though our LLM API calls cost $5-10 per category).

9.4.2 Shape Programs from Unstructured Geometry

So far, we demonstrated that our recognition network from Section 9.3 can successfully convert semi-

structure geometric inputs into programs, but what about completely unstructured geometry such as point

clouds or voxels? To support this application, we train new recognition networks that take either point clouds

or voxels as input. We source training data using the original ‘structured’ recognition network to annotate

shapes in PartNet with corresponding programs. Per category, we use 400-4000 shapes for training and re-use

the same 400-1000 shapes as described previously for validation. We sample both point clouds and voxels

for each of the shapes.

Table 9.2 compares the reconstruction performance of a recognition network trained with function from

ShapeLib to a recognition network trained with functions from ShapeCoder. For point clouds, we track

Chamfer distance [45] between input point cloud (sampled from mesh geometry) and point cloud sampled

from abstracted cuboid outputs. For voxels, we track IoU between input voxelizations and voxelizations of

program outputs. We find that functions from ShapeLib enable more accurate reconstructions compared to

139

Table 9.3: We measure the ‘semantic entropy’ of library function applications by analyzing the distribution
of functions used to reconstruct parts in validation shapes. Lower values indicate more semantically aligned
usage.

Method Chair Table Storage Lamp Faucet

ShapeCoder 1.67 1.578 2.077 1.732 2.103
ShapeLib 0.484 1.095 0.745 0.684 1.243

Table 9.4: Fine-grained semantic segmentation performance found by applying functions over validation
shapes, and assigning labels with a voting scheme decided by seed-set usage patterns.

Method Precision ↑ Recall ↑ F1 Score ↑

ShapeCoder 0.25 0.30 0.27
LLM-Direct 0.34 0.12 0.18

ShapeLib 0.50 0.30 0.36

functions from ShapeCoder. We visualize some qualitative results for some validation shapes in Figure 9.4.

In addition to leading to better reconstructions, we also see that the application of our functions are more

strongly correlated with class semantics.

9.4.3 Sematic Consistency of Function Usages

Beyond reconstruction, the way in which functions are used also impacts the usefulness of the resulting

model. We design an experiment to evaluate the semantic consistency of function usages. We track how each

function is applied when reconstructing validation shapes, and record the semantic labels of the parts that it

matches against. Then, for each semantic label, we analyze the distribution of functions that were used to

construct parts of this type. If functions are well-aligned with semantics, i.e. have a consistent usage pattern,

then this distribution should have low entropy. We report results of this experiment in Table 9.3. Compared

with ShapeCoder, ShapeLib has a much lower semantic entropy, indicating that its assignment of functions

to part structures is more semantically aligned.

Semantic Segmentation Alternatively, we judge the semantic alignment of these libraries by using them

to perform semantic segmentation. We design an experiment to test these capabilities. For each function, we

look at validated applications made over the seed set, and record the semantic labels of parts that each function

explains. We then aggregate this information by counting the most commonly covered part labels to produce

a simple voting function to assign semantic labels when the function is applied. We evaluate the semantic

segmentation performance on fine-grained part labels from PartNet over validation shapes, and report results

of this experiment in Table 9.4. ShapeCoder and ShapeLib achieve a similar recall, but ShapeLib is twice as

140

Table 9.5: Results of our perceptual study evaluating edits made by an LLM to programs that use shape
abstraction libraries. We report judgments along two axes: shape plausibility and match to edit intent.

More Plausible(%) Better Matches Intent (%)

vs. ShapeCoder 75% 73%

precise in its semantic predictions. LLM-Direct is more precise then ShapeCoder, however without access to

seed set exemplars it cannot find many successful function application, resulting in poor recall.

9.4.4 Editing Shape Programs with LLMs

In this section, we investigate two critical questions concerning our library: is it interpretable and does it help

constrain shape plausibility. We consider these questions under the framing of a shape editing study. First,

we use the application network from Section 9.3 to find programs that explain validation shapes, using either

functions from ShapeCoder or ShapeLib. We then design a series of shape edit requests, and ask an LLM to

edit the text of the shape program to meet the request (i.e. change function parameters and how functions are

used, as depicted in Figure 9.1, for example).

To evaluate performance, we designed a two alternative forced choice perceptual study. We choose 5

shapes from the validation set of each category, and consider 4 edits per shape, giving us a cross-product

of 100 total comparison conditions. We provide o1mini with the fully implemented function library for

both ShapeLib and ShapeCoder conditions. For the ShapeCoder condition, we observed that o1mini produced

a program that failed on execution for 11/100 editing tasks, so we omit those from the study. o1mini never

produced a program that failed on execution for the ShapeLib condition. We recruited 13 participants who

made 50 perceptual judgments each. For each comparison, we show the original shape in the middle, and

arrange edits made using ShapeCoder/ShapeLib programs on either side, randomizing the left/right order.

We then ask each participant to make two judgments: (i) which manipulated shape was more plausible, and

(ii) which edit better matched the input edit request.

We report preference rates of ShapeLib over ShapeCoder along these two axes in Table 9.5. These results

support our claim that our library of shape abstraction functions provides an interface that is easy to interpret

and maintains strong plausibility under parameter variations. We show qualitative demonstrations of these

edits in Figure 9.4, and observe higher semantic alignment of LLM edits, when these edits are made over

ShapeLib programs.

141

9.5 Discussion

We have presented ShapeLib as the first method that combines general semantic priors from LLMs with

domain-specific information in the form of small seed set of shapes to produce a function library that gener-

alizes to a full category of shapes and exposes interpretable parameters that produce plausible results under

manipulation. This addresses the long-standing problem in visual program induction to create programs that

are not only compact, but also semantically well-aligned and thus easy to work with for both humans and

LLMs.

9.5.1 Relation with LILO

LILO is a related contemporary approach that proposes making use of an LLM prior for general (i.e., non-

shape-specific) library learning [58]. Interestingly, the LLM in this method does not guide a top-down search

for new abstractions, but rather tries to add semantic information to functions proposed in a bottom-up fash-

ion. The method is a spiritual successor to DreamCoder [42], with a few critical differences. It does not train

a recognition network, so there is no dream phase. Instead the wake phase uses both enumerative search and

a LLM as a program synthesizer. The interface of the abstraction phase is unchanged, but the STITCH [11]

algorithm replaces the version space reasoning from DreamCoder. Once abstractions have been proposed,

LILO uses the LLM to automatically document each function: given its definition and example usages the

LLM gives the function a readable name and a doc-string explanation. This reformatting is what allows the

LLM to act as successful program synthesizer in the wake phase.

Like DreamCoder, LILO is dependent on the wake phase for finding complete solutions for at least some

tasks before any abstraction discovery can take place. While LLM program synthesis priors can help allevi-

ate this issue for many types of general domains, zero-shot visual program induction for complex shapes is

outside of the capabilities of current models. Further, when abstraction functions are proposed in a purely

bottom-up fashion, interpretability issues will remain, even with LLM integration, as there can be no guaran-

tee that the function logic, or exposed interface, will have relevant semantic mappings.

142

def sled_base(
 CF: CoordFrame,
 orientation: str,
 size: float,
 runner_height: float,
 include_top_stretchers: bool = False

) -> List[Part]:
 """
 Description: Creates a sled base for table objects with four

 vertical legs positioned at the corners. It includes two sled
 runners connecting pairs of legs to provide stability. The
 runners can be oriented either laterally (connecting the back
 and front legs) or horizontally (connecting the left and right legs).
 Optionally, top bar stretcher parts can be added above each sled
 runner in a mirrored fashion, attaching to the top of the CF.

 Parts: When include_top_stretchers is False returns a list with 6
 Part objects (4 legs and 2 runners). When include_top_stretchers
 is True returns a list with 8 Part objects (4 legs, 2 runners, and
 2 top stretchers). Valid options: [6, 8]

 Parameters:
 - CF: controls the dimensions and position of the structure
 - orientation: specifies the orientation of the sled runners.

 Valid options: ('lateral', 'horizontal')
 - size: controls the size of each leg and runner
 - runner_height: controls the height of the runners
 - include_top_stretchers: optionally includes top bar stretchers

 above the runners, default is False
 """
 left = CF.x_pos - CF.width / 2
 right = CF.x_pos + CF.width / 2
 front = CF.z_pos + CF.depth / 2
 back = CF.z_pos - CF.depth / 2

 # Create legs at the four corners
 legs = []
 for x in [left + size / 2, right - size / 2]:
 for z in [back + size / 2, front - size / 2]:
 legs.append(Part(
 width=size,
 height=CF.height,
 depth=size,
 x_pos=x,
 y_pos=CF.y_pos,
 z_pos=z
))

 ...

tabletop_with_underneath_frame(...)

tabletop_with_side_frame(...)

sled_base(CF,
'lateral’,

0.09,
 0.11,
False)

sled_base(CF,
'lateral’,

0.07,
0.07,
True)

sled_base(CF,
'lateral’,

0.08,
0.09,

 False)

sled_base(CF,
'lateral’,

 0.07,
0.07,

False)

def cabinet_drawers(
 CF: CoordFrame,
 number_of_drawers: int,
 vertical_gap: float,
 drawer_depth: float,
 handle_width: float,
 handle_height: float

) -> List[Part]:
 """
 Description: Creates a series of vertically stacked cabinet drawers

 within the given CoordFrame. Each drawer features a centrally
 located handle. The number of drawers, the vertical gap between
 them, depth, and the handle dimensions can be customized.

 Parts: For each drawer unit, two Parts are created (the drawer
 and its handle). Thus, the total number of Parts is 2 multiplied
 by number_of_drawers. Valid options: [2, 4, 6, 8, 10]

 Parameters:
 - CF: controls the dimensions and position of the structure
 - number_of_drawers: specifies the number of drawer units

 to create (min 1, max 5)
 - vertical_gap: controls the vertical space between each pair

 of drawer units
 - drawer_depth: controls the depth of each drawer part
 - handle_width: controls the width of each handle part
 - handle_height: controls the height of each handle
 """
 front_thickness = 0.03 # Fixed thickness
 # Calculate the height of each drawer
 total_gaps = vertical_gap * (number_of_drawers - 1)\

 if number_of_drawers > 1 else 0
 drawer_height = (CF.height - total_gaps) / number_of_drawers
 # Starting y position (bottom drawer center)
 start_y = CF.y_pos - (CF.height / 2) + (drawer_height / 2)
 for i in range(number_of_drawers):
 # Calculate y position for the current drawer
 y_pos = start_y + i * (drawer_height + vertical_gap)
 drawer_z_pos = CF.z_pos+(drawer_depth – front_thickness) / 2
 drawer = Part(
 width=CF.width,
 height=drawer_height,
 depth=front_thickness,
 x_pos=CF.x_pos,
 y_pos=y_pos,
 z_pos=drawer_z_pos)
 ...

def shelving_units(...)

def storage_area_frame(...)

cabinet_drawers(CF,

2, 0.0, 0.03,
0.24, 0.02)

cabinet_drawers(CF,

5, 0.04, 0.04,
0.17, 0.04)

cabinet_drawers(CF,

1, 0.19, 0.09,
0.15, 0.02)

cabinet_drawers(CF,

4, 0.0, 0.04,
0.15, 0.03)

def lever_handle_set(
 CF: CoordFrame,
 handle_width: float,
 handle_cross_size: float,
 support_cross_size: float,
 support_height: float,
 base_cross_size: float = 0.0,
 base_height: float = 0.0
) -> List[Part]:
 """
 Description: Creates a pair of sink handle units arranged in a
 bilaterally symmetric layout. Each unit features a horizontally
 oriented lever handle supported vertically by a support part.
 The centers of the levers and the supports are offset along the
 X axis to allow the levers to swing. For example, the right lever
 has its left end positioned over the center of its support part.
 Optionally, a base part can be added underneath each support
 to provide additional stability.

 Parts: When both base_cross_size and base_height are greater
 than 0.0, returns a list with 6 Part objects. Otherwise, returns
 a list with 4 Part objects. Valid options: [4, 6]

 Parameters:
 - CF: controls the dimensions and position of the structure
 - handle_width: controls the width of each lever handle
 - handle_cross_size: controls the cross-sectional size
 (height and depth) of each lever handle
 - support_cross_size: controls the cross-sectional size
 (width and depth) of each vertical support part
 - support_height: controls the height of each vertical support part
 - base_cross_size: optionally controls the cross-sectional size
 (width and depth) of each base part. Default is 0.0
 - base_height: optionally controls the height of each base part.
 ""”

 # Calculate handle positions
 left_handle_x = CF.x_pos - (CF.width / 2) + (handle_width / 2)
 right_handle_x = CF.x_pos + (CF.width / 2) – (handle_width / 2)

 # Calc support positions with offset to allow swinging
 support_offset = handle_width / 3
 left_support_x = left_handle_x + support_offset
 right_support_x = right_handle_x - support_offset

 ...

bar_handle_unit(...)

tube_and_spout(...)

lever_handle_set(CF,

0.44, 0.13,
0.17, 0.31,
0.29, 0.04

lever_handle_set(CF,

0.39, 0.09,
0.14, 0.55,
0.21, 0.04)

lever_handle_set(CF,

0.45, 0.25,
0.17, 0.15,
0.32, 0.07)

lever_handle_set(CF,

0.52, 0.14,
0.16, 0.38,
0.29, 0.08)

def hanging_lamp(
 CF: CoordFrame,
 mount_height: float,
 mount_size: float,
 chain_size: float,
 shade_height: float,
 shade_size: float,
 lamp_head_height: float = 0.0,
 lamp_head_size: float = 0.0

) -> List[Part]:
 """
 Description: Creates a ceiling-hanging lamp object consisting of

 a ceiling mount, a central chain, and a lamp shade, all vertically
 aligned and descending from the ceiling. Optionally, a lamp head
 can be inserted between the chain and the lamp shade. All parts
 have square cross-sections (width and depth). The combined
 heights of all included parts equal the height of the bounding CF.

 Parts: When both lamp_head_height and lamp_head_size are
 greater than 0.0, returns a list with 4 Part objects. Otherwise,
 returns a list with 3 Part objects. Valid options: [3, 4]

 Parameters:
 - CF: controls the dimensions and position of the structure
 - mount_height: controls the height of the ceiling mount part
 - mount_size: controls the cross-sectional size

 (width and depth) of the ceiling mount part
 - chain_size: controls the cross-sectional size

 (width and depth) of the central chain part
 - shade_height: controls the height of the lamp shade
 - shade_size: controls the cross-sectional size

 (width and depth) of the lamp shade part
 - lamp_head_height: optionally controls the height of the lamp

 head part, default is 0.0
 - lamp_head_size: optionally controls the size

 (width and depth) of the lamp head part, default is 0.0
 """
 parts = []

 # Calculate y boundaries
 y_max = CF.y_pos + CF.height / 2
 y_min = CF.y_pos - CF.height / 2

 # Calculate total height of specified parts
 specified_height = mount_height + shade_height
 if lamp_head_height > 0.0 and lamp_head_size > 0.0:
 specified_height += lamp_head_height
 include_head = True
 ...

basic_upright_lamp(...)

wall_mounted_lamp(...)

hanging_lamp(CF,

0.02, 0.18,
0.08, 0.17,
0.75, 0.34,

0.68)

hanging_lamp(CF,

0.03, 0.14, 0.2,
0.25, 1.21, 0.0,

0.0)

hanging_lamp(CF,

0.09, 0.12,
0.02, 0.15,

0.12, 0.06, 0.2)

hanging_lamp(CF,

0.04, 0.24,
0.02, 0.38,
0.48, 0.08,

0.16)

Tables Storage Furniture

LampsFaucets

+ 3 fns + 4 fns

+ 3 fns + 2 fns

Figure 9.3: Examples of functions from the shape libraries discovered by ShapeLib. For each category,
we show a function implementation, and a few example applications of the function. For each application,
we show the full output shape, with parts corresponding to the function marked in the same color as the
function name, and the function parameters. We can see that function applications are well-aligned with part
semantics and that each function typically requires only a small set of parameters to represent a rich variety
of part shapes.

143

making it
twice as wide

Ch
an

gi
ng

 th
e

ba
r o

rie
nt

at
io

n

ShapeLib ShapeCoder

ShapeLib

ShapeCoder

Input
Point Cloud

ShapeLib

ShapeCoder

Input
Point Cloud

M
ak

in
g

ht
e

le
gs

 sk
in

ni
er

ad
di

ng
 a

rm
re

st
s

re
m

ov
in

g
th

e
ar

m
re

st
,

m
ak

e
th

e
le

gs
 sh

or
er

ShapeLib ShapeCoder ShapeLib ShapeCoder ShapeLib ShapeCoder

Adjust this
shape by ...

adding leg braces
to improve stability

making it taller,
without changing

the height of the seat

Figure 9.4: ShapeLib’s abstraction functions provide a semantically aligned and interpretable interface that
support downstream applications: text-based LLM editing and visual program induction from unstructured
geometry.

Chapter 10

Conclusion and Future Directions

This thesis has introduced a series of neurosymbolic methods that aid in shape analysis and generation.

These works demonstrate how the traditional limitations of procedural shape representations can be miti-

gated through the thoughtful integration of learning-based components and sub-modules. Our discussion

focused on three lines of investigation. Generating Shape Programs (a): We proposed one of the first sys-

tems that realized the complementary strengths of neural and procedural generative models by introducing

a hybrid neural-procedural approach for synthesizing novel shape structures. Visual Program Induction (b):

We developed PLAD, a flexible and general framework that trains VPI networks without program annota-

tions, treating the executor as a black-box, and offering better convergence properties compared with policy

gradient alternatives. We explored extensions of PLAD, finding that we could improve VPI performance by

training networks that learn how to edit programs and that this self-supervised framework could be used to

infer partial programs that could capture a collection of visual inputs, e.g. a concept. Abstraction Discovery

(c): We investigated methods that automatically produce DSLs tailored for a particular modeling task (e.g.

a category of objects). In ShapeMOD, we introduced the first work that successfully scaled library learning

techniques to complex 3D shape structures, starting from a input dataset of imperative programs. ShapeCoder

relaxed this input assumption, discovering abstraction libraries from a dataset of shapes represented as col-

lections of unstructured primitives. As these bottom-up approaches lack semantic guidance, we developed an

alternative top-down solution in ShapeLib, that guides a LLM through the process of designing procedural

abstraction functions.

While these narrative delineations might imply that these lines of investigation are isolated, the reality

is that they are actually quite complementary. Training generative neurosymbolic models (a) often requires

144

145

access to a dataset of shape programs, these could be sourced by methods from (b). Conversely, the training

schemes we’ve developed within (b) often make use of generative models that author shape programs (a),

e.g. in ‘wake-sleep’ phases. Access to better domain-specific libraries produced by abstraction discovery

methods (c) simplifies learning tasks (a, b), while identifying when procedural libraries are better or worse

often requires the ability to know how candidate abstractions could be used to represent shapes from some

collection (b). Together, these neurosymbolic approaches form a cohesive toolkit, promising a virtuous cycle

of improvement, and help to realize the strengths of procedural shape representations in a flexible, adaptable

fashion.

10.1 Future Work

While we propose a catalog of neurosymbolic techniques that help to alleviate the limitations of procedural

shape representations, there are many avenues of future work left to explore. Our contributions advance the

state-of-the-art performance of neurosymbolic methods for shape analysis and generation tasks, yet these

capabilities are still largely tied to relatively simple domains and problem framings when compared with

‘production-level’ procedural assets. While there is some hope that existing methodology could narrow this

gap through resource scaling (e.g. data, annotations, computation), closing this gap completely (or, at the

very least, in a cost-effective manner) will likely require further research and innovation. We conclude this

dissertation by discussing future directions of particular note.

10.1.1 Controllable Dense Geometry

In this dissertation, we have mostly discussed structured shape representations. Instead of trying to capture

the geometric surface details (i.e. dense geometry) directly, these methods might use primitives as coarse part

proxies to represent a shape at a slightly abstracted level. Some complementary analysis and manipulation

works have made use of such structured representations for tasks such as segmentation [51] or deforma-

tion [192, 234]. In terms of shape generation, end-users typically want high-fidelity assets that could be

placed directly in artificial worlds and applications; this demand is driving the rising popularity of easy-to-

use text to 3D models [65, 125, 79]. To create such detailed assets in a structured, controllable fashion, some

methods have been proposed for shape stylization, where (decoupled) coarse geometry can be ‘up-sampled’

through a style encoding [20, 23]. These aforementioned approaches treat structure generation and detal-

ization as separate steps, but is this the only way neurosymbolic methods can be used for shape modeling?

146

One alternative is to ‘bottom-out’ symbolically: e.g., attempt to find a program that can explain the detailed

version of a shape. This is a very sensible approach for certain domains, like CAD modeling of mechanical

parts, as having access to a ‘complete’ program can be important for downstream analysis and many such

shapes were designed through CAD programmatic workflows. On the other hand, for some domains the ben-

efits of this framing is less clear: scans of real-world 3D objects might not have a good procedural equivalent,

or even if one can find a good procedural equivalent it may be too complex to offer any real benefit. For

these domains, we may want to keep an explicit separation between ‘structure’ and ‘style’, but this doesn’t

mean that these modes need to be ignorant of one another. One option here is to guide the outputs of an un-

structured generative shape model through structured conditioning [185, 239]. Alternatively, the DSL could

contain ‘neural’ operators that produce controllable sub-shapes that can be manipulated by other program-

matic functions [34]. Beyond a successful decoupling of shape structure and style, these methods will realize

their full potential when this style decoupling matches our design criteria for the shape structure: exposing a

controllable, interpretable interface that allows for analysis and creative manipulations.

10.1.2 Visual Program Induction beyond Shapes

We’ve introduced a number of methods that advance the field of visual program induction. Most of this

analysis has been performed on manufactured 2D and 3D shapes, but there exist many exciting opportunities

to scale these insights to related domains. Closely related to manufactured shapes are organic shapes like

humans, animals and plants: great effort has already been expended to develop structured proxies for some

members of these classes [117, 128, 179, 226]. When procedural analogs are available, this inverse task

becomes more constrained, though often there is still room for these representations to become more ‘pro-

grammatic’. Building and facade modeling is another interesting problem area with higher visual complexity,

but more within-sample regularity [142, 186]. For graphics content more broadly, one could imagine find-

ing programmatic representations for movement, e.g. agent behavior [127], repetitive exercise [112], sports

analytics [238]; environments, e.g. indoor rooms [212], floor plans [214], city scapes [225]; or even ‘natu-

ral’ images or videos. Further afield, some of our insights might even be relevant to more general program

synthesis problems that are non-visual, including music synthesis [83] or molecule generation [196].

In terms of methodology, there are few unanswered questions that would be interesting to explore. In

Chapter 5, we found that training program editing networks on data sourced from edit difference scripts

outperformed data sourced from corruption processes. Both approaches require a hand-crafted machinery

(how to corrupt, how to convert one program into another), so it would be interesting to try to automate these

147

in a fully domain-agnostic fashion. One could also investigate if edit scripts and program corruption are

complimentary with one another, or what types of domains favor either approach. Beyond that, it would be

interesting to formulate a system that integrates such ‘learning’ based program rewriters with ‘non-learning’

based rewriters like those used in SIRI [53]. When the executor is not just a black-box, some types of program

manipulations can be better done automatically (e.g. using parameter optimization to tweak continuous

values), while other types of program manipulations might be better left for the edit network (e.g. structural

manipulations). Relatedly, extending these types of VPI methods to more natural image/video domains will

likely require some form of ‘neural’ concept integration [240], and one could imagine concept embedding

manipulation as another form of ‘program-rewriting’.

A subtle, though powerful, benefit of performing visual program induction over shape domains lies in

the reconstruction-based reward formulation. Shape program ‘goodness’ is usually evaluated with geometric

error with respect to a target shape: this error metric provides a relatively non-sparse signal that rewards

partially correct predictions. Like other unsupervised program synthesis approaches, the PLAD framework

(Chapter 4), and its extensions, require signal to judge the fidelity of predicted programs. Finding an error

metric that is compatible with PLAD training may be more challenging for other domains, and some alter-

ations to the method may need to take place to explicitly reward well-matching local structures produced by

self-consistent sub-program components (i.e. a chunk of code that reconstructs one building out of many in a

city). An attractive alternative might be to instead use a policy network to guide self-supervised training, for

instance a network that models how ‘far-away’ a program is from a target state [102]. Though learning such

a network is challenging, this framing could be very powerful under the right conditions.

Typically, networks for visual program induction have been trained ‘from scratch’ (i.e. without a pre-

training phase on some other task / dataset). As mentioned in Chapter 4, these networks are often initialized

by training on synthetic data: programs (and their executions) sample from some random procedure. The

rise of LLMs challenges this paradigm, as many visual program induction tasks can be framed as program

synthesis tasks in more general languages (e.g. a python program that imports a visualization/graphics li-

brary). Though this approach is clearly superior for general languages, its less clear what advantages LLMs

(or VLMs) offer for program synthesis tasks under more constrained DSLs. Their pretraining phase gives

them a strong ‘coding prior’, but when synthetic data generators can be produce infinite in-domain data, how

much of this prior is needed? Investigations that offer robust analysis into this tradeoff would likely be well

received. A related idea has explored how LLMs can act as an ‘easy-to-implement’ data generator. The

aforementioned random program sampling procedures typically require some domain-specific logic, which

148

is sometimes carefully crafted to match expected test-time distributions [206]. With LLMs, this process can

be dramatically simplified, if one is willing to pay a compute/API cost: simply append a few seed example

programs to a prompt, and ask the LLM to produce similar programs [123, 122]. One unexplored idea in this

space is to take a hybrid framing: ask a LLM to gradually improve the design of a programmatic sampling

procedure.

