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by R. Kenny Jones, Ph.D., Brown University, May 2025.

Shape analysis and generation methods are critical to many visual computing applications. Stakeholders
often want to populate physical and artificial spaces with high-quality, structured assets that support inter-
action and manipulation. Different shape representations support these desiderata to varying degrees. Pro-
grammatic representations (e.g. procedural models) are a popular choice with many benefits, but also come
with inherent limitations: they are expensive to author, have limited output variety, and typically require a
thoughtfully designed domain-specific language (DSL).

This dissertation explores a suite of neurosymbolic systems that combine learning with programmatic
representations to aid in shape analysis and generation. When datasets of procedural assets are available,
we can train generative models that synthesize novel shapes by learning to write programs. When we lack
a dataset of procedural assets, we can train networks to search for programs that explain visual inputs with
a bootstrapped, self-supervised learning paradigm. We show performance can be improved by reframing
this program synthesis task as a program editing task, and also that this paradigm can be extended to infer
stochastic programs capable of capturing a distribution of visual inputs. Finally, we investigate ways to
discover better DSLs with little or no expert intervention. We propose two bottom-up library learning works
that augment a starting DSL with automatically proposed functions that improve a data-driven compression
objective, starting from shape datasets of either imperative programs or unstructured primitives. We also
explore an alternative top-down framing, where we task a Large Language Model with authoring a library
of shape abstraction functions from two forms of user design intent: text descriptions of functions to include
in the library and a seed set of exemplar shapes. Together, these works demonstrate that the limitations of
the procedural representation can be successfully mitigated through the application of hybrid neurosymbolic

methods that learn to synthesize, infer, and abstract visual programs.
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decodes a hierarchical SHAPEASSEMBLY program. Within each hierarchy node, a recurrent
neural network decodes each line of the program. . . . . . . ... .. ... ... ......
In the middle row, we show samples from our generative model of SHAPEASSEMBLY pro-
grams. In the top row, we show the nearest neighbor shape in the training set by Chamfer dis-
tance. In the bottom row, we show the nearest neighbor shape in the training set by program
edit distance. Our method synthesizes interesting and high-quality structures that go beyond
direct structural or geometric memorization. We quantitatively examine SHAPEASSEMBLY’s

generalization in Table 3.4. Refer to the supplemental material for the corresponding program

Programs, by way of representational form, allow for easy semantic editing of generated
output. Each column shows a sample from our model in the top row. In the bottom row we
create a variant with the same structure, but different geometry, by editing only the continuous
parameters of the program. Program text can be found in the supplemental material.
Qualitative comparison between generated samples from our method, StructureNet, and 3D-
PRNN. Across different categories, our method creates novel SHAPEASSEMBLY programs
that, when executed, produce shape structures that maintain realistic and physically valid part-
to-part relationships. Comparison methods that directly predict 3D shape geometry exhibit
failure cases where parts become disconnected or intersect in an implausible manner.
Clustering results that demonstrate how the structure of a single SHAPEASSEMBLY program
is capable of capturing a family of related shapes. Using ground truth programs found with
our program extraction procedure, in the left graph we plot the percentage of shapes captured
as we consider more program structures extracted from the data. In the right graph we show

the same plot but with parts (nodes) instead of shapes (full hierarchy). . . . . .. ... ...
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Converting generated SHAPEASSEMBLYprograms into dense point clouds. We use a point
cloud decoder to predict the surface geometry of each leaf part proxy in our 3D shape struc-
ture. In this process, geometric details begin to take form, at the cost of some artifacts. We
discuss a method for improving this procedure in section3.6. . . . . . . ... ... ... ..
A qualitative comparison of latent space interpolation between our method and StructureNet
on shapes from the validation set. Our method’s interpolations within program space produce
sequences that combine smooth continuous variation with discrete structural transitions.

Qualitative comparison of synthesis from point clouds of our method against StructureNet
(SN). Our method is able to infer good program structures that match well with the unstruc-
tured geometry. The continuous parameters of this program structure can be further refined
through an optimization procedure in order to better fit the target point cloud without creating
artifacts. . . . . L e
Examples of PartNet shapes that contain parts whose orientations cannot be inferred from
part-to-part attachments alone. While these shapes can be represented with  SHAPEASSEM-
BLY programs that attach parts to “floating” points within the bounding volume, such pro-
grams are not added to our training data during our program extraction phase. As a result, our

generative model never learns to produce shapes that require this type of attachment pattern.

(Left) Pseudocode for fine-tuning shape program inference models, p(z|x), towards a shape
distribution of interest, .S*, with Pseudo-Labels and Approximate Distributions (PLAD).
PLAD methods iterate through three steps: infer programs for S* with p(z|x), create a dataset
of (X, Z) shape-program pairs, and train p(z|x) on batches from (X, Z). Self-training,

, and wake-sleep differ in how (X, Z) is constructed. (Right) A visual
illustration of the algorithm’s dataflow. . . . . . ... ... . ... ... ... ......
Experiments exploring properties of PLAD methods on 2D CSG. On the X-axis we plot the
beam size used during the PPFST update (Left), the number of training shapes (Middle), and

the training time (Right). The Y-axis of each plot measures reconstruction accuracy on test-set

Qualitative comparisons of shape programs inferred for test-set shapes made by different
fine-tuning methods for 2D CSG (Top), 3D CSG (Middle), and ShapeAssembly (Bottom,).

We provide additional qualitative results in the supplemental. . . . . . ... ... ... ..
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We design a network that learns how to locally edit an input program towards a target. It
first predicts what type of edit operation should be applied, then it predicts where that edit
operation should be applied, and finally it autoregressively samples any parameters the edit
OPEration TeQUITES. . . . . . . v vttt e et e e e e e e e e e
Left: our bootstrapping algorithm that finetunes an edit network and a one-shot model towards
a target dataset. Right: our inference algorithm that initializes a population with a one-
shot model and then mutates it towards a visual target through iterative rounds of edits and
resampling. . . . ... . e e e e e e e e e

Comparing reconstructions of one-shot models (top) against our joint approach (middle). . .
For 2D CSG, we compare reconstruction accuracy (Chamfer distance, lower is better, Y-axis)

between using an edit network and using only a one-shot network while varying time spent

on inference (left) and training set size (right). . . . . . . . . . . ... ...
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Our inference procedure edits samples from an initial population (top) towards a target (bottom). 65

Our inference process. First, a group of visual inputs are encoded (Step 1). Next, our Tem-
plateNet uses these encodings to infer a Template Program (1P, Step 2). The T'P and each
encoding are then sent to the ExpansionNet to produce a Structural Expansion (SFE) for
each input (Step 3), which are finally passed to the ParamNet to produce a set of complete
programs that explain the inputs (Step4). . . . . . . . . . L
We learn to infer Template Programs that capture input concepts (Inp). Template Programs
produce consistent concept parses (Seg) and synthesize new generations (Gen). Our frame-
work flexibly extends across different visual domains and input representations. . . . . . . .
Comparing few-shot generations of Omniglot characters. . . . . . . .. ... ... ... ..
We compare co-segmentations produced from voxelized shapes (Input) to ground-truth an-

notations (GT) . . . . . . . . . e e e e e e e e e e e
Qualitative examples of unconditional concept generations on the Omniglot domain. We

show 30 concepts synthesized by our method where each concept is associated with two rows

of five images. The bottom five images depict five samples from each concept, and the top

five images show the nearest neighbor in the training set by Chamfer distance to each sample.
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We propose ShapeMOD, an algorithm which takes as input a collection of 3D shape programs
and makes them more compact by automatically discovering common macros which can be
re-used across the collection. We apply ShapeMOD to datasets of ShapeAssembly programs
and find that generative models which train on refactored programs containing these macros
produce more plausible output shapes than those trained on the original programs. The dis-
covered macros also facilitate shape editing by exposing only a small number of meaningful
parameters for manipulating shape attributes. For example, the four_leg_base macro exposes
two parameters (visualized as sliders with red handles); one parameter controls leg size, while
the other controls leg spacing. . . . . . . . . . ...
ShapeMOD consists of two alternating phases: proposing new candidate macros (top) and

refactoring programs to use some of the proposed macros (bottom). . . . .. ... ... ..

Running ShapeMOD for multiple rounds allows for discovery of increasingly complex macros.

Here, a macro discovered in Round 2 uses a macro previously found in Round 1 as part of its
functionbody. . . . ...
ShapeMOD’s proposal phase, which proposes candidate macros to be added into £. Each
round of this phase begins by identifying a cluster of structurally-identical programs with
similar parameter values within the input dataset (Section 7.2.1). It then finds a single ab-
stracted program which subsumes most or all of the programs in this cluster (Section 7.2.2);
here, 'gray parameter values are abstracted as constants, blue ones as continuous free vari-
ables, and pink ones as discrete free variables. Subsequences of lines in this abstracted
program (shown in 'green ) are isolated to form potential macros which could be used to
re-write the program (Section 7.2.3). Finally, this set of candidate macros is expanded by
including generalizations of the initial set (Section 7.2.4); purple lines show lines that are
generalized. Best viewed on a high-resolution screen. . . . . . ... ... ... ... ...
ShapeMOD’s integration phase, which chooses which candidate macros to add to the DSL
library £. On each round of this phase, the algorithm heuristically ranks candidate macros
based on which are likely to improve program compression, adds the top-ranked macro to the
library, then finds the best refactored program for each program in the input dataset D under
this new library. If this refactoring lowers the objective value f(D, L), then the macro is kept

in the library; otherwise, itisdiscarded. . . . . . . . . ... .. .. ... ... .. ...
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We show some macros (top-middle) that ShapeMOD discovered when run on the Table
dataset, and program refactors that use these macros to significantly compress the number
of exposed free parameters (ShapeMOD arrows from outside to inside). We show program
edits (down arrows) of corresponding parameters in both programs with macros (green) and
without macros (red). The discovered macros capture parametric relationships that better
preserve shape plausibility under manipulation; for example, all chair legs remain the same
size in the third column (macros), while the shape in the fourth column (no macros) becomes
disconnected and physically implausible . . . . . . . . ... ... L oL
We measure distributional similarity (Frechet Distance [73]) between a set of reference chairs
and a set of chair programs subjected to perturbations. We simulate perturbations by adding
noise from a normal distribution (x-axis is standard deviation) to continuous parameters in the
programs. Programs with ShapeMOD macros retain more similarity under larger perturba-
tions, suggesting the macros remove degrees of freedom that permit shapes to move outside
of their original distribution. . . . . . . . . ... o
Some example outputs of generative models trained to produce ShapeAssembly programs
expressed with macros discovered by ShapeMOD, along with their training set nearest neigh-
bors (NN) by geometric and program similarity. Each cuboid represents a part proxy bound-
ing volume. Structures are formed through attaching parts to one another (red dots). The
generative models produce a variety of plausible structures without memorizing their train-
ing data. All corresponding programs can be found in supplemental material. . . . . . . . .
Example visual program induction results from our point cloud — program inference experi-
ment. ShapeMOD macros are especially helpful for the heterogeneous Storage category. All
corresponding programs can be found in the supplemental material. . . . . . . ... .. ..
A screenshot of our editing interface. The key elements are: (1) A view of the ShapeAssembly
program’s text. (2) Contextual sliders (enlarged in the figure) that allow the user to edit
program parameters. (3) A view of the current program’s output. Note the optional wireframe
of the target shape and the ability to highlight correspondences between cuboids in the text

and the 3D viewer (blue highlights shown). (4) The target shape. . . . . . .. ... ... ..
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Top row: the initial program output shape (gray) and target shape (yellow) for each task in our
goal-directed editing study. Bottom row: plots of how quickly participants were able to edit a
program’s parameters to match the target shape, with 95% confidence intervals shown. The x
axis is time elapsed in minutes, while the y axis is the mean of the running minimum of each
participant’s corner distance to the target shape. In general, participants using ShapeMOD
macros more quickly converged to the target shape and achieved a closer fit. To allow users
to take breaks between tasks, time starts when the user makes their first edit for each task .

Participants in our user study rated the ease of completing each task; here, we plot each
task’s average difficult rating for each condition (5 = very easy, 1 = very difficult) with 95%
confidence intervals shown. Participants using ShapeMOD macros generally rated tasks as

easiertocomplete. . . . . ... L. e e e e e

ShapeCoder automatically discovers abstraction functions, and infers visual programs that
use these abstractions, to compactly explain an input dataset of shapes represented with un-
structured primitives. For example, the orange abstraction uses only five parameters to encode
a distribution of 4-legged table bases with adjoining horizontal support bars. . . . . . . ..
Overview. ShapeCoder consumes an initial library £, an objective F, and a dataset of
shapes D (brown boxes). Each round of the algorithm iterates through a series of phases
that progressively add abstractions into £ to improve F. A dream phase trains a recognition
network by sampling from £. A wake phase infers programs for shapes in D. A proposal
phase produces candidate abstractions. An integration phase uses a refactor operation to
decide when these abstractions should be addedinto £. . . . . ... ... ... .......
Dream and Wake Phases. (Left) ShapeCoder’s recognition network is a Transformer de-
coder that attends over tokenized input primitives and autoregressively predicts functions and
parameterizations. (Middle) The dream phase trains the recognition network by sampling
expressions from library functions, which are randomly combined together to form (input,
target) training pairs. (Right) The wake phase uses the recognition network to find programs
that explain input shapes. In a series of iterative steps, it samples expressions, chooses the
expression that achieves the best cost, and removes covered primitives from the input canvas,

until the canvasisempty. . . . . . . . . . . L. e
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Proposal Phase. The proposal phase consumes a collection of programs and outputs a set
of candidate abstractions. First, possible structures and their parameterizations are recorded
from the input programs. Then clusters are formed by sampling a structure and a subset of
parameterizations. For each cluster, a greedy abstraction search generates a possible abstrac-
tion, whichisrecorded. . . . . . . . . . . ...
Refactor. The refactor operation uses e-graphs to identify when abstractions can be ap-
plied. Input programs are converted into e-graphs, which are expanded with semantic and
library-specific rewrites to uncover lower-cost equivalent expressions that can be extracted.
We develop a conditional rewrite scheme that reasons over parametric relationships (green
highlights) without adding excessive e-nodes for parametric operators (red box). . . .. ..
Qualitative examples of discovered abstractions. We show one abstraction each for Chair
and Table, and two abstractions for Storage furniture. The abstraction code is shown on the
left, followed by three different usages of the abstraction in our shape dataset discovered by
ShapeCoder. In the right-most column, we manually edit the discovered program to create a
new shape. Along the bottom, we visualize randomly sampled dreams. . . . . . .. .. ..
We leverage an unsupervised primitive decomposition approach [230] to run ShapeCoder
over datasets of 3D meshes. Even on these noisy primitive decompositions, our method
still finds high-level, useful abstractions that capture meaningful degrees of shape variation.
Interestingly, the two top-level abstractions we show, in orange and blue, both make use of
the same abstraction sub-function (highlighted in yellow) to create a four-leg base. . . . . .
Sampled programs (top) from a generative model that writes programs containing abstrac-

tions, along with nearest neighbors (bottom). . . . . . . ... ... ... L.