10.1.3 Procedural Abstraction Discovery

This dissertation has introduced three works that discover libraries of procedural abstractions functions:

ShapeMOD (Chapter 7), ShapeCoder (Chapter 8), and ShapeLib (Chapter 9). The formulation presented

in ShapeLib reflects our current best guess concerning the future of library learning for complex 3D shapes:

using LLMs, under minimal human guidance, to search for abstractions that meet an input specification. In

the following paragraphs we reflect on the future avenues along this research direction.

ShapeLib extensions One limitation of the current framing of ShapeLib is that we require users to specify

up-front all of the abstraction concepts they would like the system to discover. This could be improved by

recasting this process in an iterative loop: the user specifies some initial concepts, ShapeLib tries to find

implementations, and then reports back to the user. The user could then update concept descriptions to better

align them with LLM priors, or may be inspired to suggest new concept descriptions by looking at shapes

that are poorly covered by the proposed abstractions. Alongside this, it would be interesting to investigate

how well an LLM prior could be used to automatically propose new abstraction concepts based on the initial

design intent (descriptions or seed set).

ShapeLib’s functions produce cuboid primitives that represent part bounding boxes. Instead of trying to

completely reproduce surface geometry, we capture a structured shape representation useful for downstream

tasks. While this representation can already be directly useful for analysis and manipulation tasks, more ma-

chinery must be developed to convert these structured representations into production quality assets. Ideally,

this could be done in a way that decouples local geometry (so each individual function can still be edited)

while still exposing relevant tunable parameters for the style (dense geometry / texture / materials).

While ShapeLib is able to find abstractions that meet a user’s design intent, currently this process starts

from scratch with each invocation. With the proper infrastructure, one could imagine ShapeLib blossoming

into an organic ecosystem, where successful abstractions are maintained and curated by a community of

procedural modelers. This centralized knowledge-base would at once simplify ShapeLib’s directive, allowing

149

it to reuse or be inspired by its previous solutions, while at the same time reforming task-specific abstraction

functions into a category-general procedural modeling library.

Merging bottom-up and top-down methods While ShapeLib’s top-down framing offers many benefits,

this perspective cannot make full use of the bottom-up abstraction discovery machinery developed within

ShapeMOD and ShapeCoder. One might then ask: is there a hybrid solution that meets somewhere in the

middle? This may be possible, consider for instance a method that first partitions the broad library learning

objective into digestible sub-tasks, that are then satisfied through bottom-up candidate proposal, and finally

validated with top-down semantics. The LILO system [58] takes a hybrid stance along this line, using top-

down semantic knowledge to document abstractions found from a bottom-up procedure, but there may be

further opportunities to integrate top-down reasoning into such library learning systems.

Leveraging existing procedural assets The library learning works we’ve proposed often try to reduce the

amount of structured system inputs as much as possible. Though this framing is general, and intellectually

interesting, it neglects to make use of an available resource: existing procedural models! Why might these be

useful? A well-structured procedural model could become relevant context as part of LLM prompts, e.g. as

a guide for what ‘well-designed’ means. One could also imagine a gradual evolution of a procedural model,

where a starting version is improved through iterative edits to capture a more diverse output distribution or

specialize its productions with respect to certain criteria. Beyond making use of single procedural models,

there are also opportunities for works in this space to learn from or condition on datasets of procedural

representations and functions [165, 168, 167].

10.1.4 Programmatic Shape Analysis

Up to this point, we’ve discussed methods that aim to represent shapes in a neurosymbolic fashion to sup-

port generation and analysis tasks. A subtly different line of investigation might try to analyze shapes in a

neurosymbolic manner. For instance, there has been some recent works that explore how programs can be

used in visual analysis tasks, especially within the field of visual question answering, or VQA. In VQA, a

visual input (usually an image) and a question (in the form of natural language) are presented to a system,

which must output an answer. Prior works have explored converting such questions into ‘query programs’,

which can then operate over a processed version of the image (e.g. object-centric representations). While

a number of these methods have shown proficiency on artificial domains [89, 90, 131, 233, 69], only very

150

recently have similarly inspired approaches seen success in scaling to ‘real-world’ use-cases by leveraging

LLMs [67, 199, 195].

Though these advances for neurosymbolic image analysis have not yet proved useful for 3D shapes, this

is an area ripe for investigation. Semantic segmentation is a foundational visual computing problem that

might especially benefit from this sort of neurosymbolic framing. Many applications and methods, including

some of the ones proposed in this dissertation, require fine-grained hierarchical part decompositions of 3D

shapes. A large body of research has investigated learning-based approaches for this task, but a key issue is

that labeled data is often limited, especially for fine-grained label sets. Though this issue can be mitigated

somewhat through modular approaches that factorize this task into more manageable sub-problems ([96],

[97]), these approaches are still quite data-hungry and significantly underperform against expert annotators.

For inspiration on how these systems could be further improved, one can look to how people go about

decomposing shapes into parts. PartNet [141], is one of the only existing large-scale datasets of 3D shapes

that has fine-grained part annotations. Interestingly, in the interface that PartNet labelers used to make the

annotations, the instructions for how to label each semantic part were given in the form of both rules &

examples. For instance, when labeling a back-frame part, an annotator would be shown an example of a

back-frame part in the context of a chair, and then also given a definition that a back-frame typically ‘outlines

the backbone of a chair back’. Could learning-based approaches for semantic segmentation benefit from the

same kinds of symbolic information? Exploring how to convert discrete part-based relationships, like one

part outlining another part, into programmatic rule-expressions promises an intriguing future direction.

Appendix A

Additional Details for ShapeAssembly

In Appendix A, we supply additional details for the ShapeAssembly method introduced in Chapter 3.

A.1 Semantics of the attach Command

In designing the SHAPEASSEMBLY interpreter, our goal is to ensure that its internal operations stay limited

to simple fixed-function, differentiable operations. Thus, implementing the attach command, we opt not

to use any constrained optimization routines which could resolve a globally-optimal configuration of cuboids

given the attachment constraints. Instead, the interpreter immediately executes each attachment as it is de-

clared, i.e. it greedily solves for attachments. To make the behavior of this procedure as predictable as

possible, the greedy attachment procedure should induce the fewest changes possible to the current cuboid

shapes.

With these desiderata in mind, we designed the following procedure for attaching cuboid c1 to cuboid c2

(see Figure A.1). The logic that executes depends upon how many prior attachments c1 has and the aligned

flag of c1:

No prior attachments In this case, cuboid c1 can connect to cuboid c2 by simply translating until the

attach points are colocated.

One prior attachment Here, the interpreter scales cuboid c1 along one of its axes and then rotates it such

that the attachment is satisfied. To choose the axis along which to scale c1, the interpreter checks how quickly

scaling each of its three dimensions would reduce the ratio n/k, where n is the distance between c1’s existing

attachment point and the new target attachment point, and k is the distance between c1’s existing attachment

151

152

0

1 𝑛

𝑘

𝑛

2+ If existing attachments are colinear Side view

𝜃 < 𝜏 ?

Figure A.1: Illustrating how the attach command executes, depending on the number of existing attach-
ments (left column) to the cuboid in question. Cuboids with no existing attachments can simply be translated
into place (top). Cuboids with one existing attachment can be scaled along one axis and then rotated (middle).
Cuboids with two or more existing attachments are more complicated, and the attachment may not always be
satisfiable. Our interpreter attempts to rotate and scale the cuboid to get as close as possible to valid solution.

153

point and the new source attachment point. The interpreter then scales c1 by n/k along this dimension, which

gives it the correct length. Finally, c1 is rotated such that the source and target attachment points are colinear

(and thus colocated).

Two or more prior attachments In this case, it is not always possible to satisfy the attachment, as three

point constraints on a cube may be overconstrained. If a solution exists, however, our interpreter will find

it. And in the case where no solution exists, it attempts to approximately satisfy the attachment (which we

decided to be more user-friendly behavior than throwing an error).

First, the interpreter checks if c1’s existing attachment points are all colinear. If they are, then it rotates

c1 about this axis of colinearity to make the source attachment point face the target attachment point. The

final step is to scale c1 along the normal of the face containing the source attachment point. If the existing

attachment points were not colinear, and this face was not rotated to point toward the target attachment point,

then this may not be a useful operation (i.e. it may introduce undesirable change to the cuboid shape while

doing little to bring the source point closer to the target point). Thus, the interpreter only executes this scale

if the angle between the source face normal and the vector to the target point is smaller than a threshold τ (25

degrees in our implementation).

Aligned Cuboids Cuboids that are marked as aligned in SHAPEASSEMBLY programs cannot have their

orientations changed through attachment. In fact, with correct cuboid dimension parameterization, a single

attachment is enough to properly position and orient an aligned cuboid. However, in order to ensure that

aligned Cuboids remain connected through edits and predictions of our generative model, we minimally

grow aligned cuboid dimensions to satisfy the part-to-part connectivity specified through attachments. That

is, for aligned cuboids we do not guarantee attachment point colocation after the first attachment, as this is

often impossible to exactly fulfill without changing a cuboid’s orientation. Rather, we guarantee that aligned

cuboids will fulfill attachment relationships with cuboids they are attached to at some attachment point.

A.2 Semantics of SHAPEASSEMBLY Macro Functions

We provide an account of the logic for macro function expansion in SHAPEASSEMBLY :

Squeeze. The squeeze macro is parameterized by three cuboids (cn1, cn2, cn3) a face f and a (u, v)

position on f ’s 2D coordinate system. A squeeze command expands into two attach functions. The first

attach function attaches the center of cn1’s f face to the (u, v) position on the opposite face of f on cn2. The

second attach function attaches the center of cn1’s opposite face of f to the (u, v) position on the face of f

154

on cn3. For example, the line squeeze (cn1, cn2, cn3, left, .1, .4). It expands into attach(cn1, cn2, 0.0, .5,

.5, 1.0, .1, .4) and attach(cn1, cn3, 1.0, .5, .5, 0.0, .1, .4).

Reflect. The reflectmacro is parameterized by a cuboid cn and an axis a. A reflect command first

expands into one Cuboid function, that creates a new cuboid cn′ with the same parameters as cn. Then for

every previous attachment line pair that had moved cn, of the form attach(cn, cm, x1, y1, z1, x2, y2, z2),

the reflect command creates a new attachment line: attach(cn′ , cm, x1, y1, z1, R(x1, y1, z1, cn, cm, a)). R

is a function that applies a reflection of the global point specified by (x1, y1, z1) in the local coordinate frame

of cn about the axis a, and then returns the local coordinates of that point within cm.

Translate. The translate macro is parameterized by a cuboid cn, an axis a, a number of members

m, and a distance d. A translate command first expands into m Cuboid functions, that each creates a

new cuboid cni with the same parameters as cn. Then for every previous attachment line pair that had moved

cn, of the form attach(cn, cm, x1, y1, z1, x2, y2, z2), the translate command creates a new attachment

line attach(cni
, cm, x1, y1, z1, T (x1, y1, z1, cn, cm, a, d)). T is a function that applies a translation of the

global point specified by (x1, y1, z1) in the local coordinate frame of cn along the axis a (of the bounding

volume) for for a distance of d (where d is normalized by the size of the bounding volume), and then returns

the local coordinates of that point within cm.

A.3 Program Extraction Procedure

Here, we provide an account of our program extraction procedure in greater detail:

Part Shortening Before any hierarchical processing, we first attempt to regularize any artifacts in the input

data. Specifically, for each leaf cuboid part proxy, we check if any of its faces are completely contained

within any other leaf cuboid. If we find that we can shorten a leaf cuboid without changing the visible,

non-intersecting, geometry of the part graph, we do so.

Semantic Hierarchy Arrangement During our data preprocessing stage when converting PartNet part

graphs into SHAPEASSEMBLY programs, we locally flatten part graph hierarchies based on semantic rules as

depicted in Figure 3.5. For chairs we flatten the following nodes: back, arm, base, seat, footrest and head. For

tables we flatten the following nodes: top and base. For storage we flatten the following nodes: cabinet frame,

cabinet base. For storage, we move the following nodes into the cabinet frame sub-program: countertop,

shelf, drawer, cabinet door and mirror. We also perform a semantic collapsing step where the intermediate

155

nodes containing detailed geometry are converted into leaf nodes and their children are discarded. For chairs

we collapse the following nodes: caster and mechanical control. For tables we collapse the following nodes:

caster, cabinet door, drawer, keyboard tray. For storage we collapse the following nodes: drawer, cabinet

door, mirror and caster. Empirically we observed that this method of hierarchy re-arrangements produces

cleaner and more regularized training data for our generative model.

Attachment Point Detection In order to identify which cuboids connect, and where they connect, we use

a point cloud intersection procedure. We sample a uniform 20x20x20 point cloud within the volume defined

by each cuboid. To check if two cuboids are attached, we find the set of points in the pairwise point cloud

comparison that have a minimum distance to any point in the other point cloud within a distance threshold

determined by the scale of the larger cuboid. For cuboids that attach (i.e. this intersection set is non-zero)

we sample a denser 50x50x50 point cloud within the bounds of the detected intersection volume, forming a

set of candidate attachment points. From this set we first filter all attachment points that are outside of either

cuboid. If any remaining attachment points form face-to-face connections between cuboids we choose them,

otherwise we define the attachment as taking place at the mean of the remaining attachment points. With the

same procedure, we also record if cuboids connect to the top or bottom of the bounding volume. Sampled

points with bounding volume local y-coordinates in the ranges of [0, 0.05] and [.95, 1.0] are assigned to the

bottom and top respectively.

Symmetry Detection We enforce that all members of a symmetry group share the same connectivity struc-

ture in the input part graph. Cuboids are grouped together by symmetry if they: (i) connect to the same

cuboids, (ii) share a reflectional or translational symmetry about the X, Y or Z axis of their parent bounding

volume, and (iii) each attachment point involved in their outgoing connections also shares this same symmet-

rical relationship. Two cuboids, or two attachment points, are considered to share a symmetrical relationship

if applying the symmetry transformation matrix to one member produces a parameterization close to that of

the other member.

Notice that this procedure can disqualify symmetry formation about groups of interconnected cuboids

that share a symmetrical relationship. As such, before forming symmetry groups about individual cuboids,

we attempt to form symmetry groups about connected components of multiple cuboids. Whenever such a

component is found, we locally abstract its structure with a bounding volume, and create a symmetry group

156

sub-program. In this manner, we capture additional spatial symmetries while continuing to enforce the rela-

tionship between symmetry and part connectivity. The ”H-leg” program (Program3) in Figure 3.2 shows an

example of where such a symmetry sub-program was formed.

In total, our parsing procedure finds valid SHAPEASSEMBLY programs for 46% of Chairs, 65% of Tables

and 58% of Storage shapes in PartNet.

A.4 Decoder Semantic Validity Checks

During the process of decoding a latent code, our generative network enforces the following semantic validity

conditions on its outputs:

• XYZ attachment coordinates are clamped between 0 and 1.0. Additionally, attachments to the bounding

box can only be at the top or bottom faces with an allowable error of .05.

• Cuboid dimensions are clamped between 0.01 and the corresponding bounding box dimension

• Bounding box cuboids can have no sub-programs

• Cuboids only attach at a single location. As an exception, cuboids are allowed to attach to both the top

and bottom faces of the bounding volume.

• The bounding box cannot be moved by an attach command

• Attachment orderings must be grounded. Upon terminating, any ungrounded cuboids instantiations are

discarded.

• Symmetries can only operate on grounded cuboids

• The ordering of Cuboid, attach, squeeze, reflect, and translate lines must be consistent with the SHA-

PEASSEMBLY grammar.

• Commands must keep cuboids within the bounds of the defined bounding volume with an allowable

error of 10%.

During generation, if our model predicts a non-semantic program line, we attempt to back-track until

we are able to find a semantically valid solution. For instance, if we predict a new line to be a reflect

157

command, but no cuboids have been grounded, we pick a new command type for the line by zeroing out the

logits for the reflect command index.

In some cases, a combination of bad continuous parameters and program structure predictions produce

a violating line that cannot be easily fixed. During unconditional generation, we reject the sample if we en-

counter this behavior (this happens for 10% - 20% of our random samples across the categories we consider).

We run an ablation on this rejection sampling in Table 3.2. During interpolation, we never reject a sample.

Instead, we simply do not add lines to the predicted program for which we could not find a fix.

A.5 Shape Quality Metrics

We provide additional details about the metrics used in Table 3.2:

• Rootedness : We check if a connected path exists between the ground and all parts in the shape. We

judge two parts to be connected if they are separated by a distance no larger than 2% of the overall

shape’s bounding box diagonal length.

• Stability : We convert generated 3D shape structures into rigid bodies and place them in a physical

simulation with gravity. A vertical force is applied to each shape proportional to its mass, along with

some other small random forces and torques. If the resting height of any connected component of the

shape changes by more than 10% after these perturbations we declare it unstable. Note that this is by

definition less than or equal to the percentage of rooted shapes, as a shape must be rooted in order to

be stable.

• Realism: The percentage of test set shapes classified as “generated” by a binary PointNet classifier

trained to distinguish between generated shapes and shapes from the training dataset. The classifier is

trained on an equal amount of positive and negative examples for 300 epochs. We hold out a portion of

shapes from the test set, and measure the percentage of them incorrectly classified as “fake”. To reduce

fluctuation, the percentage is averaged over the last 50 epochs.

Appendix B

Additional Details and Results for PLAD

In Appendix B, we supply additional details for the PLAD method introduced in Chapter 4.

B.1 Details of Domain Grammars

2D CSG We follow the grammar from CSGNet [187]. This grammar contains 3 Boolean operations (inter-

sect, union, subtract), 3 primitive types (square, circle, triangle), and parameters to initialize each primitive

(L and R tuples). Please refer to the CSGNet paper for details.

S → E;

E → EET | P (L,R);

T → intersect | union | subtract;

P → square | circle | triangle;

L→
[
8 : 8 : 56

]2
; R→

[
8 : 4 : 32

]
.

158

159

3D CSG We design our own grammar for 3D CSG similar in spirit to the grammar of CSGNet. While CS-

GNet does contain a 3D CSG grammar, we find that it overly discretizes the possible spacing and positioning

of primitives. Therefore in our grammar, we allow each primitive to be parameterized at the same granularity

as the voxel grid (32 bins). In this way, each primitive takes in 6 parameters (instead of 2 parameter tuples),

where the 6 parameters control the position and scaling of the primitive.

S → E;

E → EET | P (F, F, F, F, F, F);

T → intersect | union | subtract;

P → cuboid | ellipsoid;

F →
[
1 : 32

]

160

ShapeAssembly ShapeAssembly is a domain-specific language for creating structures of 3D Shapes (Chap-

ter 3). It creates structures by instantiating parts (Cuboid command), and then attaching parts to one another

(attach command). It further includes macro operators that capture higher-order spatial patterns (squeeze, re-

flect, translate commands). To remain consistent with our CSG experiments, we further modify the grammar

such that all continuous parameters are discretized.

S −→ BBoxBlock;ShapeBlock;

BBoxBlock −→ bbox = Cuboid(1.0, x, 1.0)

ShapeBlock −→ PBlock;ShapeBlock | None

PBlock −→ cn = Cuboid(x, x, x);ABlock;SBlock

ABlock −→ Attach | Attach;Attach | Squeeze

SBlock −→ Reflect | Translate | None

Attach −→ attach(cuben, f, uv, uv)

Squeeze −→ squeeze(cuben, cuben, face, uv)

Reflect −→ reflect(axis)

Translate −→ translate(axis,m, x)

f −→ right | left | top | bot | front | back

axis −→ X | Y | Z

x ∈ [1, 32]/32.

uv ∈ [1, 10]2/10.

n ∈ [0, 10]

m ∈ [1, 4]

B.2 Details of Synthetic Pretraining

2DCSG We follow the synthetic pretraining steps from CSGNet and directly use their released pretrained

model weights. Please refer to their paper and code for further details.

161

3DCSG We generate synthetic programs for 3D CSG with the following procedure. First, we sample K

primitives, where K is randomly chosen between 2 and 12. To sample a primitive, we sample a center

position within the voxel space, and then we sample a scale, such that the scale is constrained so that the

primitive will not extend past the borders of the voxel grid. We then find if the bounding boxes of any

two primitives overlap in space (using the position and scale of each primitive). We then construct a binary

tree of Boolean operations by randomly merging the K primitives together, until only one group remains.

Each Boolean operation merges two primitive groups into a single primitive group. The type of semantically

valid Boolean operation depends on the overlaps between primitives of the two groups. When a group of

primitives A and a group of primitives B is merging: union is always a valid operation, difference is a valid

operation if each primitive in group B shares an overlap with some primitive in group A, and intersection is

a valid operation if each primitive in group A shares an overlap with some primitive in group B and each

primitive in group B shares an overlap with some primitive in group A. We can then unroll this binary tree

of boolean operations into a sequence of tokens from the CSG grammar, forming a synthetic program. We

sample 2,000,000 synthetic programs according to this procedure, that are used during supervised pretraining,

and we sample another 1000 synthetic programs that we use a validation set. We pretrain our model for 40

epochs, where each epoch takes around 1.5 hours to complete. At this check-point, the model had converged

to a reconstruction IoU of 90 on both train and validation synthetic data.

ShapeAssembly We generate synthetic programs for ShapeAssembly with the following procedure. We

first sample the number of primitive blocks K (PBlock), where K is randomly chosen between 2 and 8; note

that the number of cuboids created can be greater then K, when symmetry operations are applied. Each

PBlock is filled in with random samples according to the grammar syntax. First a cuboid is created, then

an attach block is applied, then a symmetry block is applied. An attach block can contain either one attach

operation, one squeeze operation, or two attach operations. A symmetry block can contain either a reflect

operation, a translation operation, or no operation. Command parameters are randomly sampled according

to simple heuristics (e.g. reflections are more common than translations) and in order to maintain language

semantics (e.g. attaches can only be made to previously instantiated cuboid indices). A final validation step

occurs after a complete set of program tokens has been synthetically generated; we execute the synthetic

program, and check how many voxels are uniquely occupied by each cuboid in the executed output. If any

cuboid uniquely occupies less than 8 voxels, the entire synthetic sample is rejected. We sample 2,000,000

synthetic programs according to this procedure, that are used during supervised pretraining, and we sample

162

another 1000 synthetic programs that we use as a validation set. We pretrain our model for 26 epochs,

where each epoch takes around 40 minutes to complete. At this check-point the model had converged to

reconstruction IoU of 70 on both train and validation synthetic data.

B.3 Experiment Hyperparameters

3D Experiments For 3D CSG and ShapeAssembly, we use the following model hyper-parameters.

The encoder for both cases is a 3D CNN that consumes a 32 x 32 x 32 voxel grid. It has four layers

of convolution, ReLU, max-pooling, and dropout. Each convolution layer uses kernel size of 4, stride of 1,

padding of 2, with channels (32, 64, 128, 256). The output of the CNN is a (2x2x2x256) dimensional vector,

which we transform into a (8 x 256) vector. This vector is then sent through a 3-layer MLP with ReLU and

dropout to produce a final (8 x 256) vector that acts as an 8-token embedding of the voxel grid.

The decoder for both cases is a Transformer Decoder module [209]. It uses 8 layers and 16 heads, with

a hidden dimension size of 256. It attends over the 8-token CNN voxel encoding and up to 100 additional

sequence tokens, with an auto-regressive attention mask. We use a learned positional embedding for each se-

quence position. An embedding layer lifts each token into an embedding space, consumed by the transformer,

and a 2-layer MLP converts Transformer outputs into a probability distribution over tokens.

In all cases we set dropout to 0.1 . We use a learning rate of 0.0005 with the Adam optimizer [106]

for all training modes, except for RL, where following CSGNet we use SGD with a learning rate of 0.01 .

During supervised pretraining we use a batch size of 400. During PLAD method fine-tuning we use batch

size of 100. During RL fine-tuning we use a batch size of 4, due to memory limitations (a batch size of 4

takes up 10GB of GPU memory). Early stopping on the validation set is performed to determine when to end

each round and when to stop introducing additional rounds. For deciding when to stop introducing additional

rounds, we use a patience of 100 epochs. For deciding when to stop each round, we use a patience of 10

epochs. In both cases we employ a patience threshold of 0.001 IoU improvement (e.g. we must see at least

this much improvement to reset the patience). Within each round of PLAD training, we check validation set

reconstruction performance with a beam size of 3; between rounds of PLAD training we check validation set

reconstruction performance with a beam size of 5; final reconstruction performance of converged models is

computed with a beam size of 10.

For RL runs, we make a gradient update after every 10 batches, following CSGNet. For runs that involve

VAE training (all Wake-Sleep runs), we add an additional module in-between the encoder and the decoder.

163

Table B.1: Different ways to update PBEST data structure. In the ”Per round” row, the data structure is
cleared in between rounds. In the ”All-time” row, the data structure maintains the best program for each
input shape across multiple rounds.

PBEST mode ST LEST LEST+ST LEST+ST+WS
Per round 0.881 1.011 0.853 0.845
All-time 0.841 0.976 0.829 0.811

This module uses an MLP to convert the output of the encoder into a 128 x 2 latent vector (representing

128 means and standard deviations). This module then samples an 128 dimensional vector from a normal

distribution described by the means and standard deviations, and further lifts this encoding into the dimension

that the decoder expects with a sequence of linear layers. For each round of VAE training, we allow the VAE

to update for no more than 100 epochs. We perform early-stopping for VAE training with respect to its loss,

where the loss is a combination of reconstruction (cross-entropy on token predictions) and KL divergence,

both weighed equally.

2D Experiments For 2DCSG, we follow the network architecture and hyper-parameters of CSGNet. All

training regimes use a dropout of 0.2 and a batch size of 100. PLAD methods use the Adam optimizer with

a learning rate of 0.001. For deciding when to stop introducing additional rounds, we use a patience of 1000

epochs. For deciding when to stop each round, we use a patience of 10 epochs. In both cases we employ a

patience threshold of 0.005 CD improvement. The parameters for the RL runs and VAE training are the same

as in the 3D Experiments.

B.4 P Best Update mode

During updates to PBEST , we choose to update each entry in PBEST according to which inferred pro-

gram has achieved the best reconstruction similarity with respect to the input shape. The entries of this data

structure are maintained across rounds. There is another framing where the entries of this data structure are

reset each round, so that the best program for each shape is reset each epoch. This is similar to traditional

self-training framing.

We run experiments on 2D CSG with this variant of PBEST update and present results in Table B.1.

When the best program is maintained across rounds (All-time, bottom row) each fine-tuning strategy reaches

a better converged reconstruction accuracy compared with when the best program is reset after each round

(Per round, top row).

164

SP LEST+ST+WS Target

Figure B.1: Qualitative examples of inferring 2D CSG programs for 2D icons. Both SP and LEST+ST+WS
fail to infer representative programs, but the reconstructions from LEST+ST+WS are even less accurate than
those from SP.

B.5 Failure to generalize beyond S∗

As demonstrated by our experiments, PLAD fine-tuning methods are able to successfully specialize p(z|x)

towards a distribution of interest S∗. Unfortunately, this specialization comes at a cost; the fine-tuned p(z|x)

may actually generalize worse to out of distribution samples. To demonstrate this, we collected a small

dataset of 2D icons from the The Noun Project1. We tested the shape program inference abilities of the

initial p(z|x) trained under supervised pretraining (SP) and of the fine-tuned p(z|x) trained under PLAD

regimes (LEST+ST+WS) and specialized to CAD shapes. We show qualitative examples of this experiment

in Figure B.1. While both methods fail to accurately represent the 2D icons, fine-tuning p(z|x) on CAD

shapes lowers the reconstruction accuracy significantly; the SP variant achieves an average CD of 1.9 while

the LEST+ST+WS variant achieves a CD of 4.1 Developing p(z|x) models capable of out-of-domain gener-

alization is an important area of future research.

1https://thenounproject.com

https://thenounproject.com

165

B.6 Additional Qualitative Results

We present additional qualitative results comparing various fine-tuning methods in Figure B.2 (2D CSG),

Figure B.3 (3D CSG) and Figure B.4 (ShapeAssembly).

166

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure B.2: 2DCSG qualitative examples.

167

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure B.3: 3DCSG qualitative examples.

168

SP WS RL ST LEST LEST+ST LEST+ST+WS Target

Figure B.4: ShapeAssembly qualitative examples.

Appendix C

Additional Details and Results for

VPI-Edit

In Appendix C, we supply additional details for the VPI-Edit method introduced in Chapter 5. In section C.1

we include more experimental results. We then provide additional details on our visual programming domains

(Section C.2), on our experimental design (Section C.3), on our editing operations (Section C.4), and on our

program corruption experiments (Section C.5).

C.1 Experimental Results

C.1.1 Performance on more challenging tasks

Our formulation employs a self-supervised finetuning scheme that specializes our inference networks towards

a target dataset of interest. But how do our networks fare on visual inputs that are outside of these distribu-

tions? For instance, one might hypothesize that the performance gap between our joint paradigm and the

one-shot paradigm might shrink when these approaches are given more challenging problems (e.g. when

there is a large distribution gap between training and testing data).

Note though, that as we focus on local edits, our edit networks learn how to solve a local problem: given

a current program and some visual target, we task our network with making any edit that would make the

current program more similar to the target. Our hypothesis is that this framing should actually scale better

169

170

Table C.1: We evaluate reconstruction accuracy for ”challenge” tasks that come from concepts or categories
not present in the target training set. For both layout and 3D CSG, we observe that our joint paradigm that
integrates an edit network with one-shot models outperforms the alternative of using only one-shot models.

Layout cIoU ⇑ 3D CSG IoU ⇑

OS Only 75.8 60.8
OS + Edit 87.6 70.9

than the one-shot networks when the target scenes become more complex or when they are further out-of-

distribution from the training data.

Our intuition here, is that as the task complexity increases, it becomes more likely that the one-shot

network will make mistakes. The edit network is able to account for the mistakes of the one-shot network and

suggest local fixes that make improvements in a goal-directed fashion. When the target is out-of-distribution,

even if the edit network has not seen a similar example, it can still compare the current program’s execution

against the target scene. Reasoning over the differences between the two states admits a more local task (as

evidenced by our data efficient learning), and this property can aid in generalization.

To validate the above hypothesis, we set up an experiment to compare how our formulation (which uses

a one-shot and edit network jointly) performs against using only the one-shot network for more challenging

tasks in the Layout and 3D CSG domains. For the Layout domain, we evaluate the methods on scenes of new

“challenge” concepts (e.g. butterflies / snowmen) that were not seen in the training / validation sets. For 3D

CSG, we evaluate the methods on “challenge” shapes from other categories of ShapeNet (airplanes, knives,

lamps, laptops, motorbikes, mugs, pistols, skateboards, rifles, vessels) that were not part of the original

finetuning training set (chairs, tables, benches, couches).

Using the same models from Section 5.2.2, we compare the reconstruction performance for these chal-

lenge tasks. In Table C.1, we report the reconstruction performance over 192 challenge tasks for the layout

domain and 100 challenge tasks for the 3D CSG domain. As seen from both the quantitative and qualitative

comparisons (Figures C.1 and C.2), it’s clear that our approach, which utilizes both the one-shot and edit

networks, outperforms using only the one-shot network for these more challenging program induction tasks,

even when they are further outside the training distribution.

C.1.2 Comparison to large vision-language models

We ran an experiment to explore how well large vision-language models (e.g. GPT-4v) are able to perform

on our visual program induction tasks. We provide some qualitative results of using GPT-4v to predict visual

171

OS Only OS + Edit (Ours) Target

Figure C.1: Qualitative reconstructions of ”challenge” tasks for 3D CSG.

programs on examples from our layout domain in Figure C.2. These predictions were made with a relatively

straightforward prompt containing: a task-description, a description of the DSL, and the input image that

should be reconstructed (zero-shot, col 1). We then tried improving this prompt by adding an in-context

example of a (program, image) pair (one-shot, col 2). We also experimented with providing GPT-4v with a

program predicted from the one-shot network, along with this program’s execution, and asking it to edit the

program to make it more similar to the target image (col 3).

As can be seen, GPT-4v in this setting proved inferior to our proposed method (col 5). While we do

not include these results to say that these sorts of large vision-language models will not ever be of use for

this task, we do believe that these results showcase that this task is not easily solved with currently available

frontier models.

C.1.3 Method Ablations on 2D CSG domain

In Section 5.2.5 we presented results for an ablation experiment on the layout domain. We include additional

ablation results on the 2D CSG domain in Table C.2. Note that while some ablation conditions do come close

172

GPT 4V GPT 4V (ICE) OS + GPT 4V OS Only OS + Edit (Ours) Target

Figure C.2: Qualitative reconstructions of ”challenge” tasks for the layout domain. We compare against GPT-
4V in a zero-shot setting (column 1), when an in-content example (ICE) is provided in the prompt (column
2), and when the one-shot model’s predicted program is provided as input (column 3). Our approach (column
5) finds more accurate reconstructions of these out-of-distribution targets (column 6) compared with using
only the one-shot network (column 4).

Table C.2: Ablation study on our method for the 2D CSG domain.

Method Chamfer Distance ⇓
Ours (default) 0.111

No FT 0.321
No one-shot FT 0.230
No edit FT 0.123
No edit PT 0.145

to our default performance (e.g. no edit FT) these ablation conditions are also made possible by our contri-

butions, as they all use an edit network. When comparing our method against an alternative without an edit

network (OS Only, Table 5.1) we have consistently seen that our method offers a meaningful improvement.

Below we offer some additional commentary on these results.

No edit FT In this ablation condition the edit network is pretrained (with synthetic random data), but is then

kept frozen during the joint finetuning. As the task of the edit network is mostly local, we find that the edit

network is able to achieve impressive performance even when it does not get to finetune towards data in the

173

target distribution. That said, the edit network is still very important in this ablation condition (if it’s removed

then this condition becomes OS Only). Even though the edit network remains fixed during finetuning, it still

helps to find better solutions during inner-loop inference (Alg 1, line 5), and this better training data leads to

a better one-shot network. However, once again, the performance of the system is maximized when the edit

network is also allowed to update during finetuning.

No one-shot FT This condition does impressively well for the layout domain. This is because even though

the one-shot network is much worse in this setting, the edit network can overcome almost all of its mistakes,

as layout is a relatively easier domain. Consider that for the layout domain, the default approach has a

starting cIoU of 0.925 (initialized from the one-shot network, which is finetuned) which gets improved to

0.980 through improvements made by the edit network. However, the one-shot network of this ablation

condition drops the starting cIoU to 0.88 (when it is kept frozen), and yet the edit network is still able to raise

this performance all the way to 0.972 (explaining the strong reconstruction score of this condition). That

said, when considering the 2D CSG ablation results in Table C.2, we see that for more complex domains it is

critical to also finetune the one-shot network, as this ablation condition achieves only a Chamfer distance of

0.230 compared with the Chamfer distance of 0.111 achieved by our default approach.

174

C.2 Domain Details

In this section we detail the domain-specific language used for each visual programming domain.

Layout DSL The layout domain creates scenes by placing colored primitives on a 2D canvas, optionally

transforming them, and finally combines them together.

START −→ UBlock;

UBlock −→ UNION(ShBlock, UBlock) | ShBlock;

ShBlock −→ (SymBlock | CBlock |MBlock | ScBlock); (PBlock | UBlock)

SymBlock −→ SymReflect(axis) | SymRotate(n) | SymTranslate(n, x, y)

CBlock −→ Color(ctype)

MBlock −→ Move(x, y)

ScBlock −→ Scale(w, h)

PBlock −→ Prim(ptype)

axis −→ X | Y

ctype −→ red | green | blue

ptype −→ square | circle | triangle

n ∈ (1, 6)

x, y, w, h ∈ [−1, 1]

In this domain, union is the only combinator operation that combines ‘shape’-typed inputs by layering

them on top of one another. SymReflect, SymRotate, SymTranslate, Color, Move, Scale are all transformation

operations that consume a single ‘shape’-typed input and apply some geometric logic to it. Prim is a special

command that produces a ‘shape’-typed output from only a parameter-type argument.

175

2D CSG DSL Our 2D constructive solid geometry domain assembles complex shapes using boolean set

operations. Following recent work [235] we find it useful to split each program into a set of positive sub-

expressions (POS) and negative sub-expressions (NEG). Each sub-expression is allowed to take an arbitrary

CSG expression, and then to form the final output all of the positive sub expressions are first unioned together,

all of the negative sub expressions are then unioned together, and this second group is differenced out from

the first group. This process well-matches typical procedural modeling workflows.

START −→ POS,NEG

POS −→ E,POS | ∅

NEG −→ E,NEG | ∅

E −→ BEE | TE | P

B −→ Union | Difference | Intersection

T −→Move(F, F) | Scale(F, F) | Rotate(F) | Reflect(axis)

P −→ Prim(ptype)

ptype −→ square | circle | triangle

axis −→ X | Y

F −→ [−1, 1]

In this domain, there are three combinator operations that combine multiple ‘shape’-typed inputs: union,

difference and intersection. Move, scale, rotate and reflect are all transformation functions that consume a

single ‘shape’-typed input and apply a geometric modification. Once again, Prim is a special command that

produces a ‘shape’-typed argument from only a parameter-type argument.

176

3D CSG DSL Our 3D constructive solid geometry domain generalizes the above 2D DSL.

START −→ POS,NEG

POS −→ E,POS | ∅

NEG −→ E,NEG | ∅

E −→ BEE | TE | P

B −→ Union | Difference | Intersection

T −→Move(F, F, F) | Scale(F, F, F) | Rotate(F, F, F) | Reflect(axis)

P −→ Prim(ptype)

ptype −→ cuboid | sphere | cylinder

axis −→ X | Y | Z

F −→ [−1, 1]

The split between combinator, transformation and primitive creating functions is the same as in 2D CSG.

Sampling L As previously discussed, we follow prior work and use a synthetic pretraining phase . In

this pretraining phase we randomly sample programs from the above grammars. We employ simple rejection

criteria to ensure these random samples are useful (e.g. no execution errors, outputs remain within the canvas,

etc.), and find it effective to build in some of this rejection logic during the sampling phase (to improve the

speed at which we can sample programs). All of the models we evaluate in our experiments train with the

same sampling logic.

C.3 Experimental Design Details

Network details For our 2D domains (2D CSG and Layout) we use a 2D CNN. The image size of both

domains is 64x64, but in 2D CSG there is only one input feature (occupancy) while in Layout there are

three channels (RGB). The network we utilize consists of four layers, each containing convolution, ReLU,

max-pooling, and dropout operations. Each convolution layer employs a kernel size of 3, a stride of 1, and

padding of 1, with channel dimensions of 32, 64, 128, and 256 respectively. The CNN’s output is a (4x4x256)

177

dimensional vector, which we reshape into a (16x256) vector. This vector is then processed through a 3-layer

MLP with ReLU and dropout, resulting in a final (16x256) vector that serves as a 16-token encoding of

the visual input. For our 3D CNN model, we adopt a similar convolutional approach by extending all 2D

convolutions to 3D. We adjust the kernel size to 4, use padding of size 2. When processing voxel grids of size

323, this produces outputs of size (2x2x2x256). We pass these outputs through a 3-layer MLP to generate

eight 256-dimensional visual tokens.

Our transformer networks are standard decoder-only variants. We use learned positional encodings and

a hidden-dimension size of 256 and dropout of 0.1. We use networks with 8 layers and 16 heads. We set

the maximum program sequence length SL to 128, 164, 256 for the Layout, 2D CSG, and 3D CSG domains

respectively. We set the maximum edit sequence length EL to 32, 32, 48 for the Layout, 2D CSG, and 3D CSG

domains respectively. Each prediction head (edit type, location, parameters) is modeled with a three-layer

MLP with a dropout of 0.1.

Training details We implement all of our networks in PyTorch [158]. All of our experiments are run on

NVIDIA GeForce RTX 3090 graphic cards with 24GB of VRAM and consume up to 128GB of RAM (for 3D

CSG experiments). We use the Adam optimizer [106] with a learning rate of 1e-4. For p(z|x) pretraining we

use a batch size of 128/128/64, for p(e|z, x) pretraining we use a batch size of 128/128/32, for p(z|x) fine-

tuning we use a batch size of 20/20/20, and for p(e|z, x) finetuning we use a batch size of 128/128/32 for

Layout / 2D CSG / 3D CSG domains respectively. We pretrain on synthetic programs until convergence with

respect to a validation set of synthetic program, for 34 / 17 / 18 million iterations, which takes 6 / 7 / 7 days

for p(z|x) and 70 / 30 / 25 million iterations, which takes 7 / 8 / 8 days for p(e|z, x) for the Layout, 2D CSG,

and 3D CSG domains respectively. We finetune each method for a maximum of 6 days or until convergence,

which took 40 / 40 / 30 bootstrap rounds for the Layout, 2D CSG and 3D CSG domains. For each finetuning

run we use a PG set of size 10000.

Inference Procedure For our test-time inference program search we use the following population size /

number of round parameters for each domain: Layout (32, 32), 2D CSG (32, 32), 3D CSG (80, 25). When

using the Os Only method, we keep the same population / mutation general logic, but each mutation is just

a randomly sampled program from p(z|x). In both cases, the best reconstructing program ever seen in any

round’s population is returned as the ‘chosen’ program. The settings for this method are: Layout (32, 10),

2D CSG (32, 10), 3D CSG (25, 25). We set these parameters so that the time spent on inference per shape is

178

even between the two modes (5, 10, 60 seconds for the three domains). For our inner-loop inference step that

populates PBEST, we use a less expensive search time budget for both modes, approximately taking (2, 5, 10

seconds for each domain respectively). We sample programs from p(z|x) with top-p (.9) nucleus sampling.

We sample edits from p(e|z, x) with a beam search of size 3. Interestingly, we found that this sampling

strategy for Os Only outperformed a beam-search with a beam size set to the maximum number of tokens in

each L.

C.4 Visual Program Edits

C.4.1 Local Edit Operations

As described in Section 5.1, our network predicts local edit operations. We find it useful to constrain the set

of possible edit operations as described in Section 5.2.5.

In order to use these local edit operations, we require a few properties of the underlying DSL. We require

that it is a functional language, where each valid function has a ‘shape’ return type. Through a slight abuse-

of-notation, we refer to functions that implicitly consume a single ‘shape’-typed argument as transformation

functions (e.g. Move), and we refer to functions that consume multiple ‘shape’-typed arguments as combi-

nator functions (e.g. Union). Note that as described in Section C.2, there may also be special functions that

instantiate ‘shape’-types from only non-‘shape’-typed arguments (e.g. Prim functions).

Specifically, our formulation allows the network to predict one of the following edit operations:

• Modify parameters (MP): modifies the parameter values of a transform function. Note that this does

not modify the function type (unlike MT). Requires additional parameter predictions to set the new

values.

• Modify transform (MT): modifies a transformation function, by removing the transform and adding

in a new transform with new parameters. Requires additional parameter predictions to set the new

function and parameter values.

• Add transform (AT): adds a transform operator that is applied to the chosen location. Requires addi-

tional parameter predictions to specify the new function to be added and its parameters.

• Remove transform (RT): removes a transform operator and its parameter from the program. Does not

require additional parameters

179

• Modify Combinator (MC): modifies a combinator function (e.g. changing difference to an intersec-

tion). Requires additional parameter predictions to set the new function.

• Remove Combinator (RC): removes a combinator operator (e.g. union) by specifying one input

branch of the function to be completed deleted (to all of this sub-expressions leaf nodes).

• Add Combinator (AC): adds a combinator operator under the chosen transformation. Adding a com-

binator (such as union) requires a sequence of additional predictions to fill in one of the ‘shape’-typed

branches of this operator that was not previously in the program.

We once again note that each of these edit operations has a local effect. For instance, as depicted in

Figure 5.1 adding a new transform function inserts a transform node into an already existing tree of func-

tions. Similarly, removing a transform functions simply results in forming a skip connection from the chosen

operator’s parent function to the chosen operator’s child function. Somewhat more arbitrary changes can be

enacted by removing or adding combinators, in order to produce or remove entire expression trees, though

these are inserted or removed from specific locations. While this framing does focus on local edits, and as

such our edit network makes local changes in program space, some of these changes can have dramatic effects

in the execution space. For instance, consider changing a boolean operation type in CSG from difference to

union.

C.4.2 findEdits Algorithm

Given a starting program and an end program we develop an algorithm that analytically finds a set of edit

operations that would transform the starting program into the end program. This algorithm is used to source

data for the edit network, as we describe in the next section.

We design our findEdits algorithm to try to find the “minimal cost” set of edit operations that would

transform a start program to an end program. Our instantiation of the algorithm works over multiple vi-

sual programming domains for the set of edit operations we consider. However, there are many alternative

ways this algorithm could be instantiated, and such alterations could prove useful in helping our method

adapt for very different domains. As one extreme point, consider that for general purpose programming

languages, a simple “git-diff” command could be used to turn a (start, end) program pair into a set of local

insert/keep/delete edits.

Our implementation evaluates valid transformations in terms of program semantics (e.g. executions) not

just syntax (e.g. token matching), as there are many distinct programs in our domains that will produce

180

equivalent execution outputs (e.g. note that the argument ordering of union for CSG languages does not

change the execution output). We hypothesize that using a findEdit algorithm alternative that does not con-

sider such ”semantic-equivalences” would result in a “worse” edit network (as the patterns in the training

data would be less consistent), but it would be interesting to explore how different algorithms would effect

system performance in future work.

There are two main steps to this algorithm. First considering two sub-expressions a and b, we need to find

an approximately minimal set of edit operations such that applying these edit operations to a would recreate

the visual output of b. With this logic in hand, we can consider two entire programs A and B, split them into

a set of sub-expressions, A = {a0, ..., ak} and B = {b0, ..., bm}, and then solve a matching problem to see

how we should match each ai to each bj while accounting for domain-specific ordering requirements.

Finding edits for sub-expressions Given two sub-expression a and b from one of our DSLs, we find a set of

edit operations to convert a to b with the following recursive logic. If a and b have no combinator operators

or order-dependant transformation functions (e.g. symmetry operations) then we can simply compare the

transform functions and their arguments to see which transforms in a need to be modified, added, or removed.

If both a and b have a combinator operation, then we recurse this match on the respective sub-programs. If

only a has a combinator operation, we know that we need to remove one of a’s expression trees, so we check

which of the combinator’s input expression trees has the better match towards b. If only b has a combinator

operation, we know that we need to add an expression tree into a with an AC edit operation. The cost of this

edit operation is just the length of all of the tokens of that expression tree; we evaluate the match between

a and each of the sub-expression within b to determine which sub-expression to add with the edit operation.

Any time an order dependant transform function differs between a and b we will either need to add, remove,

or modify this transform. Note that this type of edit operation may also introduce ordering dependencies for

later edit operations (which we keep track of).

Finding a minimal matching From the above procedure we know the edit operations and the edit cost of

transforming any sub-expression a into another sub-expression b. We design our DSLs so that it is possible

to break each program into a series of sub-expressions. For Layout this is done by splitting the top-level

UBlock into the top-level ShBlocks. For CSG this is done by splitting each POS block into E blocks and

each NEG block into E blocks. Note that there is some order dependency in this match: for CSG positive

sub-expressions must be matched to other positive sub-expressions, while negative sub-expressions must be

181

matched to other negative sub-expressions. For the Layout domain, Union is not an order invariant operator as

it controls how primitives are layered on the canvas. Therefore we keep the order of Layout sub-expressions

fixed, although we allow each sub-expression to optionally match to an empty sub-expression ∅. A match

from ai to ∅ implies that ai will be removed with a RC edit operation, while a match from ∅ to bi implies

that bi will be added with a AC edit operation. We consider all valid possible ways to enact this matching

by calculating the cost of each sub-expression match and then extracting out a solution with the Hungarian

matching algorithm [111].

C.4.3 Converting edits operations to training data

From the above logic we find a set of edit operations ES given input programs A and B. As mentioned,

while there may be some ordering dependencies in this set that we keep track of (e.g. adding a transform

on top of newly added combinator function) this set of edit operations can be otherwise ordered arbitrarily.

While many formulations are possible here we choose to convert this set into paired data for our edit network

with the following procedure.

Say ES contains n independent edits. For each i starting at 0 and ending at n − 1 we first consider all

possible ways that we could have chosen i edits from ES . To avoid exponential blow-up, we sub-sample

from this set, and choose 5 previous edit sets for each i. Then for each set of previous edits pei, for each next

edit e ∈ ES and e /∈ pei, we add the following triplet to the training data for our edit network: the input

program is pei(A), the target visual target is E(B), and the target edit operation is e.

C.4.4 Generality of our framing

While we designed our edit operations with the task of visual program induction in mind, we believe that

these operations are quite flexible. Many other functional DSLs for visual programs (and for other program

synthesis tasks) could likely be subsumed directly under our framework, as long as these languages meet the

criteria described in Section C.4.1. For instance, this set of edit operations should be able to handle any DSL

expressible as a Context Free Grammar.

Under these assumptions, the edit operations we use are quite basic and make limited domain assump-

tions. For an input functional program, edits to transform functions allow for local edits (delete/insert/modify)

that don’t affect the branching factor, while edits to combinator functions allow for local edits (delete/insert)

that do affect the branching factor. We employ this formulation for a few reasons: (1) it is general enough to

182

support any program-program transformation (under our assumption set) and (2) applying any of these local

edits creates a syntactically complete program that can be immediately executed.

That said, our framework and core contributions are not tied to this specific set of edit operations. Our

edit network and proposed training scheme could be easily integrated with any set of local edit operations

(assuming an analogous findEdits algorithm can be designed for this new set of edits). So while we believe

that the set of edit operations we introduce is quite general (as evidenced by their usefulness across multiple

difficult visual programming domains), we are also excited to see how our general learning-to-edit framework

could be extended to even more complex DSLs and edit operations.

C.5 Program Corruption

As we mention in Section 5.2.5 there are some high-level connections between the formulation we propose

and discrete diffusion models: both do iterative error-correction and learn in a self-supervised manner to ‘fix’

incorrect targets. To this end, we explored alternative formulations that ‘corrupted’ programs. As we wanted

to maintain the property that each intermediate step of the ‘corruption’ process is a valid program (e.g. it

would not cause an executor error) we designed a domain-specific corruption process for our Layout domain.

Unlike unconditional generative diffusion models that need to have strict requirements about the distribution

they noise towards, we did not find this necessary in our setting as our iterative error-correcting framing is

explicitly goal-directed in the form of a visual target. Specifically, our corruption process starts with an ‘end’

program and randomly samples ‘inverse’ edit operations for a random number of corruption steps. We then

replace our findEdits step in Algorithm 1 with this corruption logic, where the start program is ignored.

While this variant is not as a performant as our default version, it still sources useful training data for our

edit network. Our view is that, when possible, it is better to source these edit operations by considering start

program and end program pairs, but for domains where such edit difference scripts are hard to analytically

find, this corruption variant offers an alternative. While its possible that better corruption processes could

close this gap, designing them is non-trivial. Ideally, when we want to combine one-shot models and edit

networks at inference time, the corruption behavior we want should noise ‘end’ programs towards those pro-

duced by the one-shot model – this is exactly the distribution we get access to with the findEdits approach that

considers program-to-program transformations. Another benefit of this formulation, is that the distribution of

edit operations we train over is naturally allowed to evolve and keeps in sync automatically with the finetuned

one-shot model. Keeping this property with a corruption-based procedure would likely be impractical.

Appendix D

Additional Details and Results for

Template Programs

In Appendix D, we supply additional details for the Template Programs method introduced in Chapter 6. In

Section D.1 we provide additional experimental results. In Section D.2 we provide more information con-

cerning our various visual domains. In Section D.3 we provide details of our learned models. In Section D.4

we provide details on how we design our training procedure. In Section D.5 we provide further details of our

experimental design. Finally, in Section D.6 we describe implementation considerations of each alternative

we compare our system with.