ShapeLib guides an LLM to design a library of procedural shape functions from a given set
of (20) seed shapes and textual descriptions. Using an LLM prior makes the functions seman-
tically interpretable and easy to edit, while aligning them with the seed shapes specializes the
functions to a given domain and reduces LLM hallucinations. The library can be used to train

a network for visual program induction that generalizes well beyond the seed shapes.
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Chapter 1

Introduction

Visual reasoning plays a critical role in how people interact with and understand the physical world. The
field of visual computing is concerned with how to best endow computing systems with the requisite skills to
effectively analyze, synthesize, manipulate, and interact with visual data. A myriad of stakeholders have cre-
ated a growing demand in this space. Applications within computer graphics require high-quality 3D assets
for visual effects, animation, entertainment, and games. Augmented and virtual reality experiences desire
3D shapes and scenes that support intuitive manipulation and interaction. Artificial intelligence systems rely
on synthetic visual data to train large data-driven models [175, 241, 103] and robotic agents in simulation
[110, 224, 182, 1].

The question of representation is central to visual computing: how visual data is represented affects what
downstream applications are supported. Unlike regular pixel grids for capturing 2D visual data, there is
no standard representation for 3D geometry. 3D shapes can be expressed in a variety of representations,
each with their own strengths and weaknesses. Voxels are the direct extension of pixels to 3D space, but
they suffer from the curse of dimensionality. Point clouds are easy to obtain from the real world via depth
sensors, but they lose surface connectivity and detail. Surface meshes are well-supported by rendering and
simulation packages, but their irregular topologies cause difficulties for learning and optimization. Recently,
there has been growing interest centered around approaches that represent 3D shapes ‘neurally’, including
occupancy/SDF networks [26, 157], Neural Radiance Fields [138], and 3D Gaussian splatting [105]. While
these exciting developments are capable of producing high-quality outputs, they often hallucinate implausible

geometry, do not expose interpretable interfaces, and are hard to interact with or manipulate.



In this proposal, we study programmatic representations of visual data. Such representations have tra-
ditionally been known as procedural models: structured computer programs that produce visual data when
executed. Procedural models have many compelling properties for downstream applications. Well-written
procedural models produce high-quality geometry from compact representations. Finding symbolic represen-
tations that effectively capture visual phenomenon allows for shape and scene analysis: sometimes referred to
as ‘analysis by synthesis’ [237] or ‘inverse graphics’ [8]. Procedural shape representations are interpretable
to users with some programming background, and they often expose high-level parameters that can be ma-
nipulated to change attributes of the visual data they generate. Further, randomization of these parameters
allows a single procedural model to generate a wide variety of different visual outputs—this is useful for
rapidly exploring their design space or for populating large virtual worlds with non-repetitive content.

Despite these numerous benefits, there are a few main limitations that beleaguer procedural models.
Foremost among these is availability: high-quality procedural models are hard to acquire. Typically, these
programs must be authored by domain experts, which is an expensive and time consuming process that does
not scale. Beyond this, while some procedural models are capable of producing a family of visual outputs, the
range of output variety is usually fairly limited. It would be almost impossible, for instance, to design a single
procedural model capable of producing all types of cars. Finally, the usefulness of any given procedural model
is dependent on the language in which it is written. Well-designed procedural models typically leverage
domain-specific languages (DSLs) that expose task-specific functionality to produce interesting structures
while maintaining a compact programmatic form. When using a poorly constructed DSL, a procedural model
might not be able to realize the potential benefits of this powerful representation.

This dissertation focuses on how these limitations can be mitigated through these use of neurosymbolic
methods that integrate learning and programmatic representations. For instance, given a collection of pro-
grammatic shape representations, we can leverage deep generative models that learn to synthesize novel
programs that can be executed to produce new geometry. When we lack human-authored procedural models,
we can employ self-supervised bootstrapped learning algorithms that infer visual programs that recreate input
data when executed. Given a base DSL, we can use optimization algorithms to discover new abstraction func-
tions that improve the DSL for a particular modeling task. In summary, we find that neurosymbolic methods,
that marry learning-based systems with symbolic representations, draw from the strengths of each of these

disparate techniques, and often achieve a ‘best of both worlds’ solution.



1.1 Contributions

This dissertation introduces a series of neurosymbolic methods that aid in shape analysis and generation tasks.
This content is based largely on seven previous publications [91, 98, 99, 93, 92, 94, 95], which are naturally

grouped into three thematic directions.

1. Generating shapes by learning to synthesize programs: When datasets of annotated assets are avail-
able, we can train generative networks that learn to author novel shape programs. We explore the ben-
efits of such a hybrid neural-procedural paradigm in our ShapeAssembly system [91]. We introduce
the ShapeAssembly language and its differentiable interpreter, allowing the procedural specification of
shape structures represented as connected part assemblies. We design a deep generative autoregressive
model for ShapeAssembly programs, coupling the ease-of-training and variability of neural networks
with the precision and editability of procedural representations. We demonstrate that training networks
that learn how to author shape programs improves performance over other structured modeling alter-

natives.

2. Unsupervised visual program induction: For many domains of interest, we lack annotated program
datasets, but we would still like to find programs that explain visual datum: this is the task of vi-
sual program induction (VPI). We propose PLAD, a method that trains a recognition network for VPI
without access to labeled data [98]. PLAD introduces a conceptual framework that groups and gener-
alizes a family of related self-supervised learning techniques. We run experiments across multiple VPI
domains, and find that PLAD training outperforms previous state-of-the-art alternatives such as policy
gradient reinforcement learning. In a follow-up work, we explore an extension of PLAD, VPI-Edit, that
introduces networks that learn how to edit visual programs [99]. Given an initial program and a visual
target, these networks predict local edit operations that can be applied to the input program to improve
its similarity to a target. We show that this paradigm is more effective at solving VPI tasks compared
with networks that try to author an entire program in ‘one-shot’. In another extension of PLAD, we
introduce Template Programs [93], partial programs that can explain groups of related visual inputs.
We propose a neurosymbolic method that learns how to infer these stochastic procedural models in an
unsupervised fashion. In experiments across VPI domains, we demonstrate that this framework sup-
ports multiple concept-related tasks, including cosegmentation, few-shot generation, and novel concept

synthesis.



3. Discovering better domain-specific languages: Obtaining a ‘good’ procedural model requires access
to a ‘good’ modeling language, where notions of ‘good’ are often task-specific. We explore how base
domain-specific languages can be improved automatically with methods that search for abstraction
functions that improve a data-driven compression-based objective. These library learning techniques
are provided with a shape dataset, and try to discover a concise set of functions that abstract out com-
mon structural and parametric patterns: removing extraneous degrees of freedom from the underlying
shape collection. ShapeMOD [92] assumes that the input shape dataset has associated imperative pro-
grams. ShapeCoder [94] relaxes this assumption, operating over collections of shapes represented with
unstructured primitives. We experimentally demonstrate on collections of manufactured objects that
learning over programs that use these discovered abstractions leads to better performance on important
downstream tasks such as novel shape generation, directed shape manipulation, and inferring shape
structures from unstructured geometry. As an alternative to these bottom-up approaches, we propose
the ShapeLib [95] method, which leverages the priors of Large Language Models to design a library
of shape abstraction functions in a top-down fashion. This system accepts two forms of user-provided
design intent: text descriptions of functions to include in the library and a small seed set of exemplar
shapes. Across multiple categories of manufactured 3D shapes, it is able to discover procedural ab-
stractions that match this design intent, expose semantically aligned parametric handles, and generalize

beyond the seed set.

Together, these contributions demonstrate how neurosymbolic methods can be used to mitigate the tra-
ditional limitations of procedural modeling, while maintaining a programmatic representation of visual data.

When available, we include links to our open sourced code in the respective chapters for each method.

1.2 Document Overview

The rest of this dissertation is organized as follows: Chapter 2 first provides high-level background overviews
of the fields of procedural modeling and program synthesis. It then discusses relevant related works on the
topics of generative models of visual data, visual program synthesis, and abstraction discovery. Next we
discuss the technical contributions of this proposal. In Chapter 3, we present ShapeAssembly, a generative
model of shape programs. We then describe a series of works for unsupervised visual program induction,
starting with the PLAD framework (Chapter 4), followed by extensions that train networks that learn how to

edit programs (Chapter 5) and infer programs that capture a collection of visual inputs (Chapter 6). Next, we



introduce a series of works for automatic abstraction discovery: starting from a dataset of shape programs
(ShapeMOD, Chapter 7), starting from a dateset of shapes represented with primitives (ShapeCoder, Chap-
ter 8), and guiding a LLM to author functions that match an input design intent (ShapeLIB, Chapter 9). We
conclude the dissertation in Chapter 10, with a summary of our main contributions and a discussion on the

future of neurosymbolic methods for shape analysis and generation.



Chapter 2

Background

In this chapter, we overview the most relevant background material and related works to this dissertation. We
first briefly survey the topics of procedural modeling, programs that generate visual outputs, and program
synthesis, the problem of finding a program that meets a specification. We then discuss the most relevant
related methods to the work of this dissertation in the topics of: generative modeling for visual data, visual

program synthesis, and abstraction discovery.

2.1 Procedural Modeling

In procedural modeling, a symbolic program describes graphics content, such that when the program is
executed it produces visual data as its output. Procedural models have a storied history that dates back
to the origins of computer graphics as a field, when Ivan Sutherland used constraint programs to produce
engineering sketches in the SketchPad system [39]. While procedural approaches have permeated almost all
facets of the graphics pipeline, procedural models are most widely used to represent geometry and appearance
of 3D objects. For instance, trees and vegetation have commonly been modeled in a procedural fashion,
where context-free grammars, such as rewrite-based L-systems, are used to represent the fractal nature of
these objects [161, 86, 160, 117]. Building facades and entire cityscapes are also a common interest of
procedural modeling approaches [142, 154]. Beyond 3D geometry, procedural models are also common
in texture modeling [3, 27, 6], and have even seen use in more varied application such as influencing the
behaviors of virtual characters in a crowd [134].

Most relevant to the contents of this dissertation, is the use of procedural models to represent shapes

6



[49]. Shape programs, or procedural models that create shapes when executed, are often written in a domain-
specific language, or DSL. The design process of complex procedural shape models often takes place within
proprietary software development environments, where graphical node-based programming is commonly em-
ployed [6, 9, 227]. One representative approach is Constructive Solid Geometry (CSG), which builds complex
shapes by combining primitives together with Boolean set operations (union, difference, intersection) [56].
Computer Aided Design (CAD) software typically constructs such 3D primitives by lifting 2D sketch profiles
into 3D volumes through extrusion [30, 5].

Most procedural models are manually designed by domain-experts, an expensive and time-consuming
process. While some procedural models are deterministic (they always produce the same output when exe-
cuted), others are stochastic (they can produce different outputs when executed). Typically, these models use
a single consistent structure that includes calls to functions that return random variables, optionally exposing
these variable parameters as controllable ‘handles’. For instance, a procedural program of a flower might
expose an interface that allows a user to vary the length of the stem or the number of petals. This paradigm
facilitates exploration over a wide-range of possible shape realization, allowing users to choose which of the
outputs best fits their intended purpose. Unfortunately, designing a stochastic model is arguably harder than
designing a deterministic procedural model.

In the following content of this dissertation, we discuss and explore works that attempt to automatically

synthesize procedural models of shapes, with little or no human intervention.

2.2 Program Synthesis

Program synthesis is a broad field that has employed many techniques throughout its history. The typical
problem framing presents a program synthesizer with two inputs: a programming language (often domain-
specific) and a specification. The goal of the synthesizer is to return a program from the language that
meets the specification. Ideas of automatic code generation have intrigued researchers since the inception of
Artificial Intelligence; this problem has even been dubbed the "holy grail” of AI [62]. Despite this ambitious
framing, progress in program synthesis had been slow until the past few decades, when advances in computing
power and constraint-solving, along with novel enumeration techniques, started to produce useful systems
capable of solving synthesis tasks beyond toy-domains [191, 155, 207, 61].

Program synthesis systems can be primarily divided along three central axes of design decisions: in-

tent specification (e.g. how a user communicates the goals of the desired program), search space (e.g. the



programming language over which the synthesizer will search), and search technique (e.g. how the syn-
thesizer will search for a program that meets the specification). While program synthesis methods have ex-
plored a wide-range of search algorithms (including enumeration, constraint-based, probabilistic search, etc.),
more recently the field has focused on learning-based techniques. Typically methods within this paradigm
task a neural network with guiding how the search should proceed over the space of possible programs
[37, 220, 156, 197, 13, 22]. Since programs can be represented as sequences of discrete tokens, many
learning-based methods use auto-regressive models, where each token is generated conditionally based on
previously generated tokens [209]. This paradigm has become especially popular following the rapid adop-
tion and success of Large Language Models (LLMs). Frontier LLMs are often trained on massive datasets of
human-written code as part of their pretraining, and have demonstrated the ability to program in a way that
generalizes across tasks and programming languages [19].