D.1 Additional Results

D.1.1 Out-of-distribution Few-shot Generation

As discussed in Section 6.2.5, we designed the Layout domain so that we could evaluate the out-of-distribution

generalization capabilities of different approaches. We visualize few-shot generations that different methods

make for the layout domain for concepts that gradually get more and more out-of-distribution in Figure D.1.

From left-to-right, we present example few-shot generations for an easy, medium and hard concept. The easy

concept (a side facing chair) has a set of attributes that have all individually been seen in the training set, but

presents them in a new combination. The medium concept (a crab) introduces a new attribute not seen in

the training set: extended and vertical arms. The hard concept (a bookshelf) introduces a new meta-concept

183

184

NN Train

Input

arVHE

Ours

Combination Generalization (easy) Attribute Generalization (medium) Category Generalization (hard)

Figure D.1: Qualitative few-shot generation results that demonstrate our method’s ability to generalize to
out-of-distribution concepts, see Section D.1.1.

that was never seen in the training set. The second row of the figure show the input prompt set, where in

the top row we show the nearest neighbor in the training set to each image in the prompt, according to our

reconstruction metric. On the third row we show generations produced by the arVHE comparison condition,

while on the bottom row we show generations produced by our method. While arVHE does reasonably well

on the easy case, as the input prompts get more and more out-of-distribution it begins to generate nonsensical

outputs. On the other hand, our approach scales much better to out-of-distribution inputs, even though they

don’t match any images from the training set.

D.1.2 Method Ablation Study

We run an ablation study to validate different design decisions of our method. We compare our described

system against the following variants. Ours - rel is a variant of our method where we remove parameter

relationships from Template Programs. As by default we only support parameter relationships for argument

types that take on discrete values (i.e. categorical variables) we also investigate a variant of our system

that adds parameter relations (static assignment and reuse) for float-typed arguments: Ours + float rels. We

also compare against a version of our method where we remove HOLE tokens, so that instantiations from

Template Programs always use the same function call sequence: Ours - HOLE. Here, we task our network to

specify a single program structure that is applicable across the group without using HOLE tokens, and it is

still responsible for declaring parameter relationships. As there are no HOLE tokens, the ExpansionNet will

not be used, but the ParamNet will still be used to figure out how the instantiations of the Template Program

should be parameterized. Next we compare against a variant where we remove the Structural Expansion

step, so the ParamNet must produce a program from the Template Program directly. As it doesn’t see the

SE intermediary result, it must fill in HOLE tokens while figuring out how to predict parameter values. We

185

Table D.1: Comparing ablated versions of our method to our default settings. Each metric is reported as a
percentage, with respect to the performance our default approach achieves. See Section D.1.2 for details.

Method FD MMD Cov mIoU O

Ours 100% 100% 100% 100% 100%
Ours - rels 78.5% 92.6% 96.8% 89.3% 95.8%
Ours + float rels 93.9% 96.7% 98.2% 96.7% 95.3%
Ours - HOLE 96.3% 98.3% 97.6% 97.4% 98.0%
Ours - SE 80.3% 89.9% 94.3% 86.5% 94.7%
Ours - finetune 57.6% 80.5% 35.0% 70.7% 81.6%

call this variant Ours - SE. Finally, we compare against a variant of our base method without any finetuning,

where networks only get to train on synthetic data: Ours - finetune

We evaluate these ablation conditions on the 2D layout domain, and report results of our experiments in

Table D.1. We compare our method against these variants with respect to few-shot generation performance

(FD, MMD, Cov), co-segmentation performance (mIoU), and how well the inferred results optimize our

objective O. For ease of interpretation, we report all results as a percentage of the performance reached with

respect to our default version (100%).

As shown, our default method achieves the best performance along all of these tracked metrics. The

variant without finetuning clearly does the worst, as these networks are not specialized for the target dataset.

The results of this experiment validate our parameter relations design: keeping relations for discrete-valued

parameters outperforms either no parameter relations or adding relations for float-valued parameters. Using

the HOLE construct improves performance quantitatively. Moreover this construct is needed to capture com-

plex input concepts that have more than a single expression mode. For instance HOLE tokens are required

to model the chair concept with armrests and either a regular or pedestal base shown in the bottom left of

Figure 6.2. Finally, this ablation experiment demonstrates that our decision to use Structural Expansions

simplifies the task of the ParamNet; we hypothesize this result is due to the fact that when attending over

a SE, in contrast to attending over the TP , all of the functions and parameter-types that will be used in the

end instantiation are known.

D.1.3 Unconditional Concept Generation

As we mention in Section 6.2.5 our Template Program framework is able to sample novel concepts uncon-

ditionally. We visualize some concepts that our method is capable of producing in Figure 6.5. To produce

these visualizations, we use the networks trained during the wake-sleep phase of our finetuning process, pgen.

186

Using the version of our TemplateNet from pgen that does not condition on visual information, we first sample

a Template Program. Then using the ExpansionNet and ParamNet from pgen that condition only on program

inputs, we sample five program instantiations from this Template Program. Each bottom row in the figure

shows the executed versions of these five samples, and above each sample we show the nearest neighbor

character in the training set according to our reconstruction metric.

D.1.4 Visual Concept Groupings

Typically, past concept learning approaches have assumed access to a dataset that is structured according

to visual concepts. For instance, systems like VHE or FSDM require the ability to sample groups of input

from the same visual concept during training. This is the same amount of dataset structure that our method

requires: during fine-tuning we randomly sample “tasks” according to these visual concept groupings. Note

that this requirement is less stringent than many inverse procedural modeling systems, and the BPL and GNS

systems, that additionally require per-object structural annotations.

The Omniglot dataset was designed with this kind of visual concept decomposition in mind: each ex-

ample data-point corresponds with exactly one character type. We design our layout domain in the spirit of

Omniglot: each image in the layout domain is associated with a single concept. Following past work, on these

domains we always assume “valid” input groups, such that each member is from the same visual concept.

However, this type of clean partition is not as easy to find for 3D shape structures. As there are no

known datasets that group shape structures into visual concepts, we propose a heuristic method for forming

approximate visual concepts out of shape structures (Appendix D.2.3). The concept groups we find under

this formulation have different levels of consistency among their members (where we say a less consistent

group forms a “harder” input problem).

For instance consider the examples shown in Figure 6.2. A chair with a regular base and vertical slats

(row 7, col 6) could be in one group with only chairs that also have regular bases and vertical slats (row 7,

col 7) or (like in the example we show) could also be grouped with chairs that have backs with horizontal

slats (row 7, col 8). In our paradigm, the group of visual inputs (along with our objective function) implicitly

defines the granularity of the target visual concept. In this case, the latter grouping is considerably harder to

handle for concept learning tasks, as it requires a method that is able to reason over input groups that partially

mismatch on structures.

Our Template Programs framework is capable of handling even difficult input groups; our partial program

187

formulation allows our system to explicitly maintain the shared structural aspects of the group while leav-

ing HOLE tokens as responsible for representing the aspects of the input group that structurally differ. This

design allows us to successfully capture the visual concepts of the two chair groups in Figure 6.2. The left

chair group has filled in chair backs, arm-rests, but alternates between regular and pedestal chair bases. The

right chair group has regular leg bases, no arm-rests, but differs between chair backs with horizontal slats or

vertical slats. As can be seen in the “gen” row, our system is capable of synthesizing novel shape structures

that accord with the structural specifications implied by the input visual groups.

D.1.5 Reconstruction Performance

Our system learns how to amortize the difficult inverse search problem of finding a Template Program and

instantiations that correspond with a group of visual inputs. This search (our inference procedure) is guided

by our networks which are trained on a “training corpus” of visual concepts, separate from those we evaluate

on.

The “seg” rows in Figure 6.2 visualize the reconstructions (of the inputs on the top rows) that our method

produces. While these reconstructions do not exactly recreate the input, they usually create very good ap-

proximations. If reconstruction was our primary goal, it might even be possible to improve the fit through a

differentiable execution and refinement procedure.

To explore this phenomenon further, we provide the following reconstruction performance results across

our domains in Table D.2. We report the reconstruction fit for both the training set and test set visual concepts.

To show the benefits of our learning methodology we compare the reconstruction fit from the pretrained

version of our networks (that learn only on synthetic data) to the finetuned versions of our networks (that

finetune on visual concepts from training set). The metrics we use are (full descriptions in Appendix D.2):

• 2D Layout: color-based IoU (higher is better)

• Omniglot: edge-based chamfer distance (lower is better)

• 3D Shapes (primitive input): structural corner distance (lower is better)

• 3D Shapes (voxel input): IoU (higher is better)

As demonstrated, our solution is effective at solving this inverse visual program induction problem. For

both the training concepts and the held-out test concepts, our finetuning procedure meaningfully improves

188

Table D.2: Comparing reconstruction performance across domains, concept sets, and model versions.

Domain Mode Train Recon Test Recon Test Recon (long)

2D Layout ↑ Pretrain .822 .808
Finetune .972 .909 .937

Omniglot ↓ Pretrain .658 .648
Finetune .468 .503 .405

3D Shapes (prim) ↓ Pretrain .26 .305
Finetune .05 .06 .05

3D Shapes (voxel) ↑ Pretrain .601 .589
Finetune .865 .83 .851

In
pu

t
R

ec
on

G
en

Figure D.2: When our method fails to find good reconstructions of an input concept, downstream task per-
formance worsens.

the reconstruction performance in all cases. For our downstream concept-related tasks we use a more ex-

pensive inference procedure (“long” - e.g. increase the beam size, Section 6.1.2) and this gives even better

reconstruction results for test-set concepts (see the numbers in the rightmost column of the table).

While our system offers strong reconstruction performance, it is likely that alternative methods could be

used to infer single visual programs that better reconstruct an individual visual input. In contrast, our system

learns to solve this visual program induction problem over a group of inputs by going through a shared

structural intermediary (a Template Program), which allows us to perform concept-related tasks like few-shot

generation and co-segmentation (which prior single instance VPI approaches are not suited for).

D.1.6 Failure Modes

Bad reconstruction A possible failure mode is that our inference networks can’t find a Template Program

whose instantiations well-capture an input visual group with respect to our objective function. In such cases,

the few-shot generation and co-segmentation results of our method are typically worse. For instance, consider

189

Figure D.2. For two Omniglot examples, in the top row we show the input concept groups, in the middle rows

we show the reconstructions from our method, and in the bottom rows we show the few-shot generations from

our method. Because the same Template Program is used in both the reconstruction and few-shot generation

step, failure in one place often means failure in the other. While from one perspective this is a limitation,

a positive view of this phenomena is that our method can provide insight into cases where it is “unsure”

about its parse. For instance, it could use the objective function score of its reconstruction as a measure

of its confidence on how well it will perform on downstream tasks. Moreover, as we show in Table D.2,

reconstruction performance can improved by spending more time on inference, which can help to avoid this

limitation.

Bad Input Groups How would our system handle ‘bad’ input groups that contain outliers, or have no

commonality among their members? The job of the template network is to consume a group of visual inputs

and infer a Template Program that captures the common structure among all members. In such an adversarial

setting, it is possible (depending on random sampling) that there are no elements of structure common to all

members of the input grouping.

In this case, the “best” result of our system would be to return a “dummy” Template Program that consists

of a single HOLE token; this HOLE token would be able to be expanded into any arbitrary z to explain each

individual group member.

For typical visual concept groupings, this degenerate solution is discouraged by our objective function,

which penalizes description length differences between ”full” programs and their corresponding Template

Programs. While finetuning our system with reasonable concept groups we have never observed the system

falling-back to this degenerate solution.

Exploring how to extend our framework to handle “noisy” input groupings would be a very interesting

direction for future work. This could potentially be approached by (i) extending our objective function to

account for outliers (if we want to ignore the distractors) or (ii) adding control flow operators into the DSLs

we learn over, which would give the Template Programs an opportunity to account for structural differences

without relying solely on HOLE tokens.

190

D.2 Domain Details

In this section we provide additional details on the visual domains we experiment on. We describe the

domain-specific languages our method uses and reconstruction metrics that guide our finetuning objective O.

For the 3D shape domain, we additionally provide details on how we produce our target dataset. While we

have previously explained how we divide concepts between training and test sets for each of our domains, we

have not yet mentioned how we divide training examples into a validation set. We find that a simple approach

of taking a subset of training concepts with fixed exemplars as a ‘validation’ set works well in practice. This

validation set controls different early stopping components of our finetuning procedure, but otherwise these

concepts are not given special treatment (i.e. they are not removed from the finetuning training set).

191

D.2.1 Omniglot

DSL We use the following domain-specific language for drawing Omniglot characters, where we present

the notation with slight simplifications for ease of understanding.

START −→ GBlock;

GBLock −→ ONBlock | OFFBlock |MBlock | END

ONBlock −→ ON;SBlock;GBlock

OFFBlock −→ OFF;SBlock;GBlock

MBlock −→ MOVE(si,mt,mf);GBlock

SBlock −→ Stroke | BOW(bt, bf); Stroke | EMPTY

Stroke −→ DRAW(at, af, dt, df)

si ∈ [0, 12]

dt ∈ [0, 8]/8

at ∈ 360 ∗ [0, 8]/8

bt ∈ 90 ∗ [−2, 2]

mt ∈ [0, 4]/4

df ∈ [−2, 2]/40

af ∈ 9 ∗ [−2, 2]

bf ∈ 30 ∗ [−1, 1]

mf ∈ [−1, 1]/12

The ON and OFF commands lift a pen on and off a virtual canvas; each series of strokes begins with one

of these commands. The MOVE command brings the pen back to a previous stroke, specified by a stroke

index (si) and a length along this stroke to travel specified by (mt, mf). The DRAW command moves the

pen at an angle specified by (at, af) for a distance of (dt, df). The trajectory of each DRAW command can

be controlled by a BOW command which optionally pushes the trajectory inwards or outwards according to

(bt, bf) parameter. Even if making a curved stroke through the BOW operator, the end location of the pen is

192

entirely controlled by the parameters of the DRAW command.

We draw attention to the fact that each real-valued parameter in this language is represented with a pair

of arguments. One member of each pair (those with t) controls the coarse behavior, while the other member

of the pair (those with f) add a fine-grained delta to the initial coarse value (i.e. their values are combined

through summation during execution). This representation promotes consistency as close values will match

on coarse binning token indices. We further find it useful to treat these ‘coarse’ real-valued parameters

as categorical variables for the purposes of defining parameter relationships in the declaration of Template

Programs, but we don’t observe similar benefits when fine-grained values are included in this categorization

(see ablation in Section D.1.2). HOLE tokens are allowed to take place of any function.

Reconstruction Metric For our reconstruction metric M , we use an edge-based Chamfer distance [187].

This allows us train our networks without access to stroke data, as we can compute this metric directly from

binary images.

Representational Capacity The maximum complexity of characters that our method is capable of rep-

resenting is bounded by (i) the maximum number of tokens that our inference networks can handle and (ii)

the maximum number of strokes we sample in the synthetic programs used in the pretraining step. This latter

value is set to 12 in our sampling scheme, although through the introduction of HOLE tokens in Template

Programs, some of the synthetic programs may end up using more than 12 stroke primitives. While the syn-

thetic pretraining distribution will inform the behavior of the inference networks, this distribution will change

over the course of bootstrapped fine-tuning and specialize towards “real” Omniglot examples.

While we observe that these settings allow our model to reliably capture the majority of Omniglot char-

acters, there are some very complex characters that might be hard to fit under these constraints with our

top-down inference procedure. It should be possible to relax the constraints of both (i) and (ii), although the

cost would be a larger GPU memory footprint and more complex pretraining data, which might require more

training time and/or inference networks that use more parameters.

193

D.2.2 2D Primitive Layout

DSL We use the following grammar for creating layouts of 2D colored primitives. We present a slightly

simplified representation of this language for clarity.

START −→ UBlock;

UBlock −→ UNION(ShBlock, UBlock) | ShBlock;

ShBlock −→ (SymBlock | CBlock |MBlock | ScBlock); (PBlock | UBlock)

SymBlock −→ SymReflect(axis) | SymRotate(n) | SymTranslate(n, xt, xf, xt, yf)

CBlock −→ Color(ctype)

MBlock −→ Move(xt, xf, yt, tf)

ScBlock −→ Scale(wt,wf, ht, hf)

PBlock −→ Prim(ptype)

axis −→ X | Y

ctype −→ red | green | blue

ptype −→ square | circle | triangle

n ∈ (1, 6)

xt ∈ [−3, 3]/4

yt ∈ [−3, 3]/4

wt ∈ .35 ∗ [1, 6]− .15

ht ∈ .35 ∗ [1, 6]− .15

xf ∈ [−2, 3]/20− 0.025

yf ∈ [−2, 3]/20− 0.025

wf ∈ [−3, 3]/20

hf ∈ [−3, 3]/20

Our language uses a UNION combinator to assemble a collection of primitives on a 2D canvas. Primitives

194

can take three types: squares, circles and triangles. They are consumed by MOVE and SCALE operators,

where similar to our Omniglot domain, we make a distinction between the coarse and fine parts of each real-

valued argument. Once again, we distinguish the coarse values with t endings and the fine values with f

endings. Our motivations for adopting this tiered representation for real-values are identical to the Omniglot

setting. Instantiated primitives are colored grey, but can change color when passed through a COLOR operator.

Our DSL also supports symmetry operations: SymReflect creates a reflectional symmetry group over a

specific axis. SymRotate creates n copies of its input argument about the origin. SymTranslate creates

n copies of its input argument in a direction that is parameterized by a distance in the same way as MOVE.

Reconstruction Metric For the layout domain we use a color-based intersection over union metric. Given

two images, we first identify all of the occupied pixels, and which of our four colors each occupied pixel is

filled in with. We then calculate the ‘intersection’ numerator between these two images by counting the

number of pixels that are both occupied with the same color. We calculate the ‘union’ denominator between

these two images by counting any pixel in either image that is occupied. Our final value M is calculated by

dividing the numerator by the denominator. HOLE tokens are allowed to take the place of any function.

195

D.2.3 3D Shape Structures

DSL We use the following domain-specific language for 3D shape structures, which is adapted from Sha-

peAssembly (Chapter 3). We present a slightly simplified representation of this language for clarity.

START −→ BBoxBlock;ShapeBlock;

BBoxBlock −→ bbox = Cuboid(x, x, x)

ShapeBlock −→ (PBlock;ShapeBlock) | FILL | END

PBlock −→ CBlock;Attach;SBlock

CBlock −→ cn = Cuboid(x, x, x) | cn = START

Attach −→ attach(cuben, f, uv, uv)

SBlock −→ Reflect | Translate | None

Reflect −→ Reflect(axis)

Translate −→ Translate(axis,m, x)

f −→ right | left | top | bot | front | back

axis −→ X | Y | Z

x ∈ [0, 40]/40.

uv ∈ [0, 20]2/20.

n ∈ [0, 4]

m ∈ [1, 5]

This DSL creates shape structures by defining cuboids, and arranging them through attachment. Cuboids

are instantiated with the Cuboid command. Each Attach command moves one command to connect to

previous part, indicated by cuben at a location specified by the other parameters of the command. This lan-

guage supports the creation of reflectional symmetry groups (Reflect) and translational symmetry groups

Translate. Of note, we allow the DSL to expand hierarchically, so that Cuboids can become the bounding

volume of their own sub-program (represented above with the return to the START block). These nested

196

sub-programs are allowed to be set to a completely filled mode (FILL) or instead expand into empty space if

immediately followed by the END operator. Differing from other languages, we only allow HOLE tokens to

replace these START tokens that define sub-program structures, to better match the hierarchical processes by

which manufactured shapes are commonly modeled.

Recon Metric We employ different metrics for this domain dependant on the visual representation. When

we operate over 3D voxel fields, we simply use the voxel occupancy intersection over union as our met-

ric M . When we operate over primitive soups, i.e. unordered collections of primitives, we use the following

matching procedure: we first calculate the pairwise distance between each primitive by calculating the bidi-

rectional Chamfer distance on the sets of corner points that form each cuboid. Assuming the two shapes we

are comparing contain N and M cuboids, we converted these distances into a NxM array, and find an optimal

matching through the Hungarian matching algorithm. Our metric M is then calculated as the mean value

of the entries of the matrix that form this assignment. When N ! = M, we convert the distance array into a

square matrix using the larger dimension, filling in the ‘non-matched’ entries with a high default value that

penalizes structural mismatch.

Target Data We source input shape structures by leveraging the structural annotations provided in the Part-

Net dataset [141]. As our DSL supports only axis-aligned parts, we filter out any shape structures that require

other kinds of oriented cuboids. We then make use of ShapeAssembly’s parsing procedure to heuristically

find ShapeAssembly programs, under the original DSL formulation, that correspond with these input shapes.

We try converting these programs into our DSL formulation, and check the geometric similarity between this

execution and the original PartNet shape, as a sanity check to see if this shape structure could be modeled

under our procedural language.

At the end of this preprocessing stage, we are left with over 10,000 shapes from the chair, table and storage

classes of PartNet. We use the corresponding parsed ShapeAssembly programs to group these shapes into

concept groups. We differentiate the internal group consistency along 2 axes: whether or not the group would

likely require a HOLE token and whether or not the group would have a consistent application of attachment

commands. We parse concept groups under all four combinations of these difficulty settings, choosing 25

concept groups from each setting to populate our test set, where each concept is ‘formed’ according to a

grouping of 10 exemplars. We treat all other shapes not in the test set as training shapes, and during finetuning

we randomly sample concept groupings from this set according to the same concept identification procedure.

197

D.3 Model Details

D.3.1 Architecture Details

All of our auto-regressive networks are implemented as standard Transformer decoder-only models [209].

We use learned positional encodings, these cap the maximum sequence lengths for the various networks.

There are three positional encodings for various sequences: the Template Program sequence, the Structural

Expansion sequences, and parameter instantiation sequences. For the layout domain we cap these at sizes:

(64, 16, 72), for the omniglot domain we cap these at sizes (64, 16, 64), for the shape domain we cap these at

sizes of (64, 24, 80).

Visual Encoders We employ encoder networks that convert visual inputs into latent codes, see Figure 6.1.

For the layout domain we use a standard CNN that consumes images of size 64x64x3. It has four layers

of convolution, ReLU, max-pooling, and dropout. Each convolution layer uses kernel size of 3, stride of 1,

padding of 1, with channels (32, 64, 128, 256). The output of the CNN is a (4x4x256) dimensional vector,

which we transform into a (16 x 256) vector. This vector is then sent through a 3-layer MLP with ReLU and

dropout to produce a final (16 x 256) vector that acts as an 16 token encoding of the visual input. The omniglot

CNN is identical, except it uses one fewer convolution layer, a padding size of 2 in the final convolution layer,

and its 3-layer MLP consumes features of size (16x128) and transforms them into size (16x256). In this way

for Omniglot we also convert each input image into 16 visual tokens.

For the shape domain we have two different encoders depending on the input modality. For our 3D

voxel model we follow a similar convolutional paradigm, extending all 2D convolutions to be 3D, changing

the kernel size to 4, using padding of size 2, and adding an extra fifth convolution layer. When consuming

voxel grids of size 64x64x64 this produces outputs of size (2x2x2x256), we send this through a 3-layer

MLP to produce a (8x128) feature, that we reformat to be (4x256) in dimension. In this way, 3D shapes are

represented with four visual tokens.

When we consume a primitive soup of input, we use a different architecture based on a Transformer

encoder [209]. We assume that each primitive is a cuboid with 6 dimensions that describe its 3D position

and size. We linearize these primitive attributes, and lift each of them to dimension 16 with a 2-layer MLP.

Following this we add a learned positional encoding to each attribute based on its attribute type. We then

have another ‘positional encoding’ that is produced by concatenating all of the attributes of each primitive

198

(in the lifted dimension) and sending this feature through a 2-layer MLP that outputs an embedding of the

same size as the lifted dimension, which then gets summed back into each attribute. This scheme allows

us to avoid worrying about how the primitives are ordered, while still allowing the attention scheme of the

network to differentiate which attributes belong to which primitives. We send this tokenized representation

through a standard Transformer encoder network, where we prepend the sequence with four ‘dummy’ tokens.

Each token attends to every other token, and we treat the representations output in the indices of the four

‘dummy’ tokens as the visual tokenization. These dummy tokens build up a representation that attends of the

entire input in much the same way as [CLS] tokens have been employed. Note that this encoder assumes a

maximum number of primitives as input, which we set to 20. If the input scene does not have 20 primitives,

we leave these entries as zeros, and then don’t attend over those corresponding positions in the sequence

while encoding.

D.3.2 Location Encoding scheme

We adopt the location encoding scheme from [166] for predicting how to file in HOLE tokens, while pre-

dicting each SE , and parameter values, while predicting the complete z. Specifically, we use their notion of

‘sentinel’ tokens to identify any locations in the linearized function sequence that need to be filled in autore-

gressively. Then during each autoregressive step, we ‘prompt’ the network to predict for a specific location

by repeating the sentinel token. We depict examples of this process in Figure 6.1. We treat each sentinel

token as an independent token in our language, this limits the number of HOLE and parameter tokens we

can predict. We set the max number of HOLE location encoding tokens to be 5, and the max number of

parameter location encoding tokens to be 64. Assigning a reuse parameter relationship in the TP also uses

similiar location encoding tokens: we allow for up to 4 of these shared tokens: when multiple instances of

any of these shared tokens appear in the TP , we constrain instantiations of the TP to assign these slots with

matching parameter values.

D.3.3 Generative Networks

Unconditional Generative Networks We use unconditional generative networks to produce paired data

during our wake-sleep step of fine-tuning. Specifically these networks are unconditional with respect to visual

inputs, but they still condition on programmatic elements. These networks can also be used for unconditional

concept generation, see Section D.1.3. The networks we use for this process have an identical architecture to

199

our inference networks. In fact, at the beginning of our fine-tuning process we initialize the weights of these

networks with the weights of the inference networks that have undergone supervised pretraining. They differ

from the inference networks by simply masking out (i.e. setting to 0) all of the visual latent codes that are

used to condition the generation of the Template Program, the Structural Expansion and the final program. In

this way, these networks only condition on token sequences, or in the case of the TemplateNet, don’t attend

over any prefix conditioning information. Our training scheme for these networks uses the same losses as our

training scheme for the inference networks, assuming we have paired data

Few-Shot Generative Networks For few-shot generative tasks, we want a network that has conditioning

information in between our inference networks (that condition on latent codes specific to visual inputs in an

input group) and our unconditional generative networks (that don’t condition on visual inputs). To address this

point, we train variants of our inference networks that condition on a mean-pooled latent encoding (i.e. we

average the 5 visual latent codes that come from an input group). Note that this only affects the ExpansionNet

and the ParamNet, as the TemplateNet already is designed to attend over an input visual group. Once we

create this mean-pooled latent encoding, the training procedure is undergone in the same fashion, except

the shared latent code is used as conditioning information for all of the instances of the (TPG,ZG) pair.

In this way, we task the network with learning to solve a one-to-many modeling problem: from the same

conditioning information, the network has multiple valid targets.

This network is trained on the same paired data as our inference networks (the batches of data created

by our ST, LEST and WS procedures). While its possible to train this network during finetuning alongside

the inference network, we instead cache all of the training data our inference network consumes during

finetuning, and then train this few-shot generative network in a separate process after our inference model

has converged. All of the few-shot generative results we demonstrate are sampled from these networks (after

a Template Program describing an input group has been inferred).

D.4 Training Details

We implement our networks in PyTorch [158]. We run all experiments on a NVIDIA GeForce RTX 3090

with 24GB of GPU memory, and 64 GB of RAM. During pretraining we set the batch size to max out GPU

memory, this amounts to sizes of 32 for the 2D layout domain, 40 for Omniglot domain, 32 for the shape

domain with a primitive soup input and 16 for the shape domain with voxel inputs (of size 643). Note that

200

this batch size is effectively multiplied by 5 for the ExpansionNet and ParamNet as we train on visual input

groups of size 5. During fine-tuning we set the batch size to 20 for all methods, except for the shape-voxels

variant, which we set to 10 to avoid maxing out VRAM.

We use the Adam optimizer to train our networks [106] with a learning rate of 1e-4. We pretrain our

networks on synthetic data sampled from each domain until we converge with respect to a validation set of

similarly sampled synthetic paired data. This takes approximately ∼ 700k batches for the layout domain,

∼ 600k batches for the shape domain, and ∼ 300k batches for the Omniglot domain.

We finetune our inference networks with the procedure described in Section 6.1.3. For each concept in

the training set, we sample a group of visual inputs (at random) from the concept, and record our inference

results to produce the LEST and ST dataset. In this way if there are K concepts in X∗, the size of the ST and

LEST data on each training step will also be K. Differing from this, in the wake-sleep step of our finetuning

procedure we can generate an arbitrarily large number of paired data by sampling our generative model. We

find that sampling a large number of ‘dreams’ is helpful for our finetuning procedure, so we set the number of

example TP to sample in each training step to 30,000. This typically takes between 1 and 2 hours, differing

slightly for each domain. To encourage the ‘dreams’ we sample to cover a wide-distribution, we design a

negative rejection step where we resample any ‘dream’ that either creates an already generated TP or XG.

We find this rejection criteria is triggered at relatively infrequent rates (∼5% of the time).

Once we’ve created the ST, LEST and WS datasets, we use them to finetune our inference networks

with cross entropy loss. We train over this datasets for multiple ‘epochs’, where every 5th epoch we run

our updated inference networks over concepts from the validation set. We use the Objective O from this

validation inference to decide when to break out of the training step, and return to the inference step. This

early stopping inference procedure always backtracks to the version of the inference network that achieved

the best O measure on the validation set. We use a patience of 10 epochs, and finetune for at most 50 epochs.

Overall, we run our finetuning procedure to convergence for 25, 17, 32 inference-training loops for the

layout, omniglot and shape domains respectively. This corresponded with 565, 450, 620 finetuning ‘epochs’

for these domains. For the weights of our objective function O, we normalize each reconstruction metric to

values typically between 0 and 1, and then we set λ1 to 1.0 and λ2 to 0.001. Moreover, when calculating the

divergent description length between each Template Program and its respective program instantiations, we

discard counting any parameter-types for which we don’t support parameter relations. For instance, as we

don’t allow float variables to use parametric relations (see Section D.1.2), we do not penalize these variables

under O, because the TP has no opportunity to constrain them.

201

D.4.1 Token Sequence Formatting

Given a paired (XG, TPG, ZG) triplet we can produce training data for our inference networks. We train

under a teacher-forced autoregressive paradigm, where we make a single pass through the autoregressive

network for each training batch. The input for the TemplateNet is a linearized sequence of visual latent

codes; these are randomized as we randomly order the visual inputs. The target for the TemplateNet is the

linearized sequence of tokens that describe the Template Program, where we use prefix notation to convert

expression trees into flat sequences. From TP and z pairs, we can derive targets for the ExpansionNet and the

ParamNet. To find targets for the ExpansionNet, we simply identify mismatches in the functions that are used

in the TP versus the functions that are used in z: any expression tree in z that is not found in the TP must be

the result of filling in a HOLE token. Similarly, we scan the TP to identify any parameter relationships that

have been defined, either in the form of specifying parameter arguments (static assignment) or using shared

tokens. As we know the final expression tree of the z from its linearized form, we then use these declarative

relationships to reformat the z to replace all free parameters with sentinel tokens (Section D.3.2).

D.5 Experiment Details

D.5.1 Few-shot Generation

Task design In the few-shot generation task we employ the following set-up. For each concept in the test

set of a particular domain, we take 5 examples from the concept, pass them as input into a method, and then

ask the method to synthesize 5 new generations. We then compare these 5 generations to a separate set of 5

examples from same test-set concept (i.e. a reference set). As the layout domain is procedurally generated,

we can sample more examples per concept, therefore in this domain we do the above procedure 5 times for

each test set concept. In this way for layout, our metrics compare sets of size 25 generations to 25 reference

images (where these 25 generations came from 5 prompts).

Metrics We quantitatively evaluate few-shot generative capabilities (Table 6.1) with a series of metrics

common to recent generative modeling approaches [2]. Though these metrics are typically designed to oper-

ate over much larger sets, we think the trends they exhibit are indicative of few-shot generative performance

(and their ordering is largely consistent internally).

Some of these networks directly compare the generated samples to a reference set for each concept.

202

Frechet Distance (FD) [73] measures the distributional similarity between two distributions of encodings.

Minimum Matching Distance (MMD) measures the average minimum distance of each member of the ref-

erence set to any member of the generated set. Coverage (Cov) measures the percentage of reference set

members who are the nearest neighbors to at least one member of the generated set.

We calculate all of the above metrics with respect to a latent space that is domain-specific. To this end, for

each domain, we train a visual auto-encoder to learn how to reconstruct ‘random’ scenes from that domain.

For the layout domain these are randomly placed primitives. For Omniglot, these are randomly placed strokes.

For shapes, these are randomly place cuboids primitives. We train each of these networks to convergence on

500,000 random scenes with a small bottleneck layer size (e.g. 100).

For the layout and omniglot domain we train simple classifier networks to learn a K-way classification

over all of the concepts present in the domain. For Omniglot, we train on 19 examples from each of the

1623 characters in the dataset, and hold out one example from each concept as a validation set. Our classifier

achieves a 82.4% validation accuracy after convergence. For layout, we train over 95 examples from each

concept in a 20-way classification task over meta-concepts; we reach 99.9% validation accuracy on a held out

set of 5 examples per concept. The class confidence metric (Conf) is then computed by taking each generated

output, running it through the classifier, and then recording the probability that the classifier predicts for the

index of the input concept. Note that this metric is not dependant on the reference set of examples.

D.5.2 Perceptual Study

We design a perceptual study to evaluate our method’s few-shot generative capabilities. Our study was

designed as a two-alternative forced-choice questionnaire. We recruited 20 participants, who made decisions

about which set of few-shot generations better matched a reference concept.

We show an example of our perceptual study interface in Figure D.3. The middle row of each question

shows the input prompt examples. The bottom/top row are populated by the few-shot generations of compet-

ing methods based on the prompts shown in the middle row. We randomize which method is shown on top

vs bottom, and randomize the order of all examples within the row.

Participants were either shown 50 Omniglot character comparisons or 25 shape comparisons. We visual-

ized shape comparisons with a simple rendering style of the primitive outputs produced by each method (for

time considerations).

From our 20 participants we record 900 judgements of our method against three other conditions: ours vs

arVHE for Omniglot (381 judgements), ours vs GNS for Omniglot (369 judgments) and ours vs arVHE for

203

Figure D.3: A visualization of the interface we use in our two-alternative forced-choice perceptual study.

3D shapes (150 judgements). We report the quantitative results from this study in Table 6.2.

D.5.3 Co-segmentation

We formulate the co-segmentation task as follows. We are given 5 examples as input, exactly one of these

examples comes with a reference segmentation. The goal of each method is to propagate the labeling from

this reference segmentation to the other members of the input group that lack a reference segmentation. We

show an example of this task in Figure 6.4.

We compare the produced segmentations against ground-truth annotations for each member of the in-

put set. To quantitatively evaluate performance on this task we use a mean intersection over union metric

(mIoU) [141]. This metric calculates the intersection over union for each label that appears in the ground-

truth annotation, and then averages these values.

Ground-Truth Segmentations Here we describe how we source ground-truth segmentations for each do-

main.

For 2D layouts, we produce these as a part of the way we design our meta-procedures. Each primitive

group in these specifications is given a semantic label. We evaluate over all concepts in the test set.

For 3D shapes, we record the PartNet hierarchy annotation for each primitive of each shape structure we

use [141]. Then within each test-set concept, we search for a group of 5 inputs that use the same semantic

parts in their shape structures. If we find such a group, then this is the group from the concept we use during

204

co-segmentation tasks. From our 100 test set groups, we find such co-segmentation inputs for 94 of them.

We make use of Omniglot stroke data to produce the ground-truth segmentations for characters. We treat

each stroke pattern broken by ‘BREAK’ annotations as a separate segment [116]. Then, as humans vary in

the ways that they order strokes to draw characters, for each test set character we run a clustering procedure

to try to find valid and consistent segmentation groupings. We first filter for finding groups of characters that

use the same number of strokes, and more than a single stroke (otherwise the co-segmentation task is trivial).

Then we encode each stroke with a 4 dimensional feature: its length, its angle, its starting x position, and its

starting y position. We run an unsupervised clustering algorithm over this feature representation [43], identify

if there is any cluster with more than 5 character members, and then take 5 characters from this cluster as

a co-segmentation task (where our feature-wise distance creates a correspondence across the strokes of this

group). This automatic process generates 306 co-segmentation tasks from the 659 concepts in the Omniglot

test set. We manually inspect the generated tasks, and filter out 22 cases where our clustering identified a

group that did not have consistent stroke expression. This leaves us with 284 cosegmentation tasks that we

use in our experiments.

Group Parsing Template Programs: Template Programs support parsing by inferring instantiations from

a shared TP that explain a group of visual inputs. As each instantiated program z uses the function call

structure specified by a Template Program, we can find correspondences in the visual outputs. We create

a corresponding group for each primitive type that the Template Program defines: these are created by the

PRIM command for the layout domain, the DRAW command for Omniglot and the Cuboid command for 3D

Shapes. Note that HOLE tokens are always treated as a construct that creates primitive types. Any command

that operates over this primitive type will inherent their corresponding part index (e.g. symmetry operations),

excluding combinators like Union.

BAE-NET: BAE-NET creates corresponding group parses by performing an argmax over the last layer of

an implicit network that is trained to solve occupancy tasks. This implicit network can be run over any spatial

position, and assign this input point to one of its part ‘slots’.

BPL and GNS: The BPL and GNS methods perform one-shot parsing of input characters into an ordered

collection of strokes. This parsing is guided by their learned prior, which models how people produce char-

acters. Conscripting these methods to perform our co-segmentation task is a slight abuse of design, but as

their output parses partition space in a consistent fashion, we think it a worthwhile comparison to make. Our

method does not learn from any human demonstrations, so we are unable to solve the character parsing task

205

as it is originally formulated [115, 116].

Label Propagation The parses we get from the above logic are consistent, but might not exactly recreate

the input examples (if they do not achieve perfect reconstructions). We thus employ a procedure, on a domain-

by-domain basis, that propagates the parse from the reconstruction to its input example. For the layout domain

we first take the part index of each occupied pixel to match the primitive that last ‘covered it’. Then for any

non-occupied pixels, we assign them to the closest instantiated primitive according to the distance from that

pixel’s center to the primitive. For the shape domain, we take a similar approach, calculating the distance

from voxel centers to each cuboid. For any voxel center that is occupied by more than one cuboid, we assign

it to the occupying cuboid smallest in volume. For Omniglot, we sample 200 points on each primitive stroke

group. Then for five query points evenly spread out within each pixel location, we find the three closest points

sampled from any stroke group. We tally up these votes for each pixel, and then each pixel is assigned to

the primitive stroke group which recorded the most votes. Note that we employ this same procedure for our

method, BPL, and GNS. BAE-NET doesn’t need to employ this logic, as its parsing strategy operates over

arbitrary input points by construction.

After we have this consistent parse for each region of the input group the procedure is almost done. We

use the partitions from the labeled example to assign each parsed region a label. Finally, we propogate this

region-to-label mapping to all of the other examples in the input group.

D.6 Comparison Method Details

We provide details on the methods we compare against.

D.6.1 BPL

We use the author’s released Matlab implementation: https://github.com/brendenlake/BPL. For five charac-

ters from each test-set concept we infer a parse, and use that parse to synthesize 1 new generation (in this way

we create 5 few-shot generations from each group of 5). We wrapped this Matlab procedure with a python

script, and ran it sequentially on a single machine, which took around 2 weeks.

206

D.6.2 GNS

We use the author’s released implementation at https://github.com/rfeinman/pyBPL. We follow the same

procedure as in BPL, inferring a parse for five characters from each test-set concept, and then using each

parse to synthesize 1 new generation.

D.6.3 FSDM

We follow the author’s implementation, released at: https://github.com/georgosgeorgos/few-shot-diffusion-

models. Unfortunately, the provided code was incomplete, and did not work out of the box. We made a

best-effort attempt to fix these issues and run the model with the same procedure as described in the tech-

nical report. We observed that this model was able to effectively produce few-shot generations for training

characters, but struggled greatly on test-set concept generalization.

D.6.4 VHE

We attempted to use the author’s implementation, released at: https://github.com/insperatum/vhe. Unfortu-

nately the PixelCNN variant for Omniglot did not converge under training, we reached out to the authors, but

they were unable to offer suggestions on how to fix these training issues.

Using the provided code as reference, we re-implemented the system with a simple CNN architecture,

following the VAE framing as described in [180]. Though we spent a fair amount of time tuning hyper-

parameters, as evidenced by the quantitative results in Table 6.1, we were unable to achieve competitive

performance.

arVHE In an attempt to improve the performance of our VHE comparison condition, we implemented a

related method that combines autoregressive models with the spirit of the VHE approach. Specifically, we

break down this few-shot generation modeling task into two separate stages. First we learn a domain-specific

discretized representation. For pixel and voxel input representations we use 2D and 3D CNNs in a vector-

quantization scheme [208], so that we can convert each visual input into a sequence of discrete tokens.

We list the details of our VQ-VAE training: for Omniglot we convert 28x28x1 images to a 7x7 grid of

codes, under a dictionary of 64 codes with hidden dimension of 32. For layout we convert 64x64x3 images

to a 7x7 grid of codes, under a dictionary of 200 codes with hidden dimension of 100. For shapes we convert

64x64x64 voxels to a 4x4x4 grid of codes, under a dictionary of 128 codes with hidden dimension of 64. We

207

try to use the smallest code-book size that can achieve near-perfect reconstructions for each domain.

Once we have trained this VQ-VAE for each domain, we can learn our arVHE model. Like the VHE

model, and our system, it learns by sampling random visual groups from the same concept. Following the

procedure described in the VHE paper and code, we encode these visual concepts with a visual encoder, take

a mean embedding, then use this embedding to condition an autoregressive generation process, where the

goal is to predict a sequence of VQ-VAE tokens that correspond to another input example from the same

concept. We train this network with cross-entropy loss, on the discretized VQ-VAE tokens. For an apples-

to-apples comparison against our method, the arVHE baseline uses the same visual encoders that our method

uses (Section D.3). For predicting 3D shapes as a sequence of primitives, we instead just task the VQ-VAE

model with predicting discretrized versions of each primitive attribute, where the primitives are randomly

ordered (this allows us to skip the VQ-VAE step in this setting).

We note that this arVHE variant is a strong baseline method, outperforming VHE and FSDM in terms of

quantitative metrics (Table 6.1).

D.6.5 BAE-NET

We follow the author’s implementation released at: https://github.com/czq142857/BAE-NET. We take their

architecture and training procedure and adapt it for each of our domains. BAE-NET has model implementa-

tions for 2D binary images and 3D voxel grids, so for these settings we directly use the method as described.

For the layout domain we have colored images that can adopt 4 color values (red, green, blue, or grey). In

the default version of BAE-NET, it uses an MLP where the second to last layer is size NUM SEGS and the

last layer is size 1; this 1 dimensional output learns a binary occupancy prediction for locations in space. We

modify the 2D BAE-NET version so that instead, the second to last layer is still size NUM SEGS, but the

last layer is size 4; in this way we task BAE-NET to solve four binary occupancy problems at once, one for

each of our colors. In the layout domain, we still take the part segmentation from BAE-NET by choosing the

slot in the second to last layer that activates with the highest potential.

Appendix E

Additional Details and Results for

ShapeMOD

In Appendix E, we supply additional details for the ShapeMOD method introduced in Chapter 7.

E.1 Modified ShapeAssembly Grammar

Table E.1 shows the modified grammar for ShapeAssembly that we use. We make the following changes

from the ShapeAssembly version presented in Chapter 3. Instead of having separate blocks where all cuboids

are defined, then all attaches are defined, and then finally all symmetry operators are defined, we interleave

the attach / symmetry commands with the cuboids they move. Specifically a program starts with defining a

bounding volume, and then is followed with a series of PBlocks. Each PBlock defines a Cuboid, attaches it

to at least one previous cuboid (or the bounding volume), and optionally applies a symmetry operation to it.

We find that this ordering permits the discovery of more interesting and useful macros, as otherwise macros

would mostly be made up of only Cuboid definitions or only attachments (instead of a mix of operators). As a

by-product of this new ordering, we assume that all non-Cuboid operators (attach, squeeze, reflect,

translate) always operate on the last defined cuboid, and so in this way we remove one cuboid index

parameter from each of these functions.

208

209

Table E.1: Modified ShapeAssembly grammar of ShapeAssembly.

Start −→ BBoxBlock; ShapeBlock;
BBoxBlock −→ bbox = Cuboid(w, h, d,True)
ShapeBlock −→ PBlock ; ShapeBlock | None
PBlock −→ cn = Cuboid(w, h, d, a) ; ABlock; SBlock
ABlock −→ Attach | Attach ; Attach | Squeeze
SBlock −→ Reflect | Translate | None
Attach −→ attach(cn1 , x1, y1, z1, x2, y2, z2)
Squeeze −→ squeeze(cn1 , cn2 , f, u, v)
Reflect −→ reflect(axis)
Translate −→ translate(axis,m, di)
f −→ right | left | top | bot | front | back
axis −→ X | Y | Z
w, h, d ∈ R+

x, y, z, u, v, di ∈ [0, 1]2

a ∈ [True,False]
n,m ∈ Z+

E.2 Baseline Method for Macro Operator Discovery

Designing a baseline for ShapeMOD is non-trivial, because there do not exist any existing methods that are

able to find macro operators over datasets of programs written in imperative languages that contain continuous

parameters. Thus, we present a naive single-pass algorithm that mimics a simplified version of ShapeMOD’s

core logic. It starts by choosing one order for each program in the dataset. Specifically, the most canonical

order (Section E.5.3). Then it records all subsequences of functions that appear in the resulting program

lines. If any subsequence is observed in more than 10% of programs in the dataset, then it is turned into a

macro function. Parameters of this macro function can be converted from free parameters to constants if at

least 90 % of the parameterizations of this subsequence across the dataset had the same value (for discrete

parameters) or were within .05 range of the mean value (for continuous parameters). Once these macros

have been discovered, we use the best program finding step from ShapeMOD to create a dataset of programs

expressed with macros discovered by the baseline method. As shown throughout the results section, the

macros discovered by ShapeMOD outperform the macros discovered by this baseline method, for every task

we consider.

E.3 A Network Architecture for any library

After running our procedure to generate a library L, we want to design a neural network that is able to

generate programs using the functions of L. As our procedure is able to produce many different libraries L,

210

depending on which macro operators it discovers, our network architecture must be flexible enough to model

any set of discovered functions. To demonstrate that this is achievable, we generalize the neural network

from ShapeAssembly (Chapter 3) so that it is able to learn how to generate programs expressed in any L

discovered through our procedure, and validate this works in later experiments.

The base model is a hierarchical sequence VAE. The encoder branch ingests a hierarchical program and

embeds it into a high dimensional latent space. The decoder branch converts a code from this latent space

into a hierarchical program. Originally, the underlying library was fixed to ShapeAssembly, so the network

architecture and input representation could be tailored to one set of functions.

We design a generalized version of this network architecture that is customized based on the library of

functions L discovered by our procedure. The parts of the architecture that had to be generalized were the

tensor line representation and the sub-networks in the line decoder module.

In our new line representation, the dimension of the line tensor and meaning of each index changes

depending on L. The first |L| + 2 indices of the tensor correspond to a one hot vector denoting the function

type of each line (notice we add special START and STOP tokens). Then for each type of discrete parameter,

pd, we find its number of valid values, pd size, and maximum number of pd free parameters in any function

of L, pd free. We then reserve pd free slots of size pd size in our tensor for pd, where each slot corresponds

to a one hot vector whenever pd is required by a function. Finally, for any function f ∈ L that takes in a set

of continuous parameters, fc, we reserve a slot in our tensor of size |fc|.

The number and structure of sub-networks in our new line decoder model also depends on L. The Mfunc

module is responsible for predicting the line’s function, and therefore has |L| + 2 possible outputs (the

functions of L and the special START and STOP tokens. For each f ∈ L, for each of its free discrete

parameters fd i, we add a sub-network Mf d i responsible for predicting the ith discrete parameter of f . Then,

for every f that has free continuous parameters, we add a sub-network Mf c for predicting the continuous

parameters of f .

We implement each sub-network as a 3 layer MLP. The network is trained in a teacher forcing paradigm

with a cross entropy loss for all discrete predictions and an l1 loss for all continuous predictions. Parameter

sub-networks are invoked, and tensor slots in each line are filled, depending on the function type predicted in

each output line. Otherwise we use the same hyper-parameters as ShapeAssembly.

211

ShapeMOD No Macros

C
ha

ir

ShapeMOD No Macros

Ta
bl

e

ShapeMOD No Macros

St
or

ag
e

Figure E.1: Samples generated from generative models of ShapeAssembly programs with ShapeMOD macros
(blue) and without macros (green).

E.4 Shape Generation Qualitative Comparison

We share some interesting representative shape programs output by learned ShapeAssembly generative mod-

els in Figure E.1. Outputs by the model trained with ShapeMOD macros are shown in blue. Outputs by the

212

model trained on the No Macros programs are shown in green.

These qualitative results enforce the trends of our earlier quantitative experiments from Section 7.4.2. The

best generations from Chairs and Tables are qualitatively similar, although across entire shape collections we

calculated that programs with ShapeMOD macros were more plausible. For storage, the qualitative difference

is more pronounced, as the generations that use ShapeMOD macros are able to create output shapes that are

much closer in distribution to the target shape collections.

E.5 Creating A Dataset of Shape Programs

As input, ShapeMOD consumes a dataset of shape programs. To source such a dataset we need find a collec-

tion of shape programs composed of program line and orderings of those lines, that when executed, faithfully

recreate the target geometry. Instead of working with complete hierarchical ShapeAssembly programs, we in-

stead run ShapeMOD on the flat sub-programs that together compose complete PartNet shapes. For instance,

while running ShapeMOD we might have different programs for a single PartNet chair’s back, base or root

level programs. Re-composing flat programs back into hierarchical ones, after ShapeMOD has discovered

the most useful macros, is trivial.

E.5.1 Parsing

Following the parsing method proposed in ShapeAssembly, our method starts with a collection of part graph

hierarchies from PartNet [141]. We use a geometric procedure to turn this part graph hierarchies into Sha-

peAssembly program lines. At the end of this process, for each shape in our dataset of part graph hierarchies,

we have all of its cuboid dimensions, know which parts attach together and where, know which attachments

could instead be expressed as squeeze operators, and which cuboids should have symmetry operators ap-

plied over them. This is enough information to form the program lines required by a ShapeAssembly shape

program.

E.5.2 Finding Valid Orderings

Given these lines we still need to figure out how they can be ordered, as not every line ordering will recreate

the target geometry, or even result in a valid ShapeAssembly program (i.e. that adheres to the grammar).

There are three ordering components that must be considered for ShapeAssembly programs that adhere to

the grammar we introduce for ShapeMOD: (i) ordering of cuboids, (ii) orderings of each attach a cuboids

213

makes, and (iii) deciding which cuboid is making each attach, and which cuboid is being attached to. The

combinatorial space of these orderings makes searching over all orderings prohibitive; thus we define a series

of heuristics to narrow the exploration space.