Some systems model this autoregressive process not only at the token level, but instead across program
versions. A number of program synthesis methods have been proposed that learn how to repair or fix programs
for domains where ground-truth programs are available. SED interleaves a series of synthesis, execution and
debugging steps in order to improve synthesis of Karel programs from input/output examples [66]. Related
approaches have explored learning how to ‘fix’ programs end-to-end by manipulating latent-space encodings
of programs under a fixed decoder for the RobustFill domain [7]. A number of recent works have explored
how LLMs can be used to fix programs when prompted with mismatching input/output examples [189, 21,
130, 148]. Though differing in details, the typical formulation these methods take involves presenting an
LLM with a previous program version, and asking it to either (i) debug exceptions or (ii) modify program
behavior in light of input/output mismatches. While these initial forays show promise, performance gains of
code-editing LLMs are not always definitive when adjusted for inference budgets [152].

This dissertation introduces a series of methods for visual program induction, a sub-problem of program
synthesis where the input specification is visual data, and the goal is to find a program whose output execution

recreates the input. We discuss relevant related works that study this problem in Section 2.4.

2.3 Related work on Generative Models of Visual Data

Learning generative models of visual data is a rapidly growing field that has received a great deal of interest.
Fueled by deep learning, and access to massive datasets, the capabilities of these systems have increased

dramatically in recent years. Deep generative models learn to represent the probability distribution over an



input domain X (e.g. a collection of visual data). This probability distribution can then be sampled to syn-
thesize novel instances from X (e.g. new visual data). There are a multitude of deep generative modeling
paradigms, all with different strengths and weaknesses, including generative adversarial networks (GANSs),
variational autoencoders (VAEs), auto-regressive models, normalizing flows, and diffusion models [10, 28].
These deep generative modeling paradigms have been applied across many visual domains including image
synthesis, processing, and manipulation [87, 245, 55, 104, 169, 181, 178], scenes [213], material and texture
modeling [50, 36, 72, 64], and 2D drawing and sketching [68, 174, 210]. In principle, these models are easy
to create: just provide training data, and a learning algorithm takes care of the rest. What’s more, they are
quite general: the same model architecture (and sometimes even the same trained model) can represent a huge
variety of different kinds of visual data (e.g. the space of all human faces). However, these ‘neural’ methods
are not without limitations. The representations these models learn are usually opaque and uninterpretable,
making them hard for users to edit or manipulate. Additionally, as machine learning methods produce sta-
tistical approximations of the true function implied by their training data, such models may generate outputs
that exhibit artifacts or fail to generalize beyond their training distribution.

For deep generative models that learn to synthesize 3D shapes, representation is a central design decision.
Some of the earliest approaches generated shapes as 3D occupancy grids [223, 221], while later work has
explored how to generate point clouds [44, 121], meshes [59, 146], and implicit representations [26, 157,
136, 24, 84, 78]. Most of these aforementioned generative models of 3D shapes create geometry directly.
In contrast, structure-aware models learn to generate objects as arrangements of their component parts [18,
139]. These include approaches for iteratively adding parts to partially-complete shapes [198], generating
symmetry hierarchies [120], composing parts from two different shapes [244], and generating hierarchical
connectivity graphs [140].

This dissertation discusses structured generative models for visual data, where a neural network learns
to model a distribution over shape programs. The ShapeAssembly system, introduced in Chapter 3, of-
fers one of the first realizations of such a neurosymbolic generative model for 3D shape structure synthesis.
This paradigm has also demonstrated success across visual domains and tasks [176], including node graphs
for materials [60], scalable vector graphics [170, 15], CAD sketches [153, 184, 54], and 3D modeling se-
quences [222, 229, 217].
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2.4 Related work on Visual Program Synthesis

Visual program induction is a sub-problem of program synthesis. Typically the input is a single visual entity,
such as an image or a 3D shape, and the goal is to find a program whose execution would recreate this
input. This problem framing is particularly appropriate for manufactured objects, as such shapes typically
originate as CAD programs of some form (e.g. connected assemblies of parts, the geometry of which may be
specified by lower-level instructions). Some methods for this task use non-learning based approaches. These
typically rely on heuristics and are specialized for particular domains and/or tasks. Recent work includes
reverse-engineering CAD programs from 3D shapes [38, 144, 228] and shape program manipulation [71].

As the design space of visual programs is often prohibitively large for exhaustive search, and insightful
heuristics are hard to identify, neurally-guided approaches have become increasingly preferred. Unfortu-
nately, while shape data is increasingly available in large quantities [16, 32], these shapes do not usually
come with paired program annotations, so supervised learning cannot be used directly. To mitigate this
lack of data, some approaches require an expert designed program structure as input, and then search for
a parametrization of this program structure to match a given target [137, 159]. Other approaches aim to
jointly infer both program parameters and structure, and have demonstrated success across a range of visual
programming domains, including CAD modeling sequences [118, 54, 184, 119], SVG shapes [170, 171],
and even custom DSLs with learned neural primitives [35]. These works leverage task-specific learning or
architecture modifications that make the search space tractable.

Methods that infer shape programs in a general way (capable of learning across VPI domains), typically
employ a two step learning process to circumvent the lack of paired data. First, these methods will gen-
erate synthetic data by sampling random programs under the input DSL and pairing them with the shapes
they output. This pretrained network can then be fine-tuned towards a target shape distribution that lacks
annotated ground-truth programs. In Chapter 4, we introduce PLAD, a fine-tuning technique that works
across shape program inference domains, and discuss alternative fine-tuning paradigms in Section 4.1. While
this approach, like many other VPI methods, attempts to author a complete program from only visual con-
ditioning (e.g. a latent encoding), some approaches employ an an execution-aware search procedure. For
instance, some methods will reason over partial program executions [151] that guide a more complex outer
search [41]. Others use executor-gradients to guide inner-loop optimization [53, 236]. In Chapter 5, we pro-
pose an extension of PLAD that trains networks that learn how to edit programs towards a visual target in an

execution-aware manner.
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Another line of research has studied inverse methods for producing procedural models capable of gener-
ating a distribution of visual outputs. A typical framing such approaches take is to induce a grammar with
a bottom-up procedure, e.g. through Bayesian merging [85]. These techniques have demonstrated success
across many visual domains, including plants [193, 63] and buildings [150, 132, 149, 33], and some can even
induce more general probabilistic programs [177]. Though these methods achieve impressive results, they
lack generality and flexibility, struggling to induce grammars outside of their specialized domain, and often
requiring highly structured input data. In Chapter 6, we introduce a method that extends a single-shape VPI
method to search for procedural models that can explain a collection of related visual inputs. Our approach
generalizes across visual programming domains, doesn’t require structurally-annotated data, and supports a
range of downstream tasks.

As Large Language Models (LLMs) have exploded in popularity, reshaping the field of computer science,
initial investigations have explored their ability for producing and reasoning over programmatic descriptions
of visual content [12]. Up to now, frontier LLMs and Vision-Language models (VLMs) have struggled
to perform these generation and analysis tasks for non-toy shape modeling domains, though task-specific
finetuning can improve performance to a degree [113, 164]. Some approaches have found success in using
LLMs to guide searches over symbolic re-parameterizations of procedural models for 3D shape editing and
manipulation tasks [52, 109, 82]. A related research direction of nascent interest has explored how well LLMs
can author programs that describe the arrangements of objects within a scene [231, 47, 240, 126, 81, 4].
Unfortunately, directly prompting LLMs to generate programs that produce compelling 3D shapes has so far

proved a harder task.

2.5 Related work on Abstraction Discovery

While procedural models offer an attractive representation for visual data, not all visual programs are equally
useful. The usefulness of a procedural model is dependent on the programming language in which it is writ-
ten; for instance, in representing the wheels of an office chair, it would be harder to author a ‘good’ procedural
model without access to a language operator that created a rotational symmetry group. The functions of the
DSL should be designed for the modeling task at hand, where specialized high-level functions (e.g. macros,
abstractions, helper functions) are required to produce the ‘most useful’ procedural models. As illustrative
examples, consider that in urban procedural modeling, a macro might capture how primitives combine to

make a particular class of railing; in furniture modeling, a macro might be used to model a shelving pattern
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that could be instantiated within different types and sizes of furniture; in plant modeling, a macro might be
used to instantiate examples of petal structures across a family of flowers. Typically such abstraction func-
tions must be carefully crafted by humans, but some prior work has investigated if these ‘better’ languages
can be found automatically; typically by augmenting the functions of a base DSL with a library of additional
abstraction functions.

Several prior methods aim to discover abstractions in context-free languages, where only a reduced set
of relations between primitives or sub-programs can be modeled, in the context of facade grammars [133]
or more general grammar types [200, 85, 177]. Recently, another line of work has investigated common ab-
straction discovery for general functional programs, under the framing of library learning: the Exploration-
Compression (EC) algorithm [31] and its successor, DreamCoder [42]. EC operates by switching between
two algorithmic phases: “exploration” (trying to find programs that solve input problems) and “compression”
(finding abstractions common to these programs). DreamCoder extends the ideas of EC, replacing explo-
ration with a “wake” phase (with similar goals), and compression with two new phases: a “sleep-dream”
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phase that fantasizes new tasks and a “sleep-abstraction” that mirrors EC’s “compression” phase. We discuss
DreamCoder, and how it relates to abstraction discovery methods for 3D shapes proposed in this dissertation
(ShapeMOD and ShapeCoder), in more detail in Chapter 8. Recently, alternatives have been proposed for the
abstraction step of a DreamCoder-like system, either by using a top-down search, like the STITCH algorithm
[11], or by employing anti-unification over an equality preserving data-structure, like in the Babble algorithm
[14]. LILO [58], is another recent method that uses a LLM to automatically document the abstractions dis-
covered by STITCH. In Chapter 9, we introduce an alternative framework that guides a LLM through the
process of implementing procedural abstraction functions that match a provided design intent.

A related problem studies how to discover common patterns in a single program, as opposed to a set of
programs. This has been explored for L-Systems [63] and there has also been prior work on this problem in
the realm of shape modeling languages. The Szalinski system takes a low-level CAD program as input and
searches for a more compact, higher-level program which produces the same output geometry [145]. The
Carpentry Compiler is a program optimizer that finds rewrites of low-level instructions to maintain high-level

semantics while optimizing to reduce manufacturing cost [219]. Such approaches can also be seen as related

to systems for more general program-rewriting, such as optimizing compilers [203].



Chapter 3

Learning to Generate Programs for

Shape Structure Synthesis

def Chair():

bbox = Cuboid(1.2, 1.4, 1,T)

base = Base(.9, .5, 8, T)

seat = Seat(1.1,.1,.9,T)

back = Back(1.1, .9, 2, F)

arm = Cuboid(.1, 4, .7, F)
attach(base, bbox, .5, 0, 5, 5,0, .5)
squeeze(back, bbox, base, top, 5, .1)
attach(seat, base, .5, 0, 5, 5, 1, .5)
attach(arm, back, .5, 5, 0, .1, .3, .5)
attach(arm, seat, 5, 0, .5, .1, .7, .5)
reflect(arm, X)

def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
surface = Cuboid(1.16, .64, .13, T)
slat = Cuboid(.04, .76, .1, F)

attach(slat, bbox, .5, 0, 5, .2, 0, .45)

reflect(slat, X)

)
attach(surface, bbox, .5, 1,5, .5, 1,.7)

attach(slat, surface, .5, .6, .8, .2, .3, .2)

Interpol; in Sh bly Program Space ——
def Chair(): def Chair():
def Back(l, w, h, aligned): def Back(l, w, h, aligned): k=]

bbox = Cuboid(l, w, h, aligned)

surface = Cuboid(1.08, .58, .11, T)
slat = Cuboid(.04, .73, .1, F)
attach(surface, bbox, .5, 1,.5, 5, 1, .6)
attach(slat, bbox, .5, 0, .5, .15, 0, 3)
attach(slat, surface, 6, .5, 6, .1, .1, .1)
reflect(slat, X)

bbox = Cuboid(l, w, h, aligned)
surface = Cuboid(.9, .51, .08, T)
slat = Cuboid(.05 .6, .07, F)
attach(surface, bbox, .5, 1,5, 5, 1,.5)
attach(slat, bbox, .5, 0, 5, .1, 0, .3)
attach(slat, surface, 5, 8, .5, .1, .1
reflect(slat, X)

.3)

def Chair():
bbox = Cuboid(.82, 1.6, .85, T)
base = Base(.75, .66, .66, T)
seat = Seat(8, .13, .85, T)
back = Back(8, .9, .1, T)

attach(base, bbox, .5, 0, .5, .5, 0, .5)
attach(back, bbox, .5, 1, .5, .5, 1, .05)
attach(seat, base, .5, 5,1,.5)
attach(back, seat, .5, .0, .5, .5, .75, .05)

def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
surface = Cuboid(8, .4, .1, T)
slat = Cuboid(.05, .5, .05, T)
attach(surface, bbox, .5, 1, 5, 5, 1,.5)
squeeze(slat, bbox, surface, bot, .1, .5)
translate(slat, X, 3, 0.8)

def Chair():
bbox = Cuboid (SHENON, T)

base = Base (IISISSNON. T)
seat = Seat( | T)
back = Back( . T)
attach(base, bbox, .5, 0, 5, .5,
attach(back, bbox, 5, 1, 5, 5,
attach(seat, ba: 5)

0,.5)
1,.05)

attach(Back, se:

def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
surface = Cuboid (HSHINNDNS. T)
slat = Cuboic (IENEN.05, T)
attach(surface, bbox, .5, 1,.5, 5, 1, .5)
squeeze(slat, bbox, surface, bot, .1, .5)
translate(slat, X, [, 0.8)

Figure 3.1: We present a deep generative model which learns to write novel programs in SHAPEASSEMBLY,
a domain-specific language for modeling 3D shape structures. Executing a SHAPEASSEMBLY program
produces a shape composed of a hierarchical connected assembly of part proxies cuboids. Our method
develops a well-formed latent space that supports interpolations between programs. Above, we show one such
interpolation, and also visualize the geometry these programs produce when executed. In the last column,

we manually edit the continuous parameters of a generated program, in order to produce a variant geometric
structure with new topology.