First, we create a graph where each node is a cuboid and an edge between nodes indicates that they attach.

We then find the shortest distance from each node to the bounding box node (call this distance the level of the

cuboid). We then enforce (1) that cuboids must only attach to cuboids in a lower level, or the same level and

(2) that all cuboids must be declared based on their level ordering (although notice that multiple cuboids can

be in the same level still). We further place a strict preference on attachment directions that attach from the

center of a face. Whenever a cuboid makes multiple outgoing face attachments we order them by (bot, top,

left, right, back, front), and afterwards continue with any non-face attachments.

So far, we have limited the search space we must consider, but we haven’t enforced that the resulting

ordering will actually recreate the geometry we care about. For an ordering of ShapeAssembly lines to

recreate the target geometry, three conditions must hold: (i) it must be a valid program under the grammar,

(ii) no cuboid should be moved after it has been attached to and (iii) each cuboid should have enough outgoing

attachments to specify its orientation. We satisfy (i) by construction as we only consider lines orderings that

would be valid under the grammar. (ii) is satisfied based on the level ordering logic from the above paragraph.

For (iii) to be satisfied, different conditions must be met depending on if the part is aligned or not aligned to

its parent’s bounding box in the target shape. If the part is aligned, it only needs one attachment (as all cubes

in ShapeAssembly start off as aligned). If the parts is not aligned, it will require at least two attachments.

For any ordering of cuboids/outgoing attachments/attachment directions, if they satisfy (i), (ii) and (iii) we

consider them to be a valid ordering. To improve the run-time of the algorithm, we place a strict limit on

the number of orderings for any one program to be 10000. This limit is surpassed by around 3% of chair

programs, around 5 % of table programs and around 10 % of storage programs. In case a program has more

than 10000 valid orderings, we return the first 10000 valid ones ranked by their canonical order (detailed in

next section).

E.5.3 Canonical Ordering

At various points in our procedure, multiple program orderings will be ‘equally good’ and so we will need

some criteria to consistently differentiate between them. To accomplish this, we borrow the canonical or-

dering logic from ShapeAssembly, where during parsing each cuboid is given an index, and then we prefer

orders where lower indexed cuboids are defined first, and attached to first (all else equal).

214

E.6 Details of applying ShapeMOD to ShapeAssembly

E.6.1 Choosing Parameters for an Abstracted Program

When we are finding an abstracted program that can represent an entire cluster of programs, there might

be multiple ways to parameterize the abstracted program. Here we detail the preference ordering we iterate

over in order to form the abstracted program. Recall that the abstracted program we find must create a valid

program for at least p = 70% of programs in the cluster.

For discrete variables, we first see if the cluster can be explained by a constant, if it can then we use the

constant. We next see if the cluster can be explained by the parameter values of a previously used discrete

variable (i.e. re-using a free variable in multiple parameter slots), if it can then we re-use the variable. If both

of these fail, then we introduce a new free parameter.

For continuous parameters we employ a similar strategy over the following ordered list of expression

types. Note that for all macros, we assume that they have access to the dimensions of the bounding box in

which they were created.

• select constants that are known to frequently occur - (0, 0.5, 1.0) for ShapeAssembly

• directly using a dimension of the bounding box

• directly using a previously defined free variable

• using a fixed linear combination of 1 and any bounding box dimensions, where the weights are from

[(1, 1), (−1, 1), (1,−1)]

• using a fixed linear combination of 1 and any previously defined free variable, where the weights are

from

[(1, 1), (−1, 1), (1,−1)]

• using a fixed linear combination of any previously defined free variable and any bounding box dimen-

sion, where the weights are from

[(1, 1), (−1, 1), (1,−1)]

• using a fixed linear combination of any two previously defined free variables, where the weights are

from

[(1, 1), (−1, 1), (1,−1)]

• a scaled version of any previously free variable

215

We find that this preference ordering produced macros for the ShapeAssembly language that were more

semantically interpretable. We also tried experimenting with more complex parametric relationships between

parameters, such as arbitrary linear combinations of constants / bounding box parameters / past free parame-

ters, but found that this led to slightly worse compression metrics.

E.6.2 Valid Candidate Macro operators

When proposing candidate macros in the proposal phase of ShapeMOD, we choose to optionally make some

potential macros ineligible in order to avoid local minima, and limit the number of candidate macros we need

to consider for any integration round. The criteria we use are:

• The macro must be four or less lines. Notice that as macros can use macros discovered in previous

rounds as sub-routines, a single macro is still able to cover more than four lines of the base Sha-

peAssembly programs

• A multi-line macro shouldn’t end with a Cuboid line.

• A multi-line macro should only include a Cuboid line, if it starts with a Cuboid line. Notice that it can

both start with a Cuboid line, and then include subsequent Cuboid lines afterwards

The first requirement helps to speed up the algorithm. The impetus for the last two requirements is that

each macro should not cover the partial attributes of any part, it should instead try to build up abstractions that

represent an entire part fully, or even a group of parts. We also observed empirically that these requirements

helped to encourage macros that developed hierarchical structures.

E.6.3 Candidate Macro Frequencies

The frequency with which a macro was found during the proposal phase influences the gain ranking of that

macro during integration. However, whenever we update the library with a new macro, frequencies for all

other macros should be updated because the macro that was added might have covered the same program

lines (and so double counting these would result in an overly optimistic estimate of the future gain). Thus,

whenever M is added into L, we update the line coverage statistics of all other candidate macro operators, so

that each line that M covered is no longer used to calculate the frequency score p of future candidate macros

during ranking. However if M is not added into L, then we find all reachable candidate macro operators in

the the generalization graph starting from the M node, and remove them from future consideration during

candidate macro operator ranking (in the current round). This is done so that if a group of macros appear to

216

have a high gain, but are not actually helpful in decreasing f , we only need to consider one such function in

each round of integration.

E.7 Details about Generative Modeling Metrics

• Rootedness : We directly use the rootedness calculation from ShapeAssembly

• Stability : We use the stability simulator from ShapeAssembly, with one small modification. Instead

of the object starting on the ground, and having it be perturbed upwards and to the side, we just drop

the object from a small height. We found this to be a more reliable measure of stability that produced

stability simulations which more closely matched our intuition.

• FD: We use the feature space of a PointNet model trained on a 16 way classification task on shapes

from ShapeNet [16]. Each FD calculation takes up to 1000 meshes from two sets, and samples their

surfaces to form point clouds with 2500 points. During training, we compare generated meshes against

the training set to choose the epoch of the model. For all metrics reported in the results section, we run

FD on a held-out set.

• Realism: We follow the realism procedure outlined in ShapeAssembly, with a small modification.

In ShapeAssembly, the % fool is calculated over a held out portion of shapes from the training set

(although not seen by the real versus fake classifier). We instead report % fool statistics calculated over

a set of shapes from the validation set.

E.8 Analysis of Variability

To check how macros impact the variability of a generative model we look at the same metrics as in Sha-

peAssembly, using Chamfer Distance on point cloud samples (1024 points) from the surfaces of generated

objects (Table E.2). Generalization measures the nearest neighbor distance from the generated set to the train-

ing set. Coverage measures the nearest neighbor distance from the validation set to the generated set. Variety

measures the nearest neighbor distance from shapes in the generated set to any other shapes in the generated

set. Compared with no macros, ShapeMOD performs slightly worse on the generalization and variety met-

rics, but slightly better on the coverage metric, across the three categories we look at. The results of baseline

macros illustrate how these metrics are tricky to interpret; Baseline macros does the best on Generalization

217

Table E.2: Using Chamfer Distance (CD) and Program Edit Distance (ED), we check how well generative
models generalize from the training set, cover the validation set, and have variability within their own set.

Generalization Coverage Variety
NND to Train ⇑ NND from Val ⇓ NND to Self ⇑

Category Method CD CD CD

Chair
No macros 0.114 0.122 0.116
Baseline macros 0.115 0.121 0.115
ShapeMOD 0.111 0.121 0.114

Table
No macros 0.103 0.106 0.110
Baseline macros 0.112 0.110 0.115
ShapeMOD 0.101 0.105 0.108

Storage
No macros 0.132 0.129 0.125
Baseline macros 0.144 0.136 0.126
ShapeMOD 0.127 0.122 0.121

Table E.3: Program Dataset Compression

Category Method f |L| fn(P∗) d(P∗) f(P∗) b(P∗)

Chair
No macros 411 5 29.8 17.8 84.4 11.3
ShapeMOD 260 17 21.0 6.4 58.1 8.6
ShapeMOD (CC) 256 17 17.1 6.9 60.0 9.0

Table
No macros 356 5 25.6 16.3 70.7 9.6
ShapeMOD 214 15 17.4 5.1 48.7 5.6
ShapeMOD (CC) 205 17 14.4 4.9 48.4 7.0

Storage
No macros 453 5 30.4 21.6 92.2 11.7
ShapeMOD 283 17 21.1 7.6 68.9 4.0
ShapeMOD (CC) 280 17 18.2 7.8 70. 10.0

Table E.4: Metrics comparing samples from learned Generative Models

Category Method % fool ⇑ FD ⇓ # Parts ⇑ % rooted ⇑ % stable ⇑

Chair
No Macros 21.2 17.8 7.6 93.9 82.3
ShapeMOD 25.6 16.7 8.6 92.7 79.5
ShapeMOD (CC) 17.8 19.4 8.8 94.5 80.8

Table
No Macros 27.7 26.0 8.0 88.8 76.1
ShapeMOD 29.2 23.2 7.8 93.2 84.3
ShapeMOD (CC) 26.8 21.8 7.1 93.2 85.2

Storage
No Macros 4.9 70.0 6.0 92.4 85.5
ShapeMOD 11.1 38.1 7.7 95.1 90.5
ShapeMOD (CC) 9.3 47.4 7.7 94.7 91.1

and Variety, but at the expense of high coverage scores. This suggests that baseline macros is doing well on

generalization and validation precisely because it is failing to capture the target shape distribution as well as

the other two methods.

218

Table E.5: Metrics on program inference task from a point cloud

Category Method CD ⇓ F-Score ⇑ % rooted ⇑ % stable ⇑

Chair
No macros 44.2 54.8 93.7 83.6
ShapeMOD 41.7 56.1 96.9 88.0
ShapeMOD (CC) 42.1 55.7 95.9 89.3

Table
No macros 41.1 64.0 92.8 78.2
ShapeMOD 36.7 68.7 95.2 88.5
ShapeMOD (CC) 37.9 67.9 96.3 87.1

Storage
No macros 56.5 41.1 95.0 87.7
ShapeMOD 47.0 53.0 97.6 92.6
ShapeMOD (CC) 48.7 51.6 98.1 90.7

E.9 Additional Cross-category Macro Discovery Results

We experimented with running ShapeMOD on multiple categories of PartNet objects at once. In this section

we report the quantitative effect that using the macros discovered through this procedure had, versus using

macros that were discovered when running ShapeMOD on a single category.

We refer to this condition as ShapeMOD (CC). Table E.3 show compression statistics. Table E.4 shows

generative metrics. Table E.5 shows reconstruction metrics. Interestingly, in terms of program compression

ShapeMOD (CC) outperforms ShapeMOD for every category. This does not translate fully to down-stream

task performance though, as ShapeMOD’s unconditional generations are more plausible then those from

ShapeMOD (CC) and using ShapeMOD leads to better reconstruction metrics over ShapeMOD (CC) on our

visual program induction task. Shape validity (rootedness/stability) remains close for both methods across

these different experiments. On the whole, while this approach performs slightly worse compared with

discovering new macros for each individual dataset of shape programs, for the metrics we care most about

(physical plausibility and reconstruction accuracy) it still leads to a dramatic improvement over no macros.

Appendix F

Additional Details for ShapeCoder

In Appendix F, we supply additional details for the ShapeCoder method introduced in Chapter 8.

F.1 Shape Grammar

3D Shape Grammar Below we detail our 3D shape grammar:

START −→ SHAPE

SHAPE −→ Union(SHAPE, SHAPE) |

SymRef(SHAPE, AXIS) |

SymTrans(SHAPE, AXIS, INT, FLOAT) |

Rotate(SHAPE, AXIS, FLOAT) |

Move(SHAPE, FLOAT, FLOAT, FLOAT) |

Cuboid(FLOAT, FLOAT, FLOAT);

AXIS −→ AX | AY | AZ;

INT −→ [1, 6];

FLOAT −→ Primij | -1 | 0 | 1 | 2 |

Add(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)

Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

We italicize all non-terminal parts of the grammar, and explain what the terminal operators in the language

do (non-italicized). Union combines two sub-shapes together. SymRef is a symmetry reflection across an

219

220

axis. SymTrans is a symmetry translation over an axis, that creates a specified number of copies, up to

a specified distance. Rotate specifies an Euler angle rotation about an axis. Move moves a cuboid by a

specified amount. Cuboid instantiates a cuboid with the specified dimensions. Axes can be either the X, Y,

or Z axis. Ints can be an integer between 1 and 6. Floats can be either be sourced from a primitive parameter

of an input scene (Primij), be a constant, or the result of a parametric operation.

2D Shape Grammar Below we detail our 2D shape grammar:

START −→ SHAPE

SHAPE −→ Union(SHAPE, SHAPE) |

SymRef(SHAPE, AXIS) |

SymTrans(SHAPE, AXIS, INT, FLOAT) |

Move(SHAPE, FLOAT, FLOAT) |

Rect(FLOAT, FLOAT);

AXIS −→ AX | AY ;

INT −→ [1, 4];

FLOAT −→ Primij | -1 | 0 | 1 | 2 |

Add(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)

Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

This is a simplified version of our 3D grammar, where the rotation command has been removed, and all

3D parameterizations are replaced with 2D parameterizations.

F.2 Implementation Details

We provide implementation details for ShapeCoder below. For all experiments in Section 8.5 we set NA =

20 and ND = 10000.

F.2.1 Objective Function Weights

We use the following weights for λ in ShapeCoder’s objective function (Section 8.1.1): float tokens are 2.0,

shape-returning function tokens are 1.0, float-returning function tokens are 0.1 (i.e. parametric operations),

and categorical tokens (including integers) are 0.5 . Additionally we set the geometric error weight, λe, to be

221

10.

For the function weighting scheme ω, described in Section 8.1.1 and ablated in Section 8.5.4, ShapeCoder

employs the following logic. The base cost of adding a new abstraction f into L is 0.25, but this value can be

modulated within the range of 0.125 to 0.5 based on properties of f . The presence of parametric expressions

in f decrease ω. Too many input parameters in f increases ω, where more than 6 parameters starts to incur

penalties, and abstractions with more than 10 input parameters are rejected outright. We decrease ω for

doubleton abstractions (those that use multiple sub-functions), and increase ω for singleton abstractions that

use a single sub-function. Finally, if f is found to be used very infrequently over P , less than 1% observation

rate, then we also reject f outright.

F.2.2 Geometric Error Function

The objective function (Section 8.1.1) uses a geometric error function err that compares how closely an

executed expression e from L matches a target shape d. As this error function is used extensively in the wake

phase (Section 8.2.3), it checks for partial solutions. Say executing e creates a set of primitives prime, and d

contains primitives primd. First our geometric error functions finds an optimal mapping from primitives in

prime to some primitive in primd. Mechanically, we construct a distance matrix of size |prime| × |primd|,

that calculates a domain-specific distance metric between each pair of input and target primitives (explained

later). For any pair of primitives whose distance is above a user-defined maximum error threshold, we set

their paired distance to an arbitrarily high value (10000). We use the Hungarian matching algorithm to find

an optimal match over this distance matrix. If none of the paired matches between prime and primd have

distance over 10000, then the match is valid, and the total error incurred by e for d is simply the sum of all

entries in the distance matrix involved in this optimal match.

During the integration phase (Section 8.3.2), we can modify this approach to check for a program zthat

explains d, by enforcing that the distance matrix must be square. Whenever this condition is not met, it means

that there is a mismatch in the number of primitives created by z, and the number of primitives expected in

the target shape d, so z is invalid.

2D geometric distance Each primitive (rectangle) is represented as 4 parameters: width, height, x position,

and y position. To find the distance between two primitives, we take the average of the absolute differences

between each parameter slot. The maximum allowable error threshold is set to 0.05.

222

3D geometric distance Each primitive (cuboid) is represented as 9 parameters: dimensions, position, Euler

angle rotations. To find the distance between two primitives, we calculate the corner positions of each cuboid,

and record the Hausdorff distance between the two sets of points. The maximum allowable error threshold is

set to 0.1 .

F.2.3 Recognition Network

Our recognition network uses a Transformer decoder backbone architecture with causal masking. We allow it

to condition on up to 16 primitives (where each primitive will contribute K tokens), and fix its max prediction

length to be 32. It uses 2 attention blocks, with 8 heads in each block, and a hidden dimension of 128. Training

uses a batch size of 64, dropout of 0.5, and a learning rate of .0001. Each dream phase (Section 8.2.2) trains

the recognition network for a maximum of 300 epochs, where early stopping is performed on a validation set

of held-out dreams (10% of samples).

F.2.4 Dream Creation

Sampling library functions During the dream phase (Section 8.2.2), ShapeCoder randomly samples in-

stantiations of library functions to train the recognition network. Some dreams are visualized in Figure 8.6.

For each discrete decision needed to parameterize a function f , we find all tokens in L that type-match, and

uniformly sample from this distribution. Float-typed tokens are represented as mixtures of Gaussians distri-

butions (max 3 mixture components). These distributions are designed to broadly reflect reasonable values

for certain parameter slots in the base DSL. For instance, the first float parameter slot in the ‘Move’ operator

is associated with x-axis positioning, so we design a trimodal mixture distribution with the following prop-

erties: it has a 0-centered dominant component, and then two minor components placed to the left and right

of the origin. These distributions don’t meaningfully change the performance of the recognition model, as

it gets to trains on a massive amount of samples, but it does speed up the rate at which we can find valid

dreams under our rejection criteria (explained below). When sampling dreams for abstraction functions, the

parameter inputs in the abstraction inherent the distributions of their child sub-functions.

Dream rejection criteria We use simple checks to validate that randomly sampled dreams produce mean-

ingful training data, and reject any dreams that don’t meet the following criteria. All primitives must have pos-

itive dimensions. The corners of all primitives must be within the allotted scene bounding volume [−1, 1]n,

with a 10% leniency threshold. At least 50% of each primitives area must be visible (i.e. not contained

223

within another primitive). Each primitive must be bigger than a specified threshold: 0.005 area of 2D, .00025

volume for 3D. Dreams cannot contain more than 16 primitives. Dreams cannot use redundant operations,

for instance, applying two Move commands in a row.

Forming composite scenes ShapeCoder’s recognition network trains on composite scenes, that are formed

by sampling function-specific dreams and combining them together. To form a composite scene, we sample

a random integer k from [1,4], sample k functions from the set of all library functions that have not been

represent in ND dreams, and choose a random dream from each chosen function. Additionally, with 50%

chance, we add distractor primitives into the composite scene. Distractor primitives are sourced by randomly

sub-sampling primitives found in some d ∈ D. To encourage the recognition network to be position invariant,

we optionally sample a Move operation (with 50% frequency) and apply it over the primitives created by

a function-specific dream. Note that this Move operation is not included in the target expression, so the

recognition network must become invariant to where the target primitives show up in the composite scene.

F.2.5 Combining Wake Programs

As discussed in Section 8.2.3, programs discovered in round r’s wake phase need to be combined with

programs discovered in rounds before r. Here we detail how combine is implemented.

Assume we are in the wake phase of round r, r > 0. For some d ∈ D there is currently some program

entry in P , zc. Using a split function, that recursively removes combinator operations from a program, we

can convert zc into a set of expressions in L:

split(zc) = Ec = {e0c , ..., e
|Ec|
c }. When executed, each eic will create a set of primitives, primi

c, that is a

subset of the primitives in d. ShapeCoder keeps track of all such previous expressions associated with d in a

data-structure Qd, sourced from either the wake or integration phases.

The wake inference procedure uses the recognition network to prediction a new program in round r,

zr, for d. We decide what program zshould be kept in P by constructing 4 program variants, and keeping

the one that minimizes F . The variants we consider are as follows. (i) Use zc. (ii) Use zr (note this

variant will always be chosen if r = 0). (iii) Greedily merge zr into zc. To do this, we first compute

split(zr) = Er = {e0r, ..., e
|Ec|
r }. Then for each eir, we find primi

r, and see if there is a set of matching

instances in Ec, M , such that primi
r = {primj

c for j ∈M}. If M exists, then we compare the cost under F

of eir versus the sum of each ejc (with |M | − 1 combinator calls): if eir improves F then each ejc is removed

from Ec, and eir is added into Ec. (iv) Greedily construct an entirely new program from Qd. First Er is

224

added into Qd. Then Qd greedily creates a new program by initializing En (to be empty) and repeating the

following steps: find the cost of each e in Qd, take the minimum cost expression e∗ and add it into En, and

temporarily remove all other entries of Qd that have nonzero overlap with prim∗
e . This is repeated until En

contains expressions that cover all primitives in d.

After these four program variants have been created (where in (iii) and (iv) combinator operations are

applied over Ec and En respectively), the variant with the minimum score under F is kept in P . Finally, we

note that some extra logic is required to ensure that Qd and zc are kept up-to-date. Whenever the integration

phase tries removing a function f fromL, all expressions in Qd that use f are temporarily removed. Moreover

if f appears in zc, then the greedy search in (iv) is used to find replacement expressions for zc.

F.2.6 Preference Ordering of Parametric Relationships

The proposal phase (Section 8.3.1) generates candidate abstractions using a greedy search. These candidate

abstractions contain parametric expressions. Below we detail the preference ordering we use to search for

matching parametric expressions with respect to a sampled cluster.

The choice of which parametric expression to propose is always made in the context of a cluster, that

contains a structure and a group of parameterizations. As we are filling in slots for the candidate abstraction,

we may have already instantiated free variables that were used in previous slots. To find a possible expression

for the current parameter slot, we reason over the free variables previously instantiated. We iterate through

a preference ordering that considers increasingly complex parametric expressions over previous variables:

expressions with only constants, then one variable expressions, two variable expressions, and finally three

variable expressions. The set of all expressions under L that contain n variables can be found by calculating

the cross-product of (i) all parametric operator combinations that would require n variables with (ii) all

ordered sequences of n previously instantiated variables. To avoid overfitting, we limit the possible constants

we consider (just 0 for our shape grammars). For each expression, we check which members of the cluster are

covered by that expression. Once we find a set of expressions that collectively cover all instances within the

cluster, we break out of this loop early. This procedure creates a large set of possible expressions (visualized

in Figure 8.4), from which one is chosen according to the score function.

225

F.2.7 E-graphs

Our refactor operation (Section 8.4), implements e-graphs using the Egg library [218]. Egg provides support

for defining a DSL, rewrite operations, and a cost function, that can be used by an extraction operation.

Egg provides an interface for defining rewrites that reason over conditional logic, but they cannot be directly

applied for our use case. Our version of conditional rewrites requires that each rewrite has access to a shared e-

class-to-real-value mapping, so we build out this feature. Maintaining this mapping requires dummy rewrite

operations, that check for structural matches for various parametric operations, and update the mapping,

without changing the structure of the e-graph. When we first instantiate an e-graph, we apply dummy rewrites

that match on each float variable, Vi, and adds an entry for Vi into the mapping. Then, during each rewrite

round, after applying all semantic and abstraction rewrites, we apply all dummy rewrites, to ensure the

mapping is up-to-date (this handles the blue Mul e-class from Figure 8.5). For each domain, we provide

Egg with a set of semantic rewrites that express domain-specific semantic preserving transformations. There

are 25 such rewrites for 3D, and 16 such rewrites for 2D. We ablate the importance of including these semantic

rewrites in our ablation experiment (Section 8.5.4).

F.2.8 Unsupervised Primitive Decomposition

As described in Section 8.5.5, we make use of an unsupervised cuboid decomposition method, so that we can

apply ShapeCoder to shapes from datasets that contain only meshes. We use the approach described by [230],

using their released pretrained models to predict cuboid decompositions over chairs from their test set. We

compile a dataset of 400 such predictions, and parse these output predictions into a primitive representation

compatible with our method. This conversion procedure performs a few minor filtering steps, rejecting scenes

that contain more than 12 cuboids (we found these often were noisy predictions) and snapping cuboids to be

axis-aligned whenever their Euler angles were within a 0.05 threshold of 0 or 2π.

F.2.9 Generative Model for Programs

We provide details for the generative model described in Section 8.5.6. This model is capable of synthesizing

novel 3D shapes. We implement our generative model as a Transformer decoder, with causal masking. It

uses a CNN to encode a shape voxelization into an embedding vector, which conditions the Transformer

that autoregressively predicts tokens from L. The network starts with a blank scene, iteratively predicts

an expression e from L, and adds it back into the scene (which will be encoded by the CNN in the next

226

time-step). This process is repeated until a special ‘STOP’ token is predicted.

We source training data for this model by running our post hoc inference procedure (Section 8.5.3) over

a dataset of 3600 chairs, to form a program dataset P . For each epoch, we randomize expression ordering

by applying split (Section F.2.5) to each z∈ P , shuffling the expressions found by split, and treating every

(previous expressions, next expression) tuple as an independent training example. We use teacher-forcing

and maximum likelihood updates to train the generative model. We train the model for 4000 epochs. It has

8 Transformer layers, 16 heads, a hidden size of 256. We train with a batch size of 64, dropout of 0.1, and

a learning rate of 0.0005 . At inference time, we use nucleus sampling (top 90%) to predict expressions

from the networks probabilities. The ‘without abstractions’ version we compare against has exactly the same

setup, except the post-hoc inference procedure was run using the starting L version (not the one discovered

by ShapeCoder).