3D models of human-made objects are more in-demand than ever. Despite the growing demand, the craft

of 3D modeling largely remains as difficult and time-consuming as it has ever been. The time and expertise
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required to create 3D content by hand will not scale to these demands.

One promising way out of this conundrum is the development of generative models of 3D shapes, i.e.
procedures which can be executed to generate novel shapes within some class [161, 142, 154]. An ideal
generative model would produce plausible output geometry, capture a wide range of shape variations, and
use an interpretable representation which a user could subsequently manipulate and edit. Unfortunately, no
existing shape generative model achieves all of these properties.

In this chapter, we capitalize on our insight that procedural models and deep generative models have
complementary strengths. Deep generative models are efficient to create and excel at broad-scale variability,
and procedural models produce high-quality geometry by construction and better facilitate editing for fine-
scale variability. We take a first step toward achieving the best of both worlds by integrating these two
approaches into a single pipeline: a deep generative model that learns to write programs, which, when
executed, themselves output 3D geometry. We hypothesize that going through this intermediate program
representation produces a generative model with a smoother latent space, whose outputs are more likely to
be physically valid, compact, and editable.

As the motivating applications mentioned earlier demand 3D models of human-made objects, we focus
on generating novel part-based shape structures. We introduce SHAPEASSEMBLY, an “assembly language”
for 3D shape structures. In SHAPEASSEMBLY, shape structures are represented by hierarchical assemblies
of connected parts, where leaf-level parts are approximated by a bounding cuboid (a similar representation
as the ones used by PartNet [141] and StructureNet [140]); these hierarchical cuboid structures can then
be used to condition the generation of shape surface geometry in the form of e.g. point clouds. A SHA-
PEASSEMBLY program constructs a shape by declaring cuboids, iteratively attaching them to one another,
and specifying symmetric repetitions of connected cuboid assemblies. The dimensions of these cuboids and
the positions of these attachments are a program’s parameters; manipulating them allows for exploring a
family of related shapes. Furthermore, our interpreter for executing SHAPEASSEMBLY programs is fully
differentiable, meaning it is possible to compute gradients of a program’s output geometry with respect to its
continuous parameters. Figure 3.1 shows some example hierarchical SHAPEASSEMBLY programs and the
output shapes they produce.

While SHAPEASSEMBLY programs produce valid geometry under a range of parameter values, they do
not exhibit structural variability, and authoring them from scratch still takes time. Thus, we train a neural
network to write a variety of SHAPEASSEMBLY programs for us. Using programs we extract from a shape

dataset, we train a hierarchical sequence VAE which outputs hierarchical SHAPEASSEMBLY programs. Each
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node in the hierarchy uses a recurrent language model to generate the program text at that level, and to
decide which cuboids should be expanded into subroutine calls. Furthermore, the well-defined semantics
of SHAPEASSEMBLY allow us to identify semantically-invalid programs and modify the generator such that
it never produces them. The programs shown in Figure 3.1 were written by our generative model, by decoding
code vectors along a straight line in its latent space. We show that this generative model indeed learns
to generate plausible, novel shape programs that were never seen its the training set. Note that one could
consider solving our problem of novel shape program generation by first generating novel 3D shapes with an
existing shape generative model and then using a VPI-like system to infer a program describing that shape.
However, as we will later show, the programs produced by such a process are less clean and editable than
ones generated by our model; furthermore, training to generate programs rather than shapes directly actually
produces a better-structured latent space.

We evaluate our approach by comparing it to other recently-proposed generative models of 3D shape
structure along several axes including plausibility, diversity, complexity, and physical validity. We find that
our generated shapes are both more plausible and more physically-valid than those of other methods. Ad-
ditionally, we assess the latent spaces of these models, and find that ours is better structured and produces
smoother interpolations, both in terms of geometric and structural continuity. As a bonus, we also show
that SHAPEASSEMBLY s decoder does a better job of fitting programs to unstructured point clouds while also
maintaining physical validity, and that this performance difference is magnified by optimizing the program
fit via our differentiable interpreter.

We provide code for our method at https://github.com/rkjones4/Shape Assembly .

3.1 Approach

Figure 3.2 shows our overall pipeline. Our approach is divided into the following stages:

Input Our pipeline takes as input a large dataset of hierarchical 3D part graphs [141, 140]. This is a shape
representation in which each node represents a part in a shape consisting of an assembly of parts. Nodes
are connected via edges that denote physical part attachments. They can also be connected via parent-child
edges that denote hierarchy relationships (i.e., that one part is composed of several other smaller parts). At
the leaf level of this hierarchy, atomic parts are represented by cuboid proxy geometry (typically computed

from minimum-volume bounding boxes of more detailed part meshes).
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(Section 4)

Shapes to Training Programs
(Section 5)
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Learning to Generate Programs
(Section 6)

Start— BBlock; CBlock; ABlock; SBlock;

BBlock — bbox = Cuboid(, h, w, True)

CBlock— ¢, = Cuboid(l, w, h,a) ; CBlock | None
ABlock — Attach ; ABlock | Squeeze ; ABlock | None
SBlock — Reflect ; SBlock | Tr: Block | None
Attach— attach(cp,, cn, x|
Squeeze — squeeze(cp,
Reflect— reflect (cp,,
Translate — translate(cp,, axis, m, d)
f— right | left | top | bot | front | back
axis—> X | Y| Z

Ih,weR?

x,y.zuovde[0,1]*

a € [True,False] ‘
n,mez"

Encoder Decode

Input Hierarchical Part Graphs
def Chair():
bbox = Cuboid(.7, 1.7, .5, True)
prog1 = Program1(.7, .6, .5, True)
prog2 = Program2(7, .9, .05, True) def Chair(): def Chair(): def Chair(): def Chair():
’ cube2 = Cuboid(.7, .15, .5, True)
attach(prog1, bbox, .5, 0, .5, .5, 0, .5)
/ attach(cube2, prog1, .5, 0, .5, .5, 1, .5)
——
e . plis B Tk squeeze(Prog2, bbox, cube2, top, .5, .1)
Y def Program1(l, w, h, aligned):
bbox = Cuboid(.7, .6, .5, True)
’ prog3 = Program3(.05, .6, .5, True)
| squeeze(prog3, bbox, bbox, top, 0, .5)
regular surface - frame reflect(prog3, X)
/ ‘ \ >
leg " leg-——runner -~ bar - bar
‘ T
S 2 h

I 4

Figure 3.2: Our pipeline for generating 3D shape structure programs. We first define a DSL language for 3D
shapes, SHAPEASSEMBLY . Then, given a dataset of hierarchical part graphs, we extract SHAPEASSEM-
BLY programs from them. Finally, we use these programs as training data for a deep generative model. Our
method learns to generate novel program instances that can be executed to produce complex and interesting
3D shape structures.

Defining a DSL for connected, hierarchical shapes To represent shapes as programs, we introduce a
domain-specific language (DSL). Since our input shapes are characterized by graphs of parts, where graph
edges denote physical part connections, we introduce a DSL based around declaring parts and then attaching
them to one another. We call this language SHAPEASSEMBLY (as in, an “assembly language” for shapes).

Section 3.2 describes the language.

Creating a dataset of shape-program pairs Given the language described above, we present a method
for finding programs that represent the shapes in our dataset. In our procedure, we first extract the program
content based on a combination of data cleaning and geometric analysis. Then, we create canonical programs

through a series of ordering and filter steps. Section 3.3 describes this procedure in more detail.

Learning to generate programs Finally, we treat the programs extracted from each shape as training data
for a generative model. Section 3.4 describes our deep generative model’s architecture, the procedure we use
to train it, and how we sample from it to synthesize new programs, which when executed produce novel shape

structures.
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3.2 An Assembly Language for Shapes

Our goal in this section is to define a domain-specific language for shapes which are specified as connected
assemblies of parts. As we focus on the problem of shape structure synthesis, cuboids, serving as part proxy
geometry, are the only data type in our language. In Section 3.5, we show how to use other existing techniques
to convert these proxies into surface geometry.

The primary operation in the language is attaching these cuboids together. Attachment turns out to be
a very powerful and flexible operation. In fact, our language does not include any operations for explicitly
positioning or orienting cuboids: all of this is accomplished via attachment operations. Additionally, the
language includes higher-level macros that capture more complex spatial relationships, such as symmetry. At
execution time, each macro is expanded into a series of cuboid declarations and attachment operations.

We call this DSL SHAPEASSEMBLY, because it is an “assembly language for shapes™: a low-level lan-
guage for creating shapes, in which shapes are created by assembling parts. Table 3.1 shows the grammar
for SHAPEASSEMBLY, and Figure 3.3 shows an annotated program along with its output shape.

A SHAPEASSEMBLY program consists of four main blocks:

* BBlock: Declares a non-visible bounding volume of the overall shape. This bounding volume is treated

Root Program

1. def Chair():

2 bbox = Cuboid(1, 1.5, .8, True)

3 base = Base(.8, .5, .8, True)

4. cubel = Cuboid(.8, .1, .8, True)

5. back = Back(.9, .8, .07, True)

6 attach(base, bbox, .5, 0, .5, .5, 0, .5)
7 attach(cubel, base, .5, 0, .5, .5, 1, .5)
8 squeeze(back, bbox, cubel, top, .5, .05)

9. def Base(l, w, h, aligned):

10. bbox = Cuboid(l, w, h, aligned)

11.  cube@d = Cuboid(.2, .5, .2, True)

I .1 = Cuboid(.2, 5, 2, True)]
13. squeeze(cube@, bbox, bbox, top, .1, .1)
14. squeeze(cubel, bbox, bbox, top, .1, .8)
15.  reflect(cube@, X)

reflect(cubel, X)

17. def Back(l, w, h, aligned):

18. bbox = Cuboid(l, w, h, aligned)

19. cube@® = Cuboid(.9, .4, .07, True)

20. cubel = Cuboid(.1, .4, .05, True)

21. attach(cube@, bbox, .5, 1, .5, .5, 1, .5)
22. squeeze(cubel, bbox, cubed, bot, .3, .5)
23. translate(cubel, X, 2, .5)

Figure 3.3: An example SHAPEASSEMBLY program and the shape that it generates. Parts are colored ac-
cording to the line of the program which instantiates them, and attachment points are numbered accordingly.
In the top shape, we show the executed Chair program without hierarchy. In the bottom shape, we show the
Chair program executed hierarchically with its sub-programs (Base and Back). For instance, the light grey
back part is expanded into the purple back surface and gold slats.
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—
bbox = Cuboid(.7, 1.8, .6, True)
cube0 = Cuboid(.6, .6, .6, True) (1) attach(cube0, bbox, .5, 0, .5, .5, 0, .5)
cubel = Cuboid(.6, .2, .6, True) (2) attach(cubel, cube0, .5, 0, .5, .5, 1, .5)
cube2 = Cuboid(.6, .9, .2, True) (3) squeeze(cube2, bbox, cubel, top, .5, .18)
<4

(6) Eeflect{clibessix] (4) attach(cube3, cube2, .5, .5, 0, .1, .1, 1)

(5) attach(cube3, cubel, .5,0, .5, .1, 1, .7)

Figure 3.4: An illustration of how the SHAPEASSEMBLY interpreter incrementally constructs shapes by
imperatively executing program commands. Cuboids are instantiated at the origin and are moved through
attachment. Notice how the reflect command in line 6 acts as a macro function, creating a new cuboid
and two new attachments.

as a physical entity to which other parts can be connected.

¢ CBlock: Declares all the cuboid part proxies that will be used by the remainder of the program. The
Cuboid command takes in [, w, h parameters that control the starting dimensions of the part, and an

aligned flag a that specifies if the part has the same orientation as its bounding volume.

* ABlock: Connects cuboids by iteratively attaching them to one another. The at tach command takes
in two cuboids, ¢,1, ¢,2, and attaches the point (21, y1, 21) in the local coordinate frame of ¢,,; with
the point (z2,ys, 22) in the local coordinate frame of ¢,2. The squeeze macro expands into two
attach statements, such that c,; is placed in-between c,5 and c,3 along the specified face f at the

face-coordinate position (u, v).

* SBlock: Generates symmetry groups by instantiating additional Cuboid and attach commands. The
reflect macro reflects cuboid c,, over axis axis of the bounding volume. The t ranslate macro
creates a translational symmetry group starting at c¢,, with m additional members along axis a of the

bounding volume that ends distance d away.
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Figure 3.5: The steps of our program extraction pipeline. (a) Fragment of an input hierarchical part graph
showing chair back (parent node), chair back frame (blue child), and chair back surface (orange child). (b)
Locally flattening the hierarchy so that physically interacting leaf parts become siblings. (c¢) Shortening leaf
parts that intersect other leaf parts. (d) Locating attachment points between parts. (e) Forming leaf parts into
symmetry groups.

Semantics SHAPEASSEMBLY has imperative semantics: every line of the program immediately takes effect
and alters the state of the shape being constructed. Figure 3.4 shows an example of a simple shape being
imperatively constructed. Declaring a cuboid instantiates a new piece of cuboid geometry with the requested
dimensions, centered at the origin. Invoking the at tach command alters the cuboid, potentially translating,
rotating, or resizing it in order to satisfy the attachment (see Appendix A.1 for details). Higher-level macros
expand into two or more Cuboid or attach lines, which are then immediately executed (see Appendix
A.2 for details).

One distinct advantage of this imperative semantics, as opposed to an alternative formulation in which the

Table 3.1: The grammar for SHAPEASSEMBLY, our low-level domain-specific “assembly language” for
shape structure. A program consists of Cuboid statements which instantiate new geometry and attach
statements which connect these geometries together at specified points on their surfaces. Macro func-
tions (reflect, translate, squeeze) form complex spatial relationships by expanding into multiple
Cuboid and attach statements.

Start — BBlock; CBlock; ABlock; SBlock;

BBlock — bbox = Cuboid(l, h,w, True)

CBlock — ¢, = Cuboid(l,w, h,a) ; CBlock — None
ABlock — Attach ; ABlock — Squeeze ; ABlock — None
SBlock — Reflect ; SBlock — Translate ; SBlock — None
Attach — attach(cn,, Cny, T1, Y1, 21, T2, Y2, 22)

Squeeze — squeeze(Cn;, Cnyy Cng, fH Uy V)

Reflect — reflect(cn, axis)

Translate — translate(cy, axis, m, d)

f — right — left — top — bot — front — back

axis = X — Y — Z

I,h,weRT

z,y,z,u,0,d € [0,1]

a € [True,False]

n,m € 7t
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program specifies constraints which are jointly optimized, is that the entire process of executing a program
is end-to-end differentiable. That is, it is possible to compute the gradient of the program’s output geometry
with respect to the continuous parameters in the text of the program (e.g., cuboid dimensions, attachment

point locations). We make use of this feature in results shown later in this chapter.

Handling hierarchy Thus far, we have described a language that can generate flat assemblies of parts,
but not hierarchical ones. The extension to hierarchical shapes is straightforward: we represent hierarchical
shapes by treating select non-leaf cuboids as the bounding box of another program (e.g., the contents of its

“BBlock”). Figure 3.3 shows an example of a program in which cuboids expand into sub-programs.

3.3 Turning Shapes into Training Programs

SHAPEASSEMBLY allows us to write programs that generate new shapes. However, we are interested in using
the language to represent existing shapes in a dataset, so that we can learn to generate novel instances from
the same underlying shape distribution. In this section, we describe how we accomplish this goal. Given an
input shape, represented as a hierarchical part graph, the process divides into three steps: extracting program

information, creating candidate programs, and checking program validity.

3.3.1 Extracting Program Information

To convert hierarchical part graphs into SHAPEASSEMBLY programs, we perform a series of data regular-
izations, record cuboid parameters, locate cuboid-to-cuboid attachments, and identify symmetry groups (Fig-
ure 3.5). We provide a high-level overview of the steps involved here, and a detailed description in Appendix

A3.

Regularization Before we parse program attributes, we attempt to create more regularized part graphs
through a series of data-cleaning steps. For instance, in the flattening phase, we restructure the part graph
hierarchy so that leaf parts with spatial relationships are more often siblings. In the shortening phase, we
decrease the dimensions of leaf cuboids that interpenetrate other leaf cuboids (to create more surface-to-

surface part connections).

Cuboids Ground truth cuboid dimensions are provided in the input part graphs. A cuboid is marked as

aligned if its orientation matches its parent cuboid (with an allowable error of 5-degrees).
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Attachment To locate cuboid-to-cuboid attachments, we sample a uniform, dense point cloud on each
cuboid in the scene. For each pair of cuboids, we compute the intersection of the point clouds. If the
intersection set is non-zero, we record an attachment point within the volume formed by the intersection,
with preference for locations on the centers of faces. For every cuboid, we then check if any of its parsed

attachments could be represented as a squeeze relationship, and replace any that can.

Symmetry To find symmetry groups, we identify collections of cuboids that share a reflectional or trans-
lational relationship about either the X, Y, or Z axis of their parent cuboid. For each collection, if all of
the member cuboids have the same connectivity relationships, we form them into a symmetry group. Each
symmetry group is represented by a transform applied to a single cuboid, and all other members are removed

from the graph.

3.3.2 Creating Candidate Programs

Given the extracted program information, we know the content of the program, but not how the lines should
be ordered. To make the task of learning a generative model of programs easier, we aim to extract only a
single, “canonical” program for each shape. As the ordering of cuboid and symmetry lines doesn’t change
the executed geometry, this consistency is enforced by ordering these lines according to the semantic label of
each part involved in the line. Ties in this ordering between same part-type cuboids are broken by sorting on
centroid position.

Deciding on a single ordering of the attach and squeeze statements is more challenging. Since SHA-
PEASSEMBLY has an imperative execution semantics, the order in which these commands are executed is
significant: different orderings can potentially create different output geometries. To reduce the space of
possible orderings, we only consider programs which follow a grounded attachment order, which we define
as follows:

* Initially, only the shape bounding box is grounded.
* The only valid attachments to perform are those which connect a cuboid to a grounded cuboid.

» After executing an attachment, the newly-attached cuboid becomes grounded.

If there are multiple valid grounding orders, we first discard any orderings that produce worse geometric
fits to the target shape. If ambiguities in the attachment ordering still remain, we break ties using (1) the
semantic ordering of the cuboids involved in the attachment (2) preferring attachments from non-aligned to

aligned cuboids and finally (3) preferring attachments from cuboid face-centers.
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3.3.3 Validating Programs

Once we extract a canonical SHAPEASSEMBLY program, we perform a series of checks to verify the results

of our procedure. Programs must pass the following validation steps in order to be added to our training data:

Reconstruction Executed programs should recreate the geometry of their respective ground truth part
graph. To verify this, we sample point clouds from the surfaces of the ground truth shape and the geom-
etry generated by executing the canonical program. These point clouds are compared using the F-score [108]

metric; a program is filtered out if it produces an F-score lower than 75.

Semantics Programs must respect the semantics of SHAPEASSEMBLY. For instance, within each program,
the connectivity graph of all parts should have only one component. Likewise, executed programs should not

create geometry that extends beyond the bounding volumes they define.

Complexity Programs that are overly complex (more than 12 leaf cuboid instantiations) are discarded.
Note that, when executed, programs can still produce more than 12 leaf cuboids through expanding symmetry

macros.

3.4 Learning to Generate Programs

Given the programs extracted from our dataset, we now have the data we need to train a neural network to
write novel hierarchical SHAPEASSEMBLY programs for us. In this section, we describe the generative model

architecture we use, our learning procedure, and how we sample new shapes from the learned model.

3.4.1 Model Architecture

Figure 3.6 shows our generative model architecture. It is a hierarchical sequence VAE. The encoder branch
embeds a hierarchical SHAPEASSEMBLY program into a latent space. The decoder branch converts a
point in this latent space into a hierarchical SHAPEASSEMBLY program. The bottleneck of our network is
parameterized by separate 1 and o vectors in the standard variational autoencoder (VAE) setup.

The dark grey callout in Figure 3.6 illustrates the operation of our decoder within a single node of the
program hierarchy. The decoder receives as input the latent code zp,, of its parent node (or the root latent

code from the encoder, if it is the root node of the hierarchy). This latent code is used to initialize the hidden



23

Encoder Decoder BBoxdims - GRU Line Decoder

fema

rrrrr |
‘ -
‘

s (o o))
Line Decoder Line 2 Jia
- sqveeze (T, o, )]

Figure 3.6: Architecture of our hierarchical sequence VAE for SHAPEASSEMBLY programs. Given a
SHAPEASSEMBLY program, the encoder ascends the hierarchy from the leaves to the root, encoding each
sub-program into a latent z vector. Given a latent code, the decoder recursively decodes a hierarchical SHA-
PEASSEMBLY program. Within each hierarchy node, a recurrent neural network decodes each line of the
program.

state of a Gated Recurrent Unit (GRU), a recurrent language model which is responsible for constructing a
representation of the program state. The output of the GRU cell is sent to the line decoder sub-routine, which
predicts a line in the SHAPEASSEMBLY grammar, that is then passed as input back to the GRU cell at the
next time step.

The purple callout in Figure 3.6 gives a detailed depiction of the line decoder sub-routine. The line
decoder receives the hidden state of the GRU cell, along with conditioning information about the size of the
current bounding volume, and uses a collection of multilayer perceptrons (MLPs) to predict a 63-dimensional
vector representing a single line in SHAPEASSEMBLY . The sub-networks it uses are:

e fema: (7): Predicts the type of command to execute. This is a one-hot vector whose seven entries

correspond to <start> (the special program start token), <stop> (the special program stop token),

Cuboid, attach, squeeze, translate and reflect.

* feube: (4): Predicts the length, width, height, and aligned flag for cuboid lines, conditioned on the

bounding volume dimensions.

¢ fiax: (11 x 3): Predicts the indices of the cuboids involved in the line represented as 3 one-hot vectors,
conditioned on the predicted command. We limit each node in the hierarchy to contain at most 10

children parts, so there are 11 choices (10 cuboids and the bounding volume).

o fau: (3 x 2): Predicts the (x, y, z) coordinates involved in an at tach line, conditioned on the cuboids

involved in the attach.

* fsqzt (8): Predicts the the face involved in a squeeze line as a one-hot vector in the first 6 indices. The

last 2 indices predict the (u, v) coordinates. Both predictions are conditioned on the cuboids involved
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in the squeeze operation.

* fsym: (5): Predicts the axis involved in a symmetry line as a one-hot vector in the first 3 indices. For
translate lines, the 4th index is the number of cuboids involved in the symmetry group, and the
5th index is the scale of the symmetry. All predictions are conditioned on the cuboid involved in the

symmetry and the bounding volume dimensions.

Hierarchical decoding To generate a hierarchical program, our decoder also includes a submodule f g
which is executed after every predicted Cuboid command to determine whether that cuboid should be re-
cursively expanded. This is another MLP which takes as input both the current hidden state of the GRU as
well as 2y, the overall latent code for this hierarchy node. fcniia produces two outputs: a Boolean flag for
whether the current cuboid should be expanded into a child program, and a new latent code zcpq Which is

used to initialize the decoder for this child program.

3.4.2 Learning Procedure

We implement our models in PyTorch[158]. All training is done with the Adam optimizer [106], with a
learning rate of 0.0001 without batching. All multilayer perceptrons have 3 layers and use leaky ReL.U [129]
with a =0.2.

We train our model in a seq2seq fashion, where the ground truth input sequence is teacher forced to the
model, and our model is tasked with predicting each subsequent line. During training, we use a program
reconstruction loss that only considers entries of the predicted 63 dimensional vector that are relevant to the
target line. For instance, when predicting a Cuboid line, no part of the reconstruction loss comes from the
indices in the tensor associated with symmetry. The program reconstruction loss is comprised of a cross-
entropy component for each one-hot prediction (with weight 1) and an 11 loss for each continuous component

(with weight 50). Additionally we use a KL loss in the standard VAE setup with weight 0.1 [107].

Enforcing semantically-valid output As our model generates shape programs, rather than raw shape ge-
ometry, we can use the semantics of the SHAPEASSEMBLY language to detect outputs that would be invalid,
and prevent them from happening. For instance, attaches must be made in a grounded order. If a predicted
attach line violates such a constraint, we use a backtracking procedure to find new ‘valid’ parameter values
whenever possible. During unconditional generation, if we cannot fix the line through backtracking, we reject

the sample. During interpolation, if we cannot fix the line through backtracking we don’t add the predicted
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Figure 3.7: In the middle row, we show samples from our generative model of SHAPEASSEMBLY programs.
In the top row, we show the nearest neighbor shape in the training set by Chamfer distance. In the bottom
row, we show the nearest neighbor shape in the training set by program edit distance. Our method synthe-
sizes interesting and high-quality structures that go beyond direct structural or geometric memorization. We
quantitatively examine SHAPEASSEMBLY’s generalization in Table 3.4. Refer to the supplemental material
for the corresponding program text.

line to the program. Appendix A.4 describes the complete semantic validity procedure we enforce. We also
note that this approach to forbidding the generation of invalid outputs is similar to that of the Grammar Vari-
ational Autoencoder [114]. However, that model only uses grammar syntax to determine whether an output

is valid, whereas as we use program semantics.

3.5 Results and Evaluation

In this section, we demonstrate our learned generative model’s ability to synthesize high-quality hierarchi-
cal SHAPEASSEMBLY programs, and we compare it to alternative generative models of 3D shape structure.
All of the experiments described were run on a GeForce RTX 2080 Ti GPU with an Intel i9-9900K CPU, and
consumed 3GB of GPU memory.

We use objects from the PartNet dataset [141] as our training data. It contains 3D shapes in multiple
categories, each with a hierarchical part segmentation and labeling. For the experiments in this chapter, we
use the Chairs, Tables, and Storage categories. After running the program extraction procedure described in
Section 3.3, we obtain 3835 ground truth programs from Chairs, 6536 ground truth programs from Tables,

and 1551 ground truth programs from Storage.
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3.5.1 Novel Shape Synthesis

In this section, we present both qualitative and quantitative evaluations of our method’s ability to produce
novel shape structures. Figure 3.7 includes some unconditionally generated samples from our learned gener-
ative model for each of the three shape categories. Above each sample we show its nearest neighbor in the
training data based on Chamfer distance. Additionally, below each sample we visualize its nearest neighbor
in the training data based on program distance, the string edit distance of a tokenized version of our hierarchi-
cal programs. As shown, our method is able to generate complex and interesting structural variation without
copying either the geometry or program structure of its training data.

As our model directly generates programs, its outputs can be easily edited to produce variants. In Fig-
ure 3.8 we demonstrate how by changing just the continuous parameters of programs generated by our model,
we are able to create a wide variety of output geometry, all the while maintaining part-to-part attachment re-
lationships.

We compare the generated results of our method against two baselines:

 StructureNet is a variational autoencoder that generates hierarchical part graphs with cuboids at each

node [140].

* 3D-PRNN is a recurrent neural network that generates a sequence of cuboids [247]. It enforces global
bilateral symmetry by only generating cuboids with some part of their geometry on the negative side

of the z = 0 plane, and then reflecting generated cuboids which fall entirely on that side of the plane.

We compare against the StructureNet models released by the authors. These were trained on the subset of
PartNet that they were able to represent within the constraints of their problem formulation. This is a heavily
overlapping set, but not identical, with the shapes we were able to find valid SHAPEASSEMBLY programs
for. In direct comparisons with StructureNet for reconstruction tasks, we only consider shapes that appear
in the validation splits of both methods. We compare against a version of 3D-PRNN that was re-trained
on the data we use for our generative model. Figure 3.9 shows a qualitative comparison of unconditionally
generated samples from each method. Our method is capable of generating diverse, structurally complex, 3D
shape structures across multiple categories. Attachment as a primary operation provides a strong inductive
bias for generating physically plausible shapes that maintain realistic part-to-part relationships. In contrast,
both comparison methods that directly predict part placements in 3D space are prone to producing floating

cuboids or jumbled collections of spatially colocated parts.
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Figure 3.8: Programs, by way of representational form, allow for easy semantic editing of generated output.
Each column shows a sample from our model in the top row. In the bottom row we create a variant with the

same structure, but different geometry, by editing only the continuous parameters of the program. Program
text can be found in the supplemental material.