F.3 Toy 2D Grammar Experiments

Before moving to 3D domains, we evaluated ShapeCoder’s ability to discover abstractions on a more basic

2D dataset. We designed a 2D shape grammar (Section F.1) and manually designed a sampling procedure

for this grammar that would produce ‘chair-like’ output scenes (combinations of rectangles) – see our public

code release for details. The sampling procedure was, in fact, implemented as a single abstraction function,

that takes a fixed amount of input parameters and outputs a program using functions from the base DSL.

These input parameters controlled both shape parameters (e.g. chair height or width) along with control flow

decisions (e.g. should the back have vertical or horizontal bars). This paradigm can be considered as an

‘oracle’ best-case abstraction for this 2D domain, e.g. what a manually designed abstraction would look like.

We evaluate how ShapeCoder was able to improve F on this dataset, compared with this oracle, in the below

table.

Method F ⇓
Input Prims 65.3
No Abstraction 48.6
ShapeCoder 27.3
Oracle 22.7

The oracle single abstraction (that takes in 7 categorical variables, and 9 float variables) is able to

227

achieve the best compression metric. However, ShapeCoder is able to come reasonable close to this tar-

get on this toy domain, and improves F significantly over using either the input primitives, or when only the

dream+wake phases are used (No Abstraction). Of note, the oracle abstraction function actually has access

to DSL components we don’t provide to ShapeCoder (control flow Switch and If/Else operators). Cur-

rently ShapeCoder is not able to discover abstractions that introduce different control flow decisions, as these

types of operators would never be inferred during the wake phase.

F.4 DreamCoder Experiments

DreamCoder [42] is an inspiring system capable of generalizing across many domains. It makes no assump-

tions over its input data, which creates a difficult program induction problem. It solves this issue by gradually

building up a library of discovered abstractions tailored to the input domain. Dreamcoder’s program infer-

ence step (i.e. its wake phase) performs enumerative search guided by a library version; when solutions to

the program induction task are more compact under a ‘good’ library version, solutions will be found more

quickly in this search process. A downside of this framing is that there is an implicit assumption that the

input data contains a curriculum of tasks, that is needed to bootstrap this procedure. Specifically, some tasks

in the input set need to have relatively high probability under the base DSL: if enumerative search does not

find any solutions to the ‘simple’ tasks, then no abstractions can ever be discovered, that are necessary to help

solve the more ‘complex’ tasks.

Complex visual programming datasets, like manufactured 3D shapes, don’t typically contain a curriculum

of tasks. In some cases, a curriculum can be created, but this typically requires access to detailed shape

annotations (e.g. a semantic part hierarchy). As such, due to the lack of a curriculum, combined with the

complexity of the 3D shape program inference problem, when we attempted to run DreamCoder over PartNet

data we observed it did not find any solutions.

Beyond this observation, we also argue that DreamCoder, as a general program induction system, is

not as well-suited for visual programming domains, compared with ShapeCoder. Critically, DreamCoder

has no mechanism that reasons over parametric relationships between continuous variable, which is of great

importance for many visual programming domains (including manufactured shapes, where part-to-part rela-

tionships are spatially constrained). While DreamCoder does show success on simple 2D visual domains,

it discretizes continuous variables and treats parametric operators as standard functions in the base DSL. To

test if DreamCoder has an inductive bias to discover abstractions with parametric relationships under these

228

assumptions, we designed a toy experiment, that we explain below.

We design a very simple shape grammar for the toy 2D language. Where between 1 and 3 primitives are

combined together, and where each primitive is created by an abstraction that takes in two input parameters

(so two degrees of freedom are constrained). We write this grammar as:

START −→ ABS |

Union(ABS, ABS) |

Union(ABS, Union(ABS, ABS)) ;

ABS −→ Move(Rect(a, a+b), b, a-b)

a,b −→ r ∈ (0, 1)

Where real-values (e.g. a and b) are discretized into 20 values between 0 and 1. The ABS function is easily

identifiable by ShapeCoder, because it explicitly checks for these types of parametric relationships during the

proposal phase, and this relationship is present in every input scene. We ran DreamCoder over a dataset

of 100 samples from this grammar with a budget of 24 hours wall-clock time. To match the computational

requirements of ShapeCoder, we used a single workstation with a Intel i7-11700K CPU, and a python-based

executor implementation. Under these conditions, DreamCoder did not discover the ‘correct’ abstraction

with the proper parametric pattern. Moreover, even for this simple grammar, DreamCoder only discovered

solutions for around 50% of the tasks (and none of the tasks with 3 Union operations). While these results

might be improved by making better use of computational resources (running enumerative search over a

cluster of machines, designing a faster executor, increasing the wall-clock budget), we believe this example

illustrates why DreamCoder is not particularly well-suited for complex visual programming domains.

Appendix G

Additional Details and Results for

ShapeLib

In Appendix G, we supply additional details for the ShapeLib method introduced in Chapter 9.

G.1 Additional Method Details

G.1.1 Objective Function

When searching for programs that explain shapes, we need an objective function to guide the search. We take

inspiration from ShapeCoder (Chapter 8) and formulated an objective function as a weighted average of two

terms. One of these terms counts up the number of degrees of freedom in the program representation, for

simplicity we treat every token in the program as a degree of freedom with the same weight (1.). Another

term ensures that the produced geometry does not deviate too far from the target structure. We calculate the

geometric error (more on this in the next paragraph), and add that into our objective function with a weight

of 10.

The geometric error function we use takes in two sets of unordered primitives. For every pair of primitives

from the predicted to target set, we calculate the maximum minimum distance between any two corners from

one primitive to the other. We then use a matching algorithm to assign a stable pairing between the two

sets. If any of the distances is above a threshold (0.25, where shapes are normalized to lie within the unit

sphere), then we say that there is infinite geometric error. Otherwise, the geometric error is an average of the

229

230

maximum minimum corner distance (MMCD), calculated according to the best match.

G.1.2 Network Design

We implement all of our networks in PyTorch [158]. All of our experiments are run on NVIDIA GeForce

RTX 3090 graphic cards with 24GB of VRAM. We use the Adam optimizer [106] with a learning rate of

1e-4. We implement our recognition network as a Transformer decoder. Our network has 4 layers, 4 heads,

model dim of 256, and a full feature dim of 1024.

This network has full attention over the conditioning information: each primitive in the input shape is

quantized and treated as a discrete token. We order the primitives according to their x-y-z positions, as we do

not know how they should be ordered otherwise. Programs are similarly tokenized, and our network is trained

through teacher forcing. We use learned positional encodings, these cap the maximum sequence lengths and

primitive amounts our network can reason over: 20 primitives and programs of up to length 64. We train

with a batch size of 128. For point cloud inputs, we replace the primitive token encodings with an embedding

produced by a PointNet++ [163] network. For voxel inputs, we replace the primitive token encodings with

an embedding produced by a 3D-CNN. We train our networks for between 4-12 hours, depending on the

category and task.

G.1.3 Synthetic Data Sampler

We perform two rounds of automated feedback for each ‘sample shape’ function generated by the o1 LLM

model. This iterative approach aims to refine the sampler’s outputs by addressing discrepancies and im-

proving alignment with respect to seed set patterns. In each round of feedback, we evaluate the function

by sampling a diverse set of shapes and assessing various aspects of its behavior. We examine whether all

functions in the library were used, whether all parameter types were employed, and whether all output struc-

tures described in the function’s documentation were produced. These checks are performed automatically.

Additionally, we analyze the structures generated by the sampled functions and determine their similarity to

those observed during the validation stage. If significant deviations are detected, measured in the parameter

space of each function, the sampler is instructed to update its logic to produce outputs closer to the expected

structures.

231

G.2 Additional Experimental Details

G.2.1 Cost and Timing

We provide detailed estimates for how expensive it is (from a time and API monetary expense perspective)

to use our system to discover libraries of shape abstraction functions. To produce 20 shape descriptions from

images using gpt-4o: 10 cents and 1-2 minutes. To create library interfaces from textual descriptions with

o1mini: 25 cents, 2-4 minutes. To propose function applications over (20) shapes with (1) o1mini call and

(4) gpt-4o calls: $2-3 and 15-25 minutes. To propose (4) implementations for each function with o1mini:

$2-4 and 15-30 minutes. To propose a single program sampler with o1: 50 cents and 1 minute. In total, this

amounts to $5-8 and 30 minutes to 1 hour.

Notice that by default we use o1mini, but sometimes deviate based on our developmental experience.

Making function applications without knowing function implementations is a ‘guess-based’ exercise, so we

are fine with the increased error rate that 4o produces in this step. For the most complex tasks, like imple-

menting a synthetic data sampler, we turn to o1 as we are able to provide enough task guidance and directives

to make use of its ‘reasoning’ capabilities.

G.2.2 Data

Collections of example shapes in the seed set are chosen by an expert user who has a design intent in mind

(they also express this intent in natural language in the function descriptions). Specifically, we have the

user select 20 partNet shapes and put them in a list, and then we can automatically produce the rest of the

structured data from the partNet annotations.

After we have selected these two shapes, we create separate ‘training’ and ’validation’ sets of shapes

by randomly splitting up Partnet object instances. We run all experiments over validation shapes, unless

otherwise stated, and use the training shapes to get paired data for the visual program induction step that maps

from unstructured geometry to a shape abstraction program. The size of these train/val sets is 4000/1000 for

chairs, 1216/400 for storage, 4000/1000 for tables, 434/400 for faucet, and 2625/656 for lamps.

G.2.3 LLM-Direct Baseline

The LLM-direct is an ablated version of our method that relies on only the prior of the LLM and the design

intent of the expert user in the form of function descriptions. We compare against it to validate the need for

232

using the seed set of shapes alongside the natural language specification.

This baseline, is equivalent to our method modulo a few critical changes. The interface creation step

is exactly the same. After this step though, it immediately implements each function, without using any

input/output guidance about how this function should constructed. As it has no seed set, it assumes that

the LLM has perfectly implemented each function, and next advances to the synthetic sampler design stage

where it prompts the LLM to produce a ‘sample shape’ function from its constructed library. Then, like

the full ShapeLib system, we can train a recognition network on data produced by this random sampling

procedure.

G.2.4 ShapeCoder

In our comparisons against ShapeCoder we use the officially released implementation. The only change we

make is removing the rotation operation from the base ShapeCoder language, as we focus on structures of

axis-aligned primitives in our experiments. We develop ShapeCoder’s library of abstraction over the same

seed set of 20 shapes, which is much smaller than the large datasets used in the original ShapeCoder system

(400 shapes). Nevertheless, we find that ShapeCoder can generalize (in terms of compression, at least) fairly

well even from these 20 shapes.

We experiment with discovering ShapeCoder libraries over a larger seed set of 400 shapes, and find that

compression improves slightly on validation shapes, but not by a huge margin (Obj goes from 52.1 to 46.1,

while the average library size grows from 19 to 24). Despite learning this library over a large collection of

shapes, we still observe that this ‘ShapeCoder-400’ variant does not find more semantically aligned function

applications over validation structures. In fact, its semantic entropy performance worsens (chair: 1.67 to 1.84,

table: 1.578 to 2.16, storage: 2.07 to 2.08, lamp: 1.7 to 1.9, faucet: 2.1 to 2.3) We view this result as lending

our framing additional support: compression alone (even over a large dataset) is not enough to develop good

shape abstraction libraries, top-down semantic guidance is also required.

Bibliography

[1] Ben Abbatematteo, Stefanie Tellex, and George Konidaris. Learning to generalize kinematic models

to novel objects. In Proceedings of the Third Conference on Robot Learning, 2019.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations

and generative models for 3d point clouds, 2018.

[3] Adobe. Substance Designer. https://www.adobe.com/products/

substance3d-designer.html. Accessed: 2022-09-26.

[4] Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart Morris, Seung Jean Yoo, Aditya Ganeshan,

R Kenny Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie. Open-universe indoor scene gen-

eration using llm program synthesis and uncurated object databases. arXiv preprint arXiv:2403.09675,

2024.

[5] Autodesk. Fusion 360. https://www.autodesk.com/products/fusion-360/. Ac-

cessed: 2022-10-16.

[6] Autodesk Maya Wiki. Hypershade. https://autodeskmaya.fandom.com/wiki/

Hypershade. Accessed: 2022-10-16.

[7] Matej Balog, Rishabh Singh, Petros Maniatis, and Charles Sutton. Neural program synthesis with a

differentiable fixer, 2020.

[8] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Recovering intrinsic scene characteristics.

Comput. vis. syst, 2(3-26):2, 1978.

[9] Blender Foundation. Blender - A 3D Modelling and Rendering Package, 2024. Version 4.0.

[10] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep generative modelling:

A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models.

IEEE Transactions on Pattern Analysis and Machine intelligence (TPAMI), 44(11):7327–7347, 2022.

233

https://www.adobe.com/products/substance3d-designer.html
https://www.adobe.com/products/substance3d-designer.html
https://www.autodesk.com/products/fusion-360/
https://autodeskmaya.fandom.com/wiki/Hypershade
https://autodeskmaya.fandom.com/wiki/Hypershade

234

[11] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis,

and Armando Solar-Lezama. Top-down synthesis for library learning. Proc. ACM Program. Lang.,

7(POPL), jan 2023.

[12] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,

Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,

and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023.

[13] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leverag-

ing grammar and reinforcement learning for neural program synthesis. International Conference on

Learning Representations (ICLR), 2018.

[14] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova.

Babble: Learning better abstractions with e-graphs and anti-unification. Proc. ACM Program. Lang.,

7(POPL), jan 2023.

[15] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. DeepSVG: A hierarchical

generative network for vector graphics animation. In Advances in Neural Information Processing

Systems (NeurIPS), volume 33, pages 16351–16361, 2020.

[16] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An

Information-Rich 3D Model Repository. arXiv:1512.03012, 2015.

[17] Eugene Charniak. Statistical parsing with a context-free grammar and word statistics. In Proceedings

of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative

Applications of Artificial Intelligence, AAAI’97/IAAI’97, page 598–603. AAAI Press, 1997.

[18] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu, and Hao Zhang. Learning Generative

Models of 3D Structures. Computer Graphics Forum, 2020.

[19] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-

plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen

Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,

Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth

Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,

Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.

235

Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles

Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,

Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. 2021.

[20] Qimin Chen, Zhiqin Chen, Vladimir G Kim, Noam Aigerman, Hao Zhang, and Siddhartha Chaud-

huri. Decollage: 3d detailization by controllable, localized, and learned geometry enhancement. In

European Conference on Computer Vision, 2025.

[21] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to

self-debug. In The Twelfth International Conference on Learning Representations, 2024.

[22] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-

tional Conference on Learning Representations, 2019.

[23] Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, and Siddhartha Chaud-

huri. Decor-gan: 3d shape detailization by conditional refinement. Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2021.

[24] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary

space partitioning. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[25] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. Bae-net:

Branched autoencoder for shape co-segmentation. Proceedings of International Conference on Com-

puter Vision (ICCV), 2019.

[26] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2019.

[27] Robert L. Cook. Shade trees. In Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), page 223–231, 1984.

[28] F. Croitoru, V. Hondru, R. Ionescu, and M. Shah. Diffusion models in vision: A survey. IEEE

Transactions on Pattern Analysis and Machine intelligence (TPAMI), 45(09):10850–10869, sep 2023.

[29] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and

memory-efficient exact attention with io-awareness, 2022.

[30] Dassault Systemes. SOLIDWORKS. https://www.solidworks.com/. Accessed: 2022-10-

16.

https://www.solidworks.com/

236

[31] Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap learning via

modular concept discovery. In Proceedings of the Twenty-Third International Joint Conference on

Artificial Intelligence, IJCAI ’13, page 1302–1309. AAAI Press, 2013.

[32] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt, L. Schmidt, K. Ehsanit,

A. Kembhavi, and A. Farhadi. Objaverse: A universe of annotated 3d objects. In 2023 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 13142–13153, Los Alamitos,

CA, USA, jun 2023. IEEE Computer Society.

[33] İ. Demir, D. G. Aliaga, and B. Benes. Proceduralization for editing 3d architectural models. In 2016

Fourth International Conference on 3D Vision (3DV), 2016.

[34] Boyang Deng, Sumith Kulal, Zhengyang Deng, Congyue Deng, Yonglong Tian, and Jiajun Wu. Unsu-

pervised learning of shape programs with repeatable implicit parts. In Advances in Neural Information

Processing Systems, 2022.

[35] Boyang Deng, Sumith Kulal, Zhengyang Dong, Congyue Deng, Yonglong Tian, and Jiajun Wu. Unsu-

pervised learning of shape programs with repeatable implicit parts. In Advances in Neural Information

Processing Systems (NeurIPS), 2022.

[36] Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien Bousseau. Single-

image SVBRDF capture with a rendering-aware deep network. ACM Transactions on Graphics (TOG),

37(128):15, 2018.

[37] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and

Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of the 34th

International Conference on Machine Learning - Volume 70, ICML’17, page 990–998. JMLR.org,

2017.

[38] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando

Solar-Lezama, and Wojciech Matusik. Inversecsg: automatic conversion of 3D models to csg trees. In

Annual Conference on Computer Graphics and Interactive Techniques Asia (SIGGRAPH Asia). ACM,

2018.

[39] Sutherland Ivan Edward. SketchPad: A man-machine graphical communication system. PhD thesis,

Massachusetts Institute of Technology, 1963.

237

[40] Harrison Edwards and Amos Storkey. Towards a neural statistician. In 5th International Conference

on Learning Representations (ICLR 2017), pages 1–13, Apr. 2017. 5th International Conference on

Learning Representations, ICLR 2017 ; Conference date: 24-04-2017 Through 26-04-2017.

[41] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.

Write, execute, assess: Program synthesis with a repl. In Advances in Neural Information Processing

Systems (NeurIPS), 2019.

[42] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc

Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. DreamCoder: Bootstrapping inductive pro-

gram synthesis with wake-sleep library learning. In ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software (SIGPLAN), pages 835–850,

2021.

[43] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for dis-

covering clusters in large spatial databases with noise. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[44] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3D object recon-

struction from a single image. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 605–613, 2017.

[45] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-

struction from a single image. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 605–613, 2017.

[46] Reuben Feinman and Brenden M. Lake. Learning task-general representations with generative neuro-

symbolic modeling. In International Conference on Learning Representations, 2021.

[47] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,

Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation

with large language models. Advances in Neural Information Processing Systems, 36, 2024.

[48] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of

deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages

1126–1135. PMLR, 06–11 Aug 2017.

238

[49] Jonas Freiknecht and Wolfgang Effelsberg. A survey on the procedural generation of virtual worlds.

Multimodal Technologies and Interaction, 1(4), 2017.

[50] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. TileGAN: Synthesis of large-scale non-

homogeneous textures. ACM Transactions on Graphics (TOG), 38(4), 2019.

[51] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Liangliang Cao,

Erik Learned-Miller, Rui Wang, and Subhransu Maji. Label-efficient learning on point clouds using

approximate convex decompositions. In European Conference on Computer Vision (ECCV), 2020.

[52] Aditya Ganeshan, Ryan Huang, Xianghao Xu, R Kenny Jones, and Daniel Ritchie. Parsel: Parameter-

ized shape editing with language. ACM Transactions on Graphics (TOG), 43(6):1–14, 2024.

[53] Aditya Ganeshan, R. Kenny Jones, and Daniel Ritchie. Improving unsupervised visual program infer-

ence with code rewriting families. In Proceedings of the International Conference on Computer Vision

(ICCV), 2023.

[54] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided design

as language. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[55] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional

neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[56] Sherif Ghali. Constructive solid geometry, pages 277–283. Springer, 2008.

[57] Giorgio Giannone, Didrik Nielsen, and Ole Winther. Few-shot diffusion models, 2022.

[58] Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua B. Tenenbaum,

and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code,

2023.

[59] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. AtlasNet:

A Papier-Mâché Approach to Learning 3D Surface Generation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[60] Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and Niloy Mitra.

MatFormer: A generative model for procedural materials. ACM Transactions on Graphics (TOG),

41(4), 2022.

239

[61] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM

SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software (SIGPLAN), 2011.

[62] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and

Trends® in Programming Languages, 4(1-2):1–119, 2017.

[63] Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani Lischinski, and

Hui Huang. Inverse procedural modeling of branching structures by inferring l-systems. ACM Trans-

actions on Graphics (TOG), 39(5):1–13, 2020.

[64] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. MaterialGAN: Re-

flectance capture using a generative SVBRDF model. ACM Transactions on Graphics (TOG),

39(6):254:1–254:13, 2020.

[65] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent diffusion

for textured mesh generation, 2023.

[66] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, execute and de-

bug: Learning to repair for neural program synthesis. In Advances in Neural Information Processing

Systems, 2020.

[67] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning with-

out training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 14953–14962, June 2023.

[68] David Ha and Douglas Eck. A neural representation of sketch drawings. In International Conference

on Learning Representations, 2018.

[69] Chi Han, Jiayuan Mao, Chuang Gan, Josh Tenenbaum, and Jiajun Wu. Visual concept-metaconcept

learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,

2019.

[70] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural

sequence generation. In International Conference on Learning Representations (ICLR), 2020.

[71] Brian Hempel, Justin Lubin, and Ravi Chugh. Sketch-n-Sketch: Output-directed programming for

SVG. In ACM Symposium on User Interface Software and Technology (UIST), pages 281–292, 2019.

240

[72] Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and Tobias Ritschel. Generative modelling of

BRDF textures from flash images. ACM Transactions on Graphics (TOG), 40(6), 2021.

[73] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans

trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural

Information Processing Systems (NeurIPS), 2017.

[74] Luke B Hewitt, Tuan Anh Le, and Joshua B Tenenbaum. Learning to learn generative programs with

memoised wake-sleep. In Uncertainty in Artificial Intelligence.

[75] Luke B. Hewitt, Maxwell I. Nye, Andreea Gane, Tommi Jaakkola, and Joshua B. Tenenbaum. The

variational homoencoder: Learning to learn high capacity generative models from few examples, 2018.

[76] GE Hinton, P Dayan, BJ Frey, and RM Neal. The “wake-sleep” algorithm for unsupervised neural

networks. Science, 268(5214):1158–1161, 1995.

[77] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

[78] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,

Trung Bui, and Hao Tan. LRM: Large reconstruction model for single image to 3d. In The Twelfth

International Conference on Learning Representations, 2024.

[79] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,

Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. In ICLR, 2024.

[80] Wentao Hu, Jia Zheng, Zixin Zhang, Xiaojun Yuan, Jian Yin, and Zihan Zhou. Plankassembly: Robust

3d reconstruction from three orthographic views with learnt shape programs. In ICCV, 2023.

[81] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross, Cordelia Schmid, and

Alireza Fathi. Scenecraft: An llm agent for synthesizing 3d scenes as blender code. In Forty-first

International Conference on Machine Learning, 2024.

[82] Ian Huang, Guandao Yang, and Leonidas Guibas. Blenderalchemy: Editing 3d graphics with vision-

language models. In European Conference on Computer Vision, pages 297–314. Springer, 2024.

[83] Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli Shama Sas-

try, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-

differentiable rule guided diffusion. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian

Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st In-

ternational Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Re-

search, pages 19772–19797. PMLR, 21–27 Jul 2024.

241

[84] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural wavelet-domain diffusion for 3d shape

generation. December 2022.

[85] Irvin Hwang, Andreas Stuhlmüller, and Noah D. Goodman. Inducing Probabilistic Programs by

Bayesian Program Merging. CoRR, arXiv:1110.5667, 2011.

[86] IDV, Inc. SpeedTree – 3D vegetation modeling and middleware. https://store.speedtree.

com/.

[87] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with condi-

tional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017.

[88] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language

models for code generation. arXiv preprint arXiv:2406.00515, 2024.

[89] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross

Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In

CVPR, 2017.

[90] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence

Zitnick, and Ross Girshick. Inferring and executing programs for visual reasoning. In IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017.

[91] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J. Mitra,

and Daniel Ritchie. Shapeassembly: Learning to generate programs for 3d shape structure synthesis.

ACM Transactions on Graphics (TOG), 39(6), 2020.

[92] R. Kenny Jones, David Charatan, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. Shapemod: Macro

operation discovery for 3d shape programs. ACM Transactions on Graphics (TOG), 40(4), 2021.

[93] R. Kenny Jones, Siddhartha Chaudhuri, and Daniel Ritchie. Learning to infer generative template

programs for visual concepts. In International Conference on Machine Learning (ICML), 2024.

[94] R. Kenny Jones, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie. Shapecoder: Discovering ab-

stractions for visual programs from unstructured primitives. ACM Transactions on Graphics (TOG),

Siggraph 2023, 42(4), 2023.

[95] R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. Shapelib: designing a library of

procedural 3d shape abstractions with large language models. arXiv preprint arXiv:2502.08884, 2025.

https://store.speedtree.com/
https://store.speedtree.com/

242

[96] R. Kenny Jones, Aalia Habib, Rana Hanocka, and Daniel Ritchie. The neurally-guided shape parser:

Grammar-based labeling of 3d shape regions with approximate inference. The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2022.

[97] R. Kenny Jones, Aalia Habib, and Daniel Ritchie. Shred: 3d shape region decomposition with learned

local operations. ACM Transactions on Graphics (TOG), 41(6), 2022.

[98] R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad: Learning to infer shape programs with

pseudo-labels and approximate distributions. The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2022.

[99] R. Kenny Jones, Renhao Zhang, Aditya Ganeshan, and Daniel Ritchie. Learning to edit visual pro-

grams with self-supervision. In Advances in Neural Information Processing Systems, 2024.

[100] Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for end-to-end speech recognition. In ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 7084–7088. IEEE, 2020.

[101] Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. UCSG-NET - unsupervised discovering of

constructive solid geometry tree. In Advances in Neural Information Processing Systems (NeurIPS),

volume 33, pages 8776–8786, 2020.

[102] Shreyas Kapur, Erik Jenner, and Stuart Russell. Diffusion on syntax trees for program synthesis. In

The Thirteenth International Conference on Learning Representations, 2025.