Analysis of Shape Quality

We also quantitatively compare the quality of the shape structures generated by different methods. Our
desiderata for generated shape structures is that they should be physically plausible and come from the same
distribution that the model was trained on. In order to asses the quality of generated output, we use the

following metrics:

* Rootedness 1} (% rooted): The percentage of shapes for which a connected path exists between the

ground and all leaf parts.

« Stability {} (% stable): The percentage of shapes which remain upright under gravity and small forces

in a physical simulation.

* Realism 1} (% fool): The percentage of test set shapes classified as “generated” by a PointNet classifier

trained to distinguish between generated shapes and shapes from the training dataset.

* Frechet Distance |} (FD): Measurement of distributional similarity between generated shapes and the
training dataset using the feature space of a pre-trained PointNet model [73]

Further details about these metrics are provided in Appendix A.5.

We show results for these metrics on 1000 unconditional generated shapes in Table 3.2. Our method
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largely outperforms 3D-PRNN and StructureNet across these metrics for three categories of shapes. While
StructureNet achieves good rootedness scores, especially for the Storage category, our method performs better
in the other three metrics along all categories. The samples from 3D-PRNN, achieve similar FD and % fool
scores with StructureNet, but perform markedly worse on the rootedness and stability metrics.

Additionally in this experiment we compare our model with a series of ablated versions:

¢ Flat: Training on programs with no hierarchies, only leaf parts.

¢ No Order: Training on programs without canonical ordering as described in Section 3.3.

* No Align: Training on programs without an aligned flag for cuboids.

* No Macros: Training on programs without squeeze, translate, or reflect commands.

* No Reject: At generation time, discard unfixable, invalid program line predictions instead of rejecting
the entire sample.

Training without hierarchy (Flat) slightly improves rootedness, but drastically lowers the quality of output as
seen in the % fool and FD columns. Training on programs without a canonical ordering (No Order) performs
worse on every metric. Removing the alignment flag (No Align) actually improves performance on the Chair
category for % rooted and % fool, but drastically worsens the physical validity of generations for Tables
and Storage, categories where parts are much more often aligned with their parent cuboid. Training without
macros (No Macros) once again decreases the performance of all metrics, but not by a substantial margin.
Finally, we see that while the rejection sampling step does improve the quality of our generated samples,

without it we still outperform 3D-PRNN and StructureNet by a wide margin.

Analysis of Editability

In this section, we quantitatively analyze our previous claim that directly predicting programs improves ed-
itability. We claim that a program is more editable if it is both compact and compromised of higher level
functions. That is, a shorter program that uses higher-level constructs will be easier to understand and make
changes to.

As a strong baseline, we evaluate the editability of our programs against the generated outputs of 3D-
PRNN and StructureNet. As 3D-PRNN and StructureNet do not directly produce SHAPEASSEMBLY pro-
grams, we use our extraction procedure described in Section 3.3 in order to convert their generations into
programs. As StructureNet predicts part graph hierarchies, the representational form our extraction proce-

dure takes as input, we use our procedure without any of the data cleaning steps. As 3D-PRNN has no notion
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Table 3.2: Comparing the quality of generated samples. Our method outperforms other generative methods
for 3D shape structure in terms of realism and physical validity. Through a series of ablation baselines, we
validate various design decisions of our method.

Category Method % rooted I % stable ) % fool {} FD |
3D-PRNN 73.1 50.9 12.60  39.30
StructureNet 89.7 74.9 4.04 64.79
Ours (Flat) 95.0 60.0 11.58 7745
Ours (No Order) 824 58.4 12.36  64.17

Chair Ours (No Align) 94.6 84.6 28.68 29.32
Ours (No Macros) 92.0 77.9 19.56  36.78
Ours (No Reject) 92.9 79.7 23.36  20.63
Ours 94.5 84.7 25.06 2234
Ground Truth 100 88.0 — —
3D-PRNN 71.2 29.4 2.12  140.07
StructureNet 94.4 76.8 3.94 173.35
Ours (Flat) 87.0 66.0 29.84 148.63
Ours (No Order) 84.5 56.0 27.38 114.10

Table Ours (No Align) 92.2 61.5 23.64  46.64
Ours (No Macros) 95.9 85.0 33.16 53.21
Ours (No Reject) 94.1 76.4 2920 52.78
Ours 96.2 85.9 33.21  49.07
Ground Truth 100 93.1 — —
3D-PRNN 44.8 20.8 4.62  94.08
StructureNet 96.2 75.0 5.04 92.85
Ours (Flat) 95.9 74.0 744  81.17
Ours (No Order) 87.9 634 8.70 107.42

Storage  Ours (No Align) 89.7 49.3 11.04 30.15
Ours (No Macros) 87.5 69.9 5.92 72.80
Ours (No Reject) 94.3 80.9 11.66 31.69
Ours 95.3 83.7 13.50 31.72
Ground Truth 100 87 — —

of hierarchy, we create single node part graphs out of their output samples, which are then run through our
program extraction logic.

Table 3.3 shows results from an experiment where we compare the SHAPEASSEMBLY programs of each
method’s generations (directly predicted by our method, parsed programs from comparisons). The metrics
we use are the number of lines in each program (as a coarse measure of compactness) and the percentage of
lines which are macros (split by macro type).

Compared with programs parsed from StructureNet, the programs generated by our model are much more
compact and have higher rates of macro usage across all categories of shapes. While our method also has
higher macro rate usage compared with 3D-PRNN, 3D-PRNN programs are more compact in the Chair and
Table categories. Based on 3D-PRNN’s poor performance within our shape quality experiments (Table 3.2),

and its significant deviation from the number of lines found in the ground truth programs (the cleanest set of
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Table 3.3: Markers of program editability for SHAPEASSEMBLY programs predicted by our generative
model compared with SHAPEASSEMBLY programs parsed from outputs of other generative methods. Train-
ing our model in the space of programs allows us to represent geometry more compactly. We find higher rates
of macro functions per program line in our method’s generations compared with extracting programs from
other generative models’ predictions.

Macros Per Line
Category Method Lines || Refl | Trans {} Squeeze {} Total 1

3D-PRNN 15.7 0.1100 0.0020 0.0240 0.1430
StructureNet  27.1  0.0600 0.0004  0.0700  0.1330

Chair s 204  0.0880 0.0054 0.0920 0.1860
Ground Truth  24.4  0.0800 0.0090 0.1130  0.2070
3D-PRNN 13.1 0.1300 0.0010 0.0680 0.1990

. StructureNet  24.8  0.0270 0.0006 0.0620  0.0900

4P Ours 19.0 0.0990 0.0002 0.1440  0.2440
Ground Truth  20.0  0.0950 0.0050  0.1450  0.2460
3D-PRNN 226 0.0170 0.0060 0.0530 0.0770
StructureNet 307 0.0390 0.0040  0.0770  0.1200

Storage

Ours 19.8 0.0820 0.0080 0.1440 0.2340
Ground Truth  24.7 0.0650 0.0147  0.1510  0.2320

SHAPEASSEMBLY programs we have access to), there is reason to believe that the compactness of its parsed

programs more likely reflects shape simplicity rather than useful editability.

Analysis of Variability

Beyond quality and editability, we also consider the variability of outputs of each method. Specifically, for
generated shapes, we care about their novelty with respect to the training data, their complexity, and their
variety. We present results of an experiment using Chamfer distance to quantify performance across these
areas in Table 3.4.

The Generalization metric measures the average distance of each generated sample to its nearest neighbor
in the training set. As all methods have higher generalization scores than the validation set, we can conclude
that none of the methods appear to be overfitting. For our method specifically, this re-enforces the qualitative
nearest neighbor results presented in Figure 3.7.

The Coverage metric measures the average distance of each validation shape to its nearest neighbor in the
set of generated shapes. Across all categories our method achieves the best results, and by a wide-margin for
tables, which indicates that our generations have enough complexity to match the distribution of the validation
shapes.

The Variety metric measures the average distance of each generated shape to its nearest neighbor in the
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Figure 3.9: Qualitative comparison between generated samples from our method, StructureNet, and 3D-
PRNN. Across different categories, our method creates novel SHAPEASSEMBLY programs that, when exe-
cuted, produce shape structures that maintain realistic and physically valid part-to-part relationships. Compar-
ison methods that directly predict 3D shape geometry exhibit failure cases where parts become disconnected
or intersect in an implausible manner.
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set of generated shapes besides itself. Once again, across all categories our method achieves top, or tied for
top performance.

Additionally, we look at average number of leaf parts as a coarse proxy for the complexity of a shape’s
structure, which is shown in Table 3.5. While our method has a similar number of leaf parts to the comparison
methods for the Chair and Table categories, we do have fewer leaf parts on average for Storage. Qualitatively,
these additional parts in the comparison methods often manifest as collections of spatially colocated cuboids,
and not necessarily more complex shape structures.

In terms of the variability of programs generated by our method, we note that 65% of Chair programs,
85% of Table programs, and 53% of Storage programs contained SHAPEASSEMBLY program structures not
present in the training data. Thus our method not only exhibits novelty in the geometric domain, but also in

the structural domain.

Program Clustering

Our approach is predicated on the assumption that a single program can represent a parametric family of
multiple shapes, allowing for this shape space to be explored via manipulation of interpretable program
parameters. To verify whether this is true, we cluster shapes that are represented by structurally-equivalent
programs (i.e. programs that are the same up to continuous parameter variations). Figure 3.10 shows program
clustering results for the ground truth programs we parse from PartNet. These results demonstrate how
the structure of a single SHAPEASSEMBLY program is able to represent related shapes through different
parameterizations. The marked improvement in clustering when splitting by intermediate part programs
compared with clustering on entire shape programs, provides additional support for our hierarchical approach;
shape programs are more likely to share structure within a node of the hierarchy than they are to match entire

hierarchies exactly.

Synthesizing Surface Geometry

While collections of part proxies are a useful modeling representation for 3D shape structures, they do not
directly attempt to capture the wide range of intra-part variability present in man-made objects. We demon-
strate how SHAPEASSEMBLY programs can additionally be used to model parts at finer levels of detail by
turning SHAPEASSEMBLY programs into dense point clouds. As a proof of concept, we augment our gen-
erative model with a point cloud encoder that consumes dense point cloud samples of ground truth leaf parts,

and a point cloud decoder that generates dense point clouds for every leaf part within its predicted bounding
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Table 3.4: We compare the geometric variability of generated shapes from different methods. In the first
column, we measure generalization as the average nearest neighbor distance (NND) from generated samples
to shapes in the training set. In the second column we measure coverage as the average NND from shapes
in the validation set to generated samples. In the last column, we measure variety as the average NND
from shapes in the generated samples to other generated shapes in the same set. Across three categories of
shapes, our method performs the best on the coverage and variety metrics, while outperforming validation on
generalization (demonstrating we are not overfitting).

Generalization Coverage Variety
NND to Train {} NND from Val {} NND to Self 1}
Category Method CD CD CD
3D-PRNN 0.111 0.123 0.104
Chair StructureNet 0.104 0.119 0.087
Ours 0.108 0.118 0.104
Validation 0.105 — 0.114
3D-PRNN 0.095 0.130 0.086
Tuble StructureNet 0.129 0.141 0.0925
Ours 0.101 0.108 0.102
Validation 0.09 — 0.099
3D-PRNN 0.134 0.132 0.119
Storage StructureNet 0.129 0.135 0.107
Ours 0.125 0.129 0.119
Validation 0.11 — 0.125

Table 3.5: We compare the average number of leaf parts in generated shapes, as a coarse proxy for complexity
of shape structure. Our method generates similar numbers of leaf parts compared with other methods for
Chairs and Tables, but fewer leaf parts for Storage. Qualitatively, the additional leaf parts measured in
comparison methods often manifests as spurious overlapping cuboids, rather than more complex structural
variety.

Category Method Avg # Leaf Parts

3D-PRNN 8.6

. StructureNet 8.7
Chair Ours 7.9
Ground Truth 9.7
3D-PRNN 7.07
StructureNet 8.16

Table Ours 7.84
Ground Truth 8.4
3D-PRNN 10.6

Storace StructureNet 12.3
g Ours 8.4
Ground Truth 10.8

volume. Figure 3.11 shows some qualitative results of our method, trained on point clouds sampled from
the dense geometry of Chairs found in PartNet. These generated surfaces provide additional detail over the
geometry specified by their cuboid part proxies, as evidenced by both the rounding in the legs and back slats,

and also in the curvature of the chair back surfaces.
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Table 3.6: We measure smoothness along random high-frequency interpolation sequences in each method’s
latent space. The Geo column measures smoothness with Chamfer distance, while the Prog column measures
smoothness with program edit distance. Note that 3D-PRNN is missing because it is not a latent variable
model and thus does not support interpolation.

Avg. Step Size |}
Category Method Geo Prog

StructureNet 0.0384  3.90

Chair

Ours 0.0384 1.33
Tubl StructureNet 0.0474  4.75
4% Ours 0.0389  2.48
Stor StructureNet 0.0512  4.29
T8¢ Ours 0.0482 2.6
Clustering Shapes with Programs Clustering Parts with Programs
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Figure 3.10: Clustering results that demonstrate how the structure of a single SHAPEASSEMBLY program
is capable of capturing a family of related shapes. Using ground truth programs found with our program
extraction procedure, in the left graph we plot the percentage of shapes captured as we consider more program
structures extracted from the data. In the right graph we show the same plot but with parts (nodes) instead of
shapes (full hierarchy).