[103] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David Acuna,

Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets. In IEEE

International Conference on Computer Vision (ICCV), 2019.

[104] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adver-

sarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[105] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting

for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.

[106] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International

Conference on Learning Representations (ICLR), 2015.

[107] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Conference

on Learning Representations (ICLR), 2014.

243

[108] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking

large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

[109] Milin Kodnongbua, Benjamin Jones, Maaz Bin Safeer Ahmad, Vladimir Kim, and Adriana Schulz.

Reparamcad: Zero-shot cad re-parameterization for interactive manipulation. In SIGGRAPH Asia

2023 Conference Papers, pages 1–12, 2023.

[110] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel

Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment for

Visual AI. arXiv, 2017.

[111] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quar-

terly, 2(1-2):83–97, 1955.

[112] Sumith Kulal, Jiayuan Mao, Alex Aiken, and Jiajun Wu. Programmatic concept learning for human

motion description and synthesis. 2022.

[113] Peter Kulits, Haiwen Feng, Weiyang Liu, Victoria Fernandez Abrevaya, and Michael J. Black. Re-

thinking inverse graphics with large language models. Transactions on Machine Learning Research,

2024.

[114] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.

In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,

page 1945–1954. JMLR.org, 2017.

[115] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning

through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[116] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. The omniglot challenge: a 3-year

progress report. Current Opinion in Behavioral Sciences, 29:97–104, 2019. Artificial Intelligence.

[117] Bosheng Li, Jonathan Klein, Dominik L. Michels, Bedrich Benes, Sören Pirk, and Wojtek Pałubicki.

Rhizomorph: The coordinated function of shoots and roots. ACM Trans. Graph., 42(4), jul 2023.

[118] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. Sketch2CAD: Sequential CAD modeling

by sketching in context. ACM Transactions on Graphics (TOG), 39(6):164:1–164:14, 2020.

[119] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. Free2CAD: Parsing freehand drawings

into CAD commands. ACM Transactions on Graphics (TOG), 41(4):93:1–93:16, 2022.

244

[120] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. GRASS: Gen-

erative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36(4):1–

14, 2017.

[121] Ruihui Li, Xianzhi Li, Ke-Hei Hui, and Chi-Wing Fu. SP-GAN: Sphere-guided 3D shape generation

and manipulation. ACM Transactions on Graphics (TOG), 40(4), 2021.

[122] Wen-Ding Li and Kevin Ellis. Is programming by example solved by LLMs? In The Thirty-eighth

Annual Conference on Neural Information Processing Systems, 2024.

[123] Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,

Hao Tang, Wei-Long Zheng, Yewen Pu, and Kevin Ellis. Combining induction and transduction for

abstract reasoning. In The Thirteenth International Conference on Learning Representations, 2025.

[124] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:

Learning semantic parsers on freebase with weak supervision. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages

23–33, 2017.

[125] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,

Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 300–

309, 2023.

[126] Gabrielle Littlefair, Niladri Shekhar Dutt, and Niloy J Mitra. Flairgpt: Repurposing llms for interior

designs. arXiv preprint arXiv:2501.04648, 2025.

[127] Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical program-

matic reinforcement learning via learning to compose programs. In Andreas Krause, Emma Brunskill,

Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the

40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning

Research, pages 21672–21697. PMLR, 23–29 Jul 2023.

[128] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL:

A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–

248:16, Oct. 2015.

[129] Andrew L. Maas, Awni Y. Hannum, and Andrew Y. Ng. Rectifier nonlinearities improve neural net-

work acoustic models. In International Conference on Machine Learning (ICML), 2013.

245

[130] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,

Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,

Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refine-

ment with self-feedback. In Thirty-seventh Conference on Neural Information Processing Systems,

2023.

[131] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-

symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In

International Conference on Learning Representations, 2019.

[132] Andelo Martinovic and Luc Van Gool. Bayesian grammar learning for inverse procedural modeling.

In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’13,

page 201–208, USA, 2013. IEEE Computer Society.

[133] A. Martinovic and L. Van Gool. Bayesian Grammar Learning for Inverse Procedural Modeling. In

CVPR, 2013.

[134] Massive Software. Massive Software. https://www.massivesoftware.com/. Accessed:

2022-09-26.

[135] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In Proceed-

ings of the Human Language Technology Conference of the NAACL, Main Conference, pages 152–159,

New York City, USA, June 2006. Association for Computational Linguistics.

[136] Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders P. Eriks-

son. Deep level sets: Implicit surface representations for 3D shape inference. CoRR, abs/1901.06802,

2019.

[137] Elie Michel and Tamy Boubekeur. Dag amendment for inverse control of parametric shapes. ACM

Transactions on Graphics, 40(4):173:1–173:14, 2021.

[138] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and

Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In European Con-

ference on Computer Vision (ECCV), 2020.

[139] Niloy Mitra, Michael Wand, Hao (Richard) Zhang, Daniel Cohen-Or, Vladimir Kim, and Qi-Xing

Huang. Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses, 2013.

https://www.massivesoftware.com/

246

[140] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas Guibas. Struc-

tureNet: Hierarchical graph networks for 3D shape generation. In Annual Conference on Computer

Graphics and Interactive Techniques Asia (SIGGRAPH Asia), 2019.

[141] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su.

PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[142] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural modeling

of buildings. In Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),

2006.

[143] Gregory Murphy. The big book of concepts. MIT press, 2004.

[144] Chandrakana Nandi, James R Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and Zachary

Tatlock. Functional programming for compiling and decompiling computer-aided design. In ACM

SIGPLAN International Conference on Functional Programming (ICFP), 2018.

[145] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman,

and Zachary Tatlock. Synthesizing structured cad models with equality saturation and inverse transfor-

mations. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2020, page 31–44, New York, NY, USA, 2020. Association for Computing

Machinery.

[146] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive gener-

ative model of 3d meshes. In International conference on machine learning, pages 7220–7229. PMLR,

2020.

[147] Radford M. Neal and Geoffrey E. Hinton. A new view of the em algorithm that justifies incremental

and other variants. In Learning in Graphical Models, pages 355–368. Kluwer Academic Publishers,

1993.

[148] Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and

Pengcheng Yin. Next: Teaching large language models to reason about code execution, 2024.

[149] Gen Nishida, Adrien Bousseau, and Daniel G. Aliaga. Procedural modeling of a building from a single

image. Computer Graphics Forum (Proceedings of the Eurographics conference), 2018.

[150] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. Inter-

active sketching of urban procedural models. ACM Trans. Graph., 35(4), jul 2016.

247

[151] Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B. Tenenbaum, and Armando

Solar-Lezama. Representing partial programs with blended abstract semantics. In International Con-

ference on Learning Representations, 2021.

[152] Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.

Is self-repair a silver bullet for code generation? In International Conference on Learning Represen-

tations (ICLR), 2024.

[153] Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas Guibas, and

Peter Wonka. SketchGen: Generating constrained CAD sketches. In Advances in Neural Information

Processing Systems (NeurIPS), 2021.

[154] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH), 2001.

[155] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet

Kohli. Neuro-Symbolic Program Synthesis. In International Conference on Learning Representations

(ICLR), 2017.

[156] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet

Kohli. Neuro-symbolic program synthesis. International Conference on Learning Representations

(ICLR), 2017.

[157] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:

Learning continuous signed distance functions for shape representation. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2019.

[158] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zem-

ing Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In

Advances in Neural Information Processing Systems (NeurIPS), 2017.

[159] Ofek Pearl, Itai Lang, Yuhua Hu, Raymond A. Yeh, and Rana Hanocka. Geocode: Interpretable shape

programs, 2022.

[160] Przemyslaw Prusinkiewicz, Mark James, and Radomı́r Měch. Synthetic topiary. In Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH), pages 351–358, 1994.

[161] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants. Springer-

Verlag, Berlin, Heidelberg, 1996.

248

[162] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: deep learning on point sets for

3D classification and segmentation. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[163] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hierarchical fea-

ture learning on point sets in a metric space. In Advances in Neural Information Processing Systems

(NeurIPS), 2017.

[164] Zeju Qiu, Weiyang Liu, Haiwen Feng, Zhen Liu, Tim Z Xiao, Katherine M Collins, Joshua B Tenen-

baum, Adrian Weller, Michael J Black, and Bernhard Schölkopf. Can large language models under-

stand symbolic graphics programs? arXiv preprint arXiv:2408.08313, 2024.

[165] Inigo Quilez and Pol Jeremias. Shadertoy. Retrieved March, 27:2017, 2017.

[166] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. CoRR, abs/1910.10683, 2019.

[167] Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan

Kayan, Hongyu Wen, Beining Han, Yihan Wang, Alejandro Newell, Hei Law, Ankit Goyal, Kaiyu

Yang, and Jia Deng. Infinite photorealistic worlds using procedural generation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12630–12641, 2023.

[168] Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu Wen,

Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng. Infinigen indoors:

Photorealistic indoor scenes using procedural generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 21783–21794, June 2024.

[169] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-

conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

[170] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2Vec: Synthesizing vector

graphics without vector supervision. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 7342–7351, 2021.

[171] Pradyumna Reddy, Zhifei Zhang, Matthew Fisher, Hailin Jin, Zhaowen Wang, and Niloy J Mitra. A

multi-implicit neural representation for fonts. In Advances in Neural Information Processing Systems

(NeurIPS), 2021.

249

[172] Machel Reid, Vincent J. Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based

reconstruction, 2022.

[173] Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-

shot generalization in deep generative models, 2016.

[174] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. Sketchformer: Transformer-

based representation for sketched structure. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.

[175] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground

truth from computer games. In European Conference on Computer Vision (ECCV), pages 102–118.

Springer, 2016.

[176] Daniel Ritchie, Paul Guerrero, R. Kenny Jones, Niloy J. Mitra, Adriana Schulz, Kar l D. D. Willis, and

Jiajun Wu. Neurosymbolic Models for Computer Graphics. Computer Graphics Forum, 2023.

[177] Daniel Ritchie, Sarah Jobalia, and Anna Thomas. Example-based authoring of procedural modeling

programs with structural and continuous variability. In EUROGRAPHICS, 2018.

[178] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and BjÃ¶rn Ommer. High-

resolution image synthesis with latent diffusion models. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2022.

[179] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing

hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6), Nov.

2017.

[180] Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. Simple and effective vae training with calibrated

decoders, 2020.

[181] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed

Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.

Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint

arXiv:2205.11487, 2022.

[182] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,

Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A

Platform for Embodied AI Research. In The IEEE International Conference on Computer Vision

(ICCV), 2019.

250

[183] H. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE Transactions

on Information Theory, 11(3):363–371, 1965.

[184] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. Adams. Vitruvion: A generative model of

parametric CAD sketches. In International Conference on Learning Representations (ICLR), 2022.

[185] Etai Sella, Gal Fiebelman, Noam Atia, and Hadar Averbuch-Elor. Spice· e: Structural priors in 3d

diffusion using cross-entity attention. In ACM SIGGRAPH 2024 Conference Papers, pages 1–11,

2024.

[186] Pratheba Selvaraju, Mohamed Nabail, Marios Loizou, Maria Maslioukova, Melinos Averkiou, An-

dreas Andreou, Siddhartha Chaudhuri, and Evangelos Kalogerakis. Buildingnet: Learning to label 3d

buildings. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[187] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. CSGNet:

Neural Shape Parser for Constructive Solid Geometry. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[188] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Neural shape

parsers for constructive solid geometry. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2020.

[189] Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-

lad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh.

Learning performance-improving code edits. In The Twelfth International Conference on Learning

Representations, 2024.

[190] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In I.

Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[191] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Com-

binatorial sketching for finite programs. In International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 404–415, 2006.

[192] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Proceedings of EURO-

GRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pages 109–116, 2007.

[193] Ondrej Stava, Bedrich Benes, Radomı́r Mech, Daniel G. Aliaga, and Peter Kristof. Inverse procedural

modeling by automatic generation of l-systems. Computer Graphics Forum (CGF), 29:665–674, 2010.

251

[194] Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark, Rebecca Hwa, Julia Hockenmaier, Paul

Ruhlen, Steven Baker, and Jeremiah Crim. Bootstrapping statistical parsers from small datasets. In

10th Conference of the European Chapter of the Association for Computational Linguistics, Budapest,

Hungary, 2003. Association for Computational Linguistics.

[195] Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,

Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering

via code generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings

of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),

pages 747–761, Toronto, Canada, July 2023. Association for Computational Linguistics.

[196] Michael Sun, Alston Lo, Minghao Guo, Jie Chen, Connor W. Coley, and Wojciech Matusik. Proce-

dural synthesis of synthesizable molecules. In The Thirteenth International Conference on Learning

Representations, 2025.

[197] Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program synthesis

from diverse demonstration videos. In Proceedings of the 35th International Conference on Machine

Learning, 2018.

[198] Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha Chaudhuri, and Leonidas Guibas. Comple-

mentMe: Weakly-supervised component suggestions for 3D modeling. ACM Transactions on Graph-

ics (Proc. of SIGGRAPH Asia), 2017.

[199] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for

reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),

pages 11888–11898, October 2023.

[200] Jerry O. Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah D. Goodman, and Radomı́r

Mech. Learning design patterns with Bayesian grammar induction. In ACM Symposium on User

Interface Software and Technology (UIST), 2012.

[201] Hao Tang and Kevin Ellis. From perception to programs: regularize, overparameterize, and amortize.

In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, MAPS

2022, page 30–39, New York, NY, USA, 2022. Association for Computing Machinery.

[202] Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Diffuscene:

Denoising diffusion models for generative indoor scene synthesis. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2024.

252

[203] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a new approach to

optimization. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, pages 264–276, New York, NY, USA, 2009. ACM.

[204] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality Saturation: A New Approach

to Optimization. Logical Methods in Computer Science, Volume 7, Issue 1, Mar. 2011.

[205] Josh Tenenbaum. Building machines that learn and think like people. In Proceedings of the 17th Inter-

national Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, page 5, Richland,

SC, 2018. International Foundation for Autonomous Agents and Multiagent Systems.

[206] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum,

and Jiajun Wu. Learning to Infer and Execute 3D Shape Programs. In International Conference on

Learning Representations (ICLR), 2019.

[207] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Soft-

ware (SIGPLAN), pages 135–152, 2013.

[208] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning. In

I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[209] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc., 2017.

[210] Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Roman Christian Bachmann, Amit Haim Bermano,

Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. CLIPasso: Semantically-aware object sketching. In

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2022.

[211] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra. Matching

networks for one shot learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[212] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel Ritchie. Planit:

planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Trans.

Graph., 38(4), July 2019.

253

[213] Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. Deep convolutional priors for indoor

scene synthesis. ACM Transactions on Graphics (TOG), 37(4), 2018.

[214] Kai Wang, Xianghao Xu, Leon Lei, Selena Ling, Natalie Lindsay, Angel X Chang, Manolis Savva,

and Daniel Ritchie. Roominoes: Generating novel 3d floor plans from existing 3d rooms. In Computer

Graphics Forum, volume 40, pages 57–69. Wiley Online Library, 2021.

[215] Qiuhong Anna Wei, Sijie Ding, Jeong Joon Park, Rahul Sajnani, Adrien Poulenard, Srinath Sridhar,

and Leonidas Guibas. Lego-net: Learning regular rearrangements of objects in rooms, 2023.

[216] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 8, 1992.

[217] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-

Lezama, and Wojciech Matusik. Fusion 360 Gallery: A dataset and environment for programmatic

CAD construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4), 2021.

[218] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel

Panchekha. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang., 5(POPL),

Jan. 2021.

[219] Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock, and Adriana

Schulz. Carpentry compiler. ACM Trans. Graph., 38(6), Nov. 2019.

[220] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[221] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum. Learning

a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In Advances in

Neural Information Processing Systems (NeurIPS), pages 82–90, 2016.

[222] Rundi Wu, Chang Xiao, and Changxi Zheng. DeepCAD: A deep generative network for computer-

aided design models. In IEEE International Conference on Computer Vision (ICCV), pages 6772–

6782, 2021.

[223] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong

Xiao. 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1912–1920, 2015.

254

[224] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson

env: real-world perception for embodied agents. In Computer Vision and Pattern Recognition (CVPR),

2018 IEEE Conference on. IEEE, 2018.

[225] Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, and Ziwei Liu. Citydreamer: Compositional generative

model of unbounded 3d cities. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 9666–9675, 2024.

[226] Jiacong Xu, Yi Zhang, Jiawei Peng, Wufei Ma, Artur Jesslen, Pengliang Ji, Qixin Hu, Jiehua Zhang,

Qihao Liu, Jiahao Wang, et al. Animal3d: A comprehensive dataset of 3d animal pose and shape.

arXiv preprint arXiv:2308.11737, 2023.

[227] Ken Xu and Damian Campeanu. Houdini engine: Evolution towards a procedural pipeline. In Pro-

ceedings of the fourth symposium on digital production, pages 13–18, 2014.

[228] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. Willis, and Daniel Ritchie. Inferring CAD

modeling sequences using zone graphs. In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2021.

[229] Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and

Yasutaka Furukawa. SkexGen: Autoregressive generation of CAD construction sequences with disen-

tangled codebooks. In International Conference on Machine Learning (ICML), 2022.

[230] Kaizhi Yang and Xuejin Chen. Unsupervised learning for cuboid shape abstraction via joint segmen-

tation from point clouds. ACM Trans. Graph., 40(4), jul 2021.

[231] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick

Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied ai

environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 16227–16237, 2024.

[232] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd

Annual Meeting of the Association for Computational Linguistics, pages 189–196, Cambridge, Mas-

sachusetts, USA, June 1995. Association for Computational Linguistics.

[233] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B. Tenenbaum.

Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. In Proceed-

ings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, page

1039–1050, Red Hook, NY, USA, 2018. Curran Associates Inc.

255

[234] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-Hornung.

Neural cages for detail-preserving 3d deformations. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 75–83, 2020.

[235] Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi Amiri, and Hao Zhang. D2CSG: Unsu-

pervised learning of compact csg trees with dual complements and dropouts. Advances in Neural

Information Processing Systems, 36, 2024.

[236] Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao

Zhang. CAPRI-Net: Learning compact CAD shapes with adaptive primitive assembly. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 11768–11778, 2022.

[237] Alan Yuille and Daniel Kersten. Vision as bayesian inference: analysis by synthesis? Trends in

cognitive sciences, 10(7):301–308, 2006.

[238] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey. Generating multi-agent trajecto-

ries using programmatic weak supervision. In International Conference on Learning Representations,

2019.

[239] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffu-

sion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),

pages 3836–3847, October 2023.

[240] Yunzhi Zhang, Zizhang Li, Matt Zhou, Shangzhe Wu, and Jiajun Wu. The scene language: Represent-

ing scenes with programs, words, and embeddings. arXiv preprint arXiv:2410.16770, 2024.

[241] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee, Hailin Jin, and Thomas

Funkhouser. Physically-based rendering for indoor scene understanding using convolutional neural

networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[242] Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:

Controllable diffusion model for layout-to-image generation, 2024.

[243] Chenghui Zhou, Chun-Liang Li, and Barnabas Poczos. Unsupervised program synthesis for images

using tree-structured lstm, 2020.

[244] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. SCORES: Shape compo-

sition with recursive substructure priors. ACM Transactions on Graphics (TOG), 37(6):211:1–211:14,

2018.

256

[245] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation

using cycle-consistent adversarial networks. In IEEE International Conference on Computer Vision

(ICCV), 2017.

[246] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin D. Cubuk, and Quoc V. Le.

Rethinking pre-training and self-training. In Advances in Neural Information Processing Systems

(NeurIPS), NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[247] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3D-PRNN: Generating

Shape Primitives with Recurrent Neural Networks. In IEEE International Conference on Computer

Vision (ICCV), 2017.

	List of Figures
	Introduction
	Contributions
	Document Overview

	Background
	Procedural Modeling
	Program Synthesis
	Related work on Generative Models of Visual Data
	Related work on Visual Program Synthesis
	Related work on Abstraction Discovery

	Learning to Generate Programs for Shape Structure Synthesis
	Approach
	An Assembly Language for Shapes
	Turning Shapes into Training Programs
	 Extracting Program Information
	Creating Candidate Programs
	Validating Programs

	Learning to Generate Programs
	Model Architecture
	Learning Procedure

	Results and Evaluation
	Novel Shape Synthesis
	Latent Space Interpolation
	Synthesis from Unstructured Geometry

	Discussion

	Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions
	Approaches for fine-tuning visual program induction models
	Method
	Wake-Sleep (X, Z) Construction
	Self-Training (X, Z) Construction
	LEST (X, Z) Construction
	Inferring Programs with p(z|x)
	Training p(z|x) with multiple PLAD methods

	Results
	Shape Program Domains
	Experimental Design
	Reconstruction Accuracy
	Inner-loop Search Time
	Number of Training Shapes from S*
	Convergence Speed

	Discussion

	Learning to Edit Visual Programs with Self-Supervision
	Method
	Edit Network Design
	Learning Paradigm
	Inference Algorithm

	Results
	Experimental Design
	Reconstruction Accuracy
	Search Time
	Training with limited data
	Method Ablations

	Discussion
	Relation with SIRI
	Relation with Tree Diffusion

	Learning to Infer Generative Template Programs for Visual Concepts
	Method
	Template Programs
	Inference Networks
	Learning Paradigm

	Results
	Visual Domains
	Experimental Design
	Concept Few-shot generation
	Concept Co-segmentation
	Discussion

	Discussion

	Macro Operation Discovery for Shape Programs
	Macro Operator Discovery
	Overview
	Initialization
	Objective Function
	Finding the Best Program for a Given Library

	Proposal Phase
	Form a Program Cluster
	Find Abstracted Program for Cluster
	Proposing Candidate Macros
	Generalizing Macros

	Integration phase
	Ranking Candidate Macros
	Evaluating & Selecting Candidate Macros
	Removing Bad Program Orders

	Results and Evaluation
	Discovered Macros
	Generating 3D Shapes
	Inferring 3D Shape Structures
	Interactive Shape Editing
	Cross-category Macro Discovery

	Discussion

	Discovering Abstractions for Visual Programs from Unstructured Primitives
	Overview
	Optimization Objective F

	Inferring Visual Programs
	Recognition Network
	Dream Phase
	Wake Phase

	Proposing and Integrating Abstractions
	Proposal Phase
	Integration Phase

	Refactoring Programs with E-Graphs
	Results and Evaluation
	Experimental Domains
	Discovering Abstractions
	Analysis of Discovered Abstractions
	ShapeCoder Ablations
	Discovering Abstractions from Unstructured Shapes
	Downstream Benefits of Abstractions

	Discussion
	Relation with DreamCoder
	ShapeCoder Limitations

	Designing a Library of Procedural Shape Abstractions with LLMs
	Overview
	Library Design
	Interface Creation
	Proposing Function Applications
	Propose Function Implementations
	Library Validation

	Using the Library for Program Synthesis
	Results and Evaluation
	Library Function Generalization
	Shape Programs from Unstructured Geometry
	Sematic Consistency of Function Usages
	Editing Shape Programs with LLMs

	Discussion
	Relation with LILO

	Conclusion and Future Directions
	Future Work
	Controllable Dense Geometry
	Visual Program Induction beyond Shapes
	Procedural Abstraction Discovery
	Programmatic Shape Analysis

	Additional Details for ShapeAssembly
	Semantics of the attach Command
	Semantics of ShapeAssembly Macro Functions
	Program Extraction Procedure
	Decoder Semantic Validity Checks
	Shape Quality Metrics

	Additional Details and Results for PLAD
	Details of Domain Grammars
	Details of Synthetic Pretraining
	Experiment Hyperparameters
	P Best Update mode
	Failure to generalize beyond S*
	Additional Qualitative Results

	Additional Details and Results for VPI-Edit
	Experimental Results
	Performance on more challenging tasks
	Comparison to large vision-language models
	Method Ablations on 2D CSG domain

	Domain Details
	Experimental Design Details
	Visual Program Edits
	Local Edit Operations
	findEdits Algorithm
	Converting edits operations to training data
	Generality of our framing

	Program Corruption

	Additional Details and Results for Template Programs
	Additional Results
	Out-of-distribution Few-shot Generation
	Method Ablation Study
	Unconditional Concept Generation
	Visual Concept Groupings
	Reconstruction Performance
	Failure Modes

	Domain Details
	Omniglot
	2D Primitive Layout
	3D Shape Structures

	Model Details
	Architecture Details
	Location Encoding scheme
	Generative Networks

	Training Details
	Token Sequence Formatting

	Experiment Details
	Few-shot Generation
	Perceptual Study
	Co-segmentation

	Comparison Method Details
	BPL
	GNS
	FSDM
	VHE
	BAE-NET

	Additional Details and Results for ShapeMOD
	Modified ShapeAssembly Grammar
	Baseline Method for Macro Operator Discovery
	A Network Architecture for any library
	Shape Generation Qualitative Comparison
	Creating A Dataset of Shape Programs
	Parsing
	Finding Valid Orderings
	Canonical Ordering

	Details of applying ShapeMOD to ShapeAssembly
	Choosing Parameters for an Abstracted Program
	Valid Candidate Macro operators
	Candidate Macro Frequencies

	Details about Generative Modeling Metrics
	Analysis of Variability
	Additional Cross-category Macro Discovery Results

	Additional Details for ShapeCoder
	Shape Grammar
	Implementation Details
	Objective Function Weights
	Geometric Error Function
	Recognition Network
	Dream Creation
	Combining Wake Programs
	Preference Ordering of Parametric Relationships
	E-graphs
	Unsupervised Primitive Decomposition
	Generative Model for Programs

	Toy 2D Grammar Experiments
	DreamCoder Experiments

	Additional Details and Results for ShapeLib
	Additional Method Details
	Objective Function
	Network Design
	Synthetic Data Sampler

	Additional Experimental Details
	Cost and Timing
	Data
	LLM-Direct Baseline
	ShapeCoder

	Bibliography