3.5.2 Latent Space Interpolation

Beyond novel shape generation, we evaluate the ability of our method to interpolate between two points in our
latent space. The presence of smooth, semantic transitions between end-points indicates a well-formed latent
space. In Figure 3.12 we qualitatively compare our method with StructureNet on the task of interpolating
between shapes in the validation sets of both models. Our interpolations demonstrate both geometrically
smooth and semantically consistent transitions. For instance, in the top interpolation sequence, the surface of
the chair back in the source shape gradually shrinks vertically until in the target shape it is just a horizontal

bar. At the same time, the number of vertical slats in the chair back gradually increases from 2, to 4, to 5.
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Part Cuboids

Surface Points

Figure 3.11: Converting generated SHAPEASSEMBLYprograms into dense point clouds. We use a point cloud
decoder to predict the surface geometry of each leaf part proxy in our 3D shape structure. In this process,
geometric details begin to take form, at the cost of some artifacts. We discuss a method for improving this
procedure in section 3.6.

In Table 3.6, we attempt to quantify the smoothness along random interpolation sequences within the
latent space of each generative model. In this experiment, 100 interpolation sequences were computed from
sources to targets that were randomly sampled in each model’s latent space, with 100 interpolation steps per
sequence. Each method’s geometric smoothness is computed by taking the average Chamfer distance (nor-
malized by shape scale) between each interpolation step. The lower geometric smoothness of our method,
compared to StructureNet in the Table and Storage categories, demonstrates the quality of the latent space
learned by our method. Moreover, using our procedure to turn StructureNet outputs into SHAPEASSEM-
BLY programs, we can measure the program smoothness along these interpolation paths. Each method’s
program smoothness is computed by taking the average tokenized program edit distance between each inter-
polation step. As a measure for structural change throughout the transitions of an interpolation sequence, our
lower program smoothness metric again shows how our method benefits by operating within the space of 3D

shape programs.
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Figure 3.12: A qualitative comparison of latent space interpolation between our method and StructureNet on

shapes from the validation set. Our method’s interpolations within program space produce sequences that
combine smooth continuous variation with discrete structural transitions.
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3.5.3 Synthesis from Unstructured Geometry

Another way to inspect the structure of a generative model’s latent space is through performing “synthesis
from X”, by projecting X into the latent space of the generative model. As an application for 3D reconstruc-
tion, we are able perform such a projection with point clouds, demonstrating how our generative model’s
latent space can synthesize SHAPEASSEMBLY programs from unstructured geometry.

Specifically, we train a PointNet+—+ encoder [163] to map point clouds sampled on dense mesh geometry
to the latent space learned by our generative model. These latent codes are then converted into programs by
our trained decoder.

In Table 3.7, we show an experiment comparing our method against StructureNet on the task of recon-
structing point cloud samplings of dense geometry on the intersection of each method’s validation set for
Chairs in Partnet (463 shapes total). We evaluate reconstruction accuracy with F-score [108], and the phys-
ical validity of reconstructions with the rootedness and stability metrics. When projecting point clouds into
the latent space of each method (top two rows), our method outperforms StructureNet on both reconstruction
accuracy and maintaining physical validity. This demonstrates, once again, the well-structured nature of our
method’s latent space.

Moreover, as the SHAPEASSEMBLY interpreter is differentiable, we can further refine the continuous
parameters of a program by minimizing the Chamfer distance between executed geometry and a target point
cloud with a gradient-based optimizer. We compare this procedure (Ours + Opt Program) against the
following conditions:

* SN + Opt Cuboids: Starting with StructureNet’s reconstruction, then directly optimizing predicted

cuboids to minimize Chamfer distance to the target point cloud.

* SN + Opt Program: Parsing StructureNet’s reconstruction into a SHAPEASSEMBLY program, then

optimizing the program to minimize Chamfer distance to the target point cloud.

¢ Ours + Opt Cuboids: Starting with our reconstruction, directly optimizing predicted cuboids to mini-

mize Chamfer distance to the target point cloud.

We show results for this experiment in the last four rows of Table 3.7. All of the optimization procedures
improve reconstruction accuracy at the cost of physical validity. However, Ours + Opt Program is the only
condition that achieves a desirable trade-off in this exchange, gaining much more reconstruction accuracy
improvement than it loses in physical validity.

We show some qualitative results of this experiment in Figure 3.13. Through latent space projection,
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Table 3.7: Results from our point cloud reconstruction experiment. Our model’s well-formed latent space
allows for more accurate and physically valid reconstructions without further optimization. With additional
optimization, using the reconstructed program from our method and our differentiable interpreter finds the
best trade-off between reconstruction accuracy and maintaining physical validity.

Method F1 1 % rooted f} % stable {}
StructureNet 243 95.1 78.4
Ours 31.1 95.5 84.4
SN + Opt Cuboids ~ 80.0 92.9 72.7
SN + Opt Program  77.4 90.0 71.9
Ours + Opt Cuboids 77.6 93.1 72.9
Ours + Opt Program 75.8 95.3 80.2

our model is able to output the rough 3D shape structure (column 1) of an input unstructured point cloud
(column 0). Through our differentiable interpreter, we are able to find continuous parameters for the predicted
program structure that ultimately lead to better reconstruction fits (column 3). Shape programs place a strong
structural regularization prior over unstructured 3D data, and thus our presented method is less prone to

“losing” semantic parts, such as small legs, in comparison to the other conditions.

3.6 Discussion

In this chapter, we took a first step toward marrying the complementary strengths of neural and procedural 3D
shape generative models by introducing a hybrid neural-procedural approach for synthesizing novel 3D shape
structures. We introduced SHAPEASSEMBLY, a low-level “assembly language” for shape structures, in which
shapes are constructed by declaring cuboidal parts and attaching them to one another. We also introduced a
differentiable interpreter for SHAPEASSEMBLY, allowing the optimization of program parameters to produce
desired output geometry. After describing how to extract consistent programs from existing shape structures
in the PartNet dataset, we then defined a deep generative model for SHAPEASSEMBLY programs, effectively
training a neural network to write novel shape programs for us. We evaluated the quality of the generative
model along several axes, showing that it produces more plausible and physically-valid shapes, and that its
latent space is better-structured than that of other generative models of shape structure. We also found that
directly generating shape programs leads to more compact, editable programs than extracting programs from

shapes generated by methods that directly output 3D geometry.

Limitations As mention in Section 3.3, we do not successfully extract training programs from every shape

in our dataset. For instance, our program extraction procedure assumes that the orientation of all parts can
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Figure 3.13: Qualitative comparison of synthesis from point clouds of our method against StructureNet (SN).
Our method is able to infer good program structures that match well with the unstructured geometry. The
continuous parameters of this program structure can be further refined through an optimization procedure in
order to better fit the target point cloud without creating artifacts.

Figure 3.14: Examples of PartNet shapes that contain parts whose orientations cannot be inferred from part-
to-part attachments alone. While these shapes can be represented with SHAPEASSEMBLY programs that
attach parts to “floating” points within the bounding volume, such programs are not added to our training
data during our program extraction phase. As a result, our generative model never learns to produce shapes
that require this type of attachment pattern.

be specified through solely part-to-part attachments, yet as demonstrated in Figure 3.14, this does not hold
for all shapes. While it is possible to reconstruct these shapes with SHAPEASSEMBLY programs (through
attaching parts to “floating” points in space via the bounding volume) such programs will never be added to

our training data, and thus our generative model won’t learn to produce such constructs. Our design decision
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to discard training programs with more than 12 total Cuboid declarations has a similar effect: it limits our
generative model from synthesizing the most complex of shape structures that exist in our dataset. We impose
such strict criteria in order to make our training programs exhibit more regularity, simplifying the learning
task for our neural network at the expense of its potential expressivity.

This highlights a central tradeoff: higher variability in the training programs may result in lower quality
shapes synthesized by a generative model. This phenomenon is not unique to our setting: it is well-known that
e.g., image generative models perform better on very-regularly-structured domains, such as human faces. The
question, looking forward, is how to capture more data variability while keeping a high-degree of regularity
in the input data representation? We believe that using programs as a data representation is the best avenue
of attack, here. As we have shown in our work, a single program can capture a wide range of parametrically
related shapes. One program, many shapes; strong regularity, but also high variability.

While SHAPEASSEMBLY has a strong inductive bias for generating physically-connected shapes, it is not
guaranteed to do so. Hierarchical part structures which are locally connected everywhere may occasionally
still exhibit disconnected leaf cuboids. This is more likely to happen with very non-axis-aligned structures

that result in loose bounding cuboids at the intermediate levels of the hierarchy.



Chapter 4

Learning to Infer Shape Programs with
Pseudo-Labels and Approximate

Distributions

Having access to a procedure which generates a visual datum reveals its underlying structure, facilitating
high-level manipulation and editing by a person or autonomous agent. In R2, inferring shape programs has
applications in the design of diagrams, icons, and other 2D graphics. In R3, it has applications in reverse engi-
neering of CAD models, procedural modeling for 3D games, and 3D structure understanding for autonomous
agents.

We formally define shape program inference as obtaining a latent program z which generates a given
observed shape x. We model p(z|x) with deep neural networks that train over a distribution of real shapes in
order to amortize the cost of shape program inference on unseen shapes (e.g. a test set). This is a challenging
problem: it is a structured prediction problem whose output is high-dimensional and can feature both discrete
and continuous components (i.e. program control flow vs. program parameters). Nevertheless, learning
p(z]|x) becomes tractable provided that one has access to paired (X, Z) data (i.e. a dataset of shapes and the
programs which generate them) [217].

In this chapter, we study a collection of methods that create (shape, program) data pairs used to train
p(z]|x) models with maximum likelihood estimation (MLE) updates while treating the program executor as a
black-box. As discussed, ground-truth (shape, program) pairs are often unavailable, so these techniques must

41



42

make compromises in how they formulate paired data. In wake-sleep, a generative model p(z) is trained to
convergence on alternating cycles with respect to p(z|x). When training p(z|x), paired data can be created
by sampling from p(z). Each program label z is valid with respect to its associated x shape, but there is often
a distributional mismatch between the generated set of shapes, X, and shapes from the target distribution, S*.
In self-training, one uses p(z|x) to infer latent z’s for unlabeled input x’s; these z’s then become “pseudo-
labels” which are treated as ground truth for another round of supervised training. In this paradigm, there is
no distributional shift between X and S*, but each z is only an approximately correctly label with respect to
its paired x.

We observe that shape program inference has a unique property that makes it especially well-suited for
self-training: the distribution p(x|z) is known a priori—this is a delta distribution defined by the program
executor. When using a model p(z|x) to infer a program z from some shape x* of interest, one can use
this executor to produce a shape x that is consistent with the program z: in the terminology of self-training,
z is guaranteed to be the “correct label” for x. However, similar to wake-sleep, formulating X as shape
executions produced by model inferred programs can cause a distributional shift between X and S*. Since
this variant of self-training involves executing the inferred latent program z, we call this procedure latent
execution self-training (LEST).

As all of the aforementioned fine-tuning regimes use either Pseudo-Labels or Approximate Distributions
to formulate (shape, program) pairs, we group them under a single conceptual framework: PLAD. We evalu-
ate PLAD methods experimentally, using them to fine-tune shape program inference models in multiple shape
domains: 2D and 3D constructive solid geometry (CSG), and assembly-based modeling with ShapeAssem-
bly, a domain-specific language for structures of manufactured 3D objects (Chapter 3). We find that PLAD
training regimes offer substantial advantages over the de-facto approach of policy gradient reinforcement
learning, achieving better shape reconstruction performance while requiring significantly less computation
time. Further, we explore combining training updates from a mixture of PLAD methods, and find that this
approach leads to better performance compared with any individual method.

We provide code for our method at https://github.com/rkjones4/PLAD .

4.1 Approaches for fine-tuning visual program induction models

A common practice of methods that train networks to infer shape program is to start with a model that

has been pretrained on synthetically generated (shape, program) pairs with supervised learning, and then
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Low variance,

Method Models Black-Box p(x|z)? X = S* unbiased
gradients
Policy gradient RL p(z|x) v v X
Differentiable executor p(z|x) X v v
Variational Bayes p(z|x), p(z) X v v
Wake-sleep, EM p(z|x), p(z) v X v
Self-training p(z|x) v v X
LEST p(z|x) v X v

Table 4.1: Comparison of different methods for fine-tuning p(z|x), in terms of the models that must be
trained, if they treat the program executor as black-box, if their distribution of training shapes matches the
distribution real shapes (X = S*), and if their loss gradients are unbiased with low-variance. The last three
rows describe methods that fall under the PLAD framework.

perform fine-tuning towards a distribution of interest. However, as there is typically significant distributional
mismatch between these synthetic shapes and “real” shapes from the distribution of interest, S*, various
techniques must be employed to fine-tune p(z|x) models towards S*. In this section, we discuss prior work
for fine-tuning such program inference models, organized by methodology used to learn p(z|x); see Table

4.1 for an overview.

Policy Gradient Reinforcement Learning The most general method for fine-tuning a pretrained p(z|x) is
reinforcement learning: treating p(z|x) as a policy network and using policy gradient methods [216]. The
geometric similarity of the inferred program’s output to its input is the reward function; the program executor
p(x|z) can be treated as a (non-differentiable) black-box. CSG-Net uses RL for fine-tuning [187, 188],
as does other recent work on inferring CSG programs from input geometry [41]. While CSG-Net has been
improved to allow it to converge without supervised pretraining [243], not starting from the supervised model
results in worse performance. The main problem with policy gradient RL is its instability due to high variance
gradients, leading to slow convergence. Like RL, PLAD methods treat the program executor as a black-box,

but as we show experimentally, they converge faster and achieve better reconstruction performance.

Differentiable Executor If the functional form of the program executor p(x|z) is known and differentiable,
then the gradient of the reward with respect to the parameters of p(z|x) can be computed, making policy
gradient unnecessary. Shape programs are typically not fully differentiable, as they often involve discrete
choices (e.g. which type of primitives to create). UCSGNet uses a differentiable relaxation to circumvent this
issue [101]. Other work trains a differentiable network to approximate the behavior of the program execu-

tor [206], which introduces errors. PLAD regimes do not require the program executor to be differentiable,
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yet they perform better than other approaches (e.g. policy gradient RL) that share this desirable property.

Generative Model Learning Shape program inference has also been explored in the context of learning a
generative model p(x, z) of programs and the shapes they produce. The most popular approach for training
such models is variational Bayes, in particular the variational autoencoder [107]. This method simultaneously
trains a generative model p(x, z) and a recognition model p(z|x) by optimizing a lower bound on the marginal
likelihood p(x). When the z’s are shape programs, the program executor is p(x|z), so learning the generative
model reduces to learning a prior over programs p(z). Training such models with gradient descent requires
that the executor p(x|z) be differentiable. When this is not possible, the wake-sleep algorithm is a viable
alternative [76]. This approach alternates training steps of the generative and recognition models, training one
on samples produced by the other. Recent work has used wake-sleep for visual program induction [74, 42].
If one trains the generative model and the inference model to convergence before switching to training the

other, this is equivalent to expectation maximization (viewed as alternating maximization [147]).

Self-Training Traditionally, self-training has been employed in weakly-supervised learning paradigms to
increase the predictive accuracy of simple classification models [183, 232, 135]. Recently, renewed interest
in self-training-inspired data augmentation approaches have demonstrated empirical performance improve-
ments for neural models in domains such as large-scale image classification, machine translation, and speech
recognition [246, 70, 100]. But while self-training has been shown to yield practical gains for some do-
mains, for others it can actually lead to worse performance, as training on too many incorrect pseudo-labels
can cause learning to degrade [17, 194]. For self-training within the PLAD framework, the assigned pseudo-
label for each example changes during fine-tuning whenever the inference model discovers a program that
better explains the input shape; similar techniques have been proposed for learning programs that perform
semantic parsing under the view of iterative maximum likelihood [124]. To our knowledge, self-training has
not been applied for fine-tuning visual program inference models, likely because it is somewhat unintuitive

to view a program as a “label” for a visual datum.

4.2 Method

In this section, we describe the PLAD framework: a conceptual grouping of fine-tuning methods for shape
program inference models. Our formulation assumes three inputs: a training dataset of shapes from the dis-

tribution of interest, S*, a program inference model, p(z|x), and a program executor that converts programs



45

Input: (S*,p(z|x), E)
Output: p(z|x) fine-tuned on S*

PBEST 1}

for Number of Rounds do R?.EE]_S_II%E"_F ' P s - .
// Update Best Programs i -/
PBE@T <_ ’ 8 ’ K Infer

Programs
L

// Create Training Data
if Self-Train then
7, < PBEST Train on
X 5%
else if then
7 PBEST
X<+ {E(z)|zecZ}
else if Wake-Sleep then
p(z) + trainGenerative( PBEST)
Z + sample(p(z), |S*|)
X<+ {E(z)|zeZ}
end if
/[ Train inference model
p(z|x) + trainMLE(X, Z)
end for

inferProgs(p(z|x), S*, PBEST) p(z | x) | E

p(2)

Sample

Figure 4.1: (Left) Pseudocode for fine-tuning shape program inference models, p(z|x), towards a shape
distribution of interest, S*, with Pseudo-Labels and Approximate Distributions (PLAD). PLAD methods
iterate through three steps: infer programs for S* with p(z|x), create a dataset of (X, Z) shape-program
pairs, and train p(z|x) on batches from (X, Z). Self-training, , and wake-sleep
differ in how (X, Z) is constructed. (Right) A visual illustration of the algorithm’s dataflow.

into shapes, E. Throughout this chapter, we assume that the p(z|x) passed as input has undergone supervised
pretraining on a distribution of synthetically generated shapes. Methods within the PLAD framework return
a fine-tuned p(z|x) specialized to the distribution of interest from which S* was sampled.

We depict the PLAD procedure both algorithimcally and pictorially in Figure 4.1. To fine-tune p(z|x)
towards S*, PLAD methods iterate through the following steps: (1) use p(z|x) to find visually similar pro-
grams to S*, (2) construct a dataset of shape and program pairs (X, Z) using the inferred programs, and (3)
fine-tune p(z|x) with maximum likelihood estimation updates on batches from (X, Z). Through successive
iterations, these steps bootstrap one another, forming a virtuous cycle: improvements to p(z|x) create (X, Z)
pairs that more closely match the statistics of S*, and training on better (X, Z) pairs specializes p(z|x) to
S*.

Methods that fall within the PLAD framework differ in how the paired (X, Z) data is created within

each round. We detail this process for wake-sleep (Section 4.2.1) , self-training (Section 4.2.2), and latent
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execution self-training (Section 4.2.3). In Section 4.2.4 we explain our program inference procedure (infer-
Progs, Fig 4.1). Finally, in Section 4.2.5 we discuss how a single p(z|x) can be fine-tuned by multiple PLAD

methods.

4.2.1 Wake-Sleep (X, 7) Construction

Wake-sleep uses a generative model, p(z) to construct (X, Z). In our implementation, we choose to model
p(z) as a variational auto-encoder (VAE) [107], where the encoder consumes visual data and the decoder

, PBEST’ and

outputs a program. To create data for p(z), we take the current best programs discovered for S*
execute each program to form a set of shapes X&. p(z) is then trained on pairs from (X, PBEST) in the
typical VAE framework. Note that the design space for p(z) is quite flexible, for instance, p(z) can trained
without access to X if implemented with a program encoder.

Once p(z) has converged, we use it to sample |S*| programs by decoding normally distributed random
vectors. This set of programs becomes Z, and X is formed by executing each program in Z. In this set of
(X, Z) programs, Z is always the correct label for X, so the gradient estimates during p(z|x) training will
be low-variance and unbiased. However, X is not guaranteed to be close to S*, it is only an approximate

distribution. Note though, that as PBEST better approximates S*, the distributional mismatch should become

smaller, as long as the generative model has enough capacity to properly model p(z).

4.2.2 Self-Training (XX, Z) Construction

Self-training constructs (X, Z) by assigning labels from the current best program set, PBEST, to shape in-

stances from S*. Formally, X < S* and Z « PBEST

. This framing maintains the nice property that X = S*,
so there will never be distributional mismatch between these two sets. The downside is that unless programs
from PBEST exactly recreate their paired shapes from S* when executed, we know that the pseudo-labels

from PBEST

are ‘incorrect’. From this perspective, we can consider gradient estimates that come from such
(X, Z) pairs to be biased. However, as we will show experimentally, when X forms a good approximation

to S*, sourcing gradient estimates from these pseudo-labels leads to strong reconstruction performance.

4.2.3 LEST (X, Z) Construction

A unique property of shape program inference is that the distribution p(x|z) is readily available in the form

of the program executor F/. We leverage this property to propose LEST, a variant of self-training that does
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not create mismatch between pseudo-labels and their associated visual data. Similar to the self-training
paradigm, LEST first constructs Z as the current best program set, PBEST, Then, differing from self-training,
LEST constructs X as the executed version of each program in Z. By construction, the labels in Z will
now be correct for their paired shapes in X. The downside is that, like wake-sleep, LEST may introduce a
distributional mismatch between X and S*. But once again, as PPEST better approximates S*, the mismatch

between the two distributions will decrease.

4.2.4 Inferring Programs with p(z|x)

During each round of fine-tuning, PLAD methods rely on p(z|x) to infer programs that approximate S*. We
propose to train PLAD methods such that the best matching inferred programs for S* are maintained across
rounds. Specifically, we construct a data structure PPEST that maintains a program for each training shape in

S*. In this way, as more iterations are run, PBEST

always forms a closer approximation to S*. There is an
alternative framing, where PBEST is reset each epoch, but we show experimental results in the supplemental
material that this can lead to worse generalization.

To update PBEST each round, we employ an inner-loop search procedure. For each shape in S*, p(z|x)

suggests high-likelihood programs, and the PBEST

entry is updated to keep the program whose execution
obtains the highest similarity to the input shape; the specific similarity metric varies by domain. While there
are many ways to structure this inner-loop search, we choose beam-search, as we find it offers a good trade-

off between speed and performance. Experimentally, we demonstrate that PLAD methods are capable of

performing well even as the time spent on inner-loop search is varied (Section 4.3.4).

4.2.5 Training p(z|x) with multiple PLAD methods

As detailed in the preceding sections, the main difference between PLAD approaches is in how they construct
the (X, Z) dataset used for fine-tuning p(z|x). However, there is no strict requirement that these different
(X, Z) distributions be kept separate. We explore how p(z|x) behaves under fine-tuning from multiple PLAD
methods, such as combining LEST and self-training. We implement these mixtures on a per-batch basis.
Before p(z|x) training, we construct distinct (X, Z) distributions for each method in the combination. Then,
during training, each batch is randomly sampled from one of the (X, Z) distributions. We experimentally

validate the effectiveness of this approach in the next section.
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Method 2D CSG CD || 3D CSG IoU | ShapeAssembly IoU 1
Supervised Pretraining (SP) 1.580 41.0 37.6
REINFORCE (RL) 1.097 534 50.8
Wake-Sleep (WS) 1.118 67.4 57.2
Self-Training (ST) 0.841 67.3 61.3
LEST 0.976 69.8 56.5
LEST+ST 0.829 70.8 66.0
LEST+ST+WS 0.811 74.3 66.4

Table 4.2: Test-set reconstruction performance across multiple shape program inference domains. The top
row contains results for the pretrained p(z|x) model fine-tuned by the other methods. For 2D CSG the metric
is Chamfer distance (CD, lower is better). For 3D CSG and ShapeAssembly the metric is intersection over
union (IoU, higher is better). Individual PLAD methods outperform RL, and combining PLAD methods
achieves the best performance across all domains (LEST+ST+WS).

4.3 Results

We evaluate a series of methods on their ability to fine-tune shape program inference models across multiple
domains. We describe the different domains in Section 4.3.1 and details of our experimental design in Section
4.3.2. In Section 4.3.3, we compare the reconstruction accuracy of each method, and study how they are
affected by varying the time spent on inner-loop search (Section 4.3.4) and the size of the training set (Section

4.3.5). Finally, we explore the convergence speed of each method in Section 4.3.6.

4.3.1 Shape Program Domains

We run experiments across three shape program domains: 2D Constructive Solid Geometry (CSG), 3D CSG,
and ShapeAssembly. Details can be found in the supplemental.

In CSG, shapes are created by declaring parametric primitives (e.g. circles, boxes) and combining them
with Boolean operations (union, intersection, difference). CSG inference is non-trivial: as CSG uses non-
additive operations (intersection, difference), inferring a CSG program does not simply reduce to primitive
detection. For 2D CSG, we follow the grammar defined by CSGNet [187], using 400 shape tokens that
correspond to randomly placed circles, triangles and rectangles on a 64 x 64 grid. For 3D CSG, we use a
grammar that has individual tokens for defining primitives (ellipsoids and cuboids), setting primitive attributes
(position and scales), and the three Boolean operators. Attributes are discretized into 32 bins.

ShapeAssembly is designed for specifying the part structure of manufactured 3D objects. It creates ob-

jects by declaring cuboid part geometries and assembling those parts together via attachment and symmetry
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operators. Our grammar contains tokens for each command type and parameter value; to handle continuous

values, we discretize them into 32 bins.

4.3.2 Experimental Design

Fine-Tuning Methods We compare the ability of the following training schemes to fine-tune a model on a
specific domain of interest:

* SP: p(z|x) with supervised pretraining.

* RL: Fine-tuning with REINFORCE.

¢ WS: Fine-tuning with wake-sleep.

* ST: Fine-tuning with self-training.

e LEST: Fine-tuning with latent execution self-training.
e LEST+ST: combining LEST and ST.

¢ LEST+ST+WS: combining LEST, ST and WS.

Shape Datasets  Fine-tuning methods learn to specialize p(z|x) against a distribution of real shapes
S*. For each domain, we construct a dataset of shapes S*, and split it into train, validation, and test sets.
We perform early-stopping with respect to the validation set. For 2DCSG, we use the CAD dataset from
CSGNet [187], which consists of front and side views of chairs, desks, and lamps from the Trimble 3D
warehouse. We split the dataset into 10K shapes for training, 3K shapes for validation, and 3K shapes for
testing. For 3D CSG and ShapeAssembly, we use CAD shapes from the chair, table, couches, and benches
categories of ShapeNet; voxelizations are provided by [25]. We split the dataset into 10K shapes for training,
1K shapes for validation, and 1K shapes for testing.

Model Architectures For all experiments, we model p(z|x) in an encoder-decoder framework, although
the particular architectures vary by domain. In all cases, the encoder is a CNN that converts visual data into a
latent variable, and the decoder is an auto-regressive model that decodes the latent variables into a sequence
of tokens. For 2D CSG, we use the same p(z|x) architecture as CSGNet. A CNN consumes 64 x 64 binary
mask shape images to produce a latent code that initializes a GRU-based recurrent decoder. For 3D CSG
and ShapeAssembly, we use a 3D CNN that consumes 32 x 32 x 32 occupancy voxels. This CNN outputs a
latent code that is attended to by a Transformer decoder network [209]; this network also attends over token

sequences in a typical auto-regressive fashion.
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Figure 4.2: Experiments exploring properties of PLAD methods on 2D CSG. On the X-axis we plot the
beam size used during the PBEST update (Left), the number of training shapes (Middle), and the training time
(Right). The Y-axis of each plot measures reconstruction accuracy on test-set shapes.

Supervised Pretraining Before fine-tuning, p(z|x) undergoes supervised pretraining on synthetically
generated programs until it has converged on that set. For 2D CSG, we follow CSGNet’s approach. For 3D
CSG, we construct valid programs by (i) sampling a set of primitives within the allotted grid (ii) identify-
ing potential overlaps (iii) constructing a binary tree of boolean operations using these overlaps. For Sha-
peAssembly, we propose programs by sampling random grammar expansions according to the language’s
typing system. We then employ a validation step where a program is rejected if any of its part are not the sole
occupying part of at least 8 voxels (to discourage excessive part overlaps). For 3D CSG and ShapeAssembly
we sample 2 million synthetic programs and train until convergence on a validation set of 1000 programs.

Full details provided in the supplemental.

4.3.3 Reconstruction Accuracy

We evaluate the performance of each fine-tuning method according to reconstruction accuracy: how closely
the output of a shape program matches the input shape from which it was inferred, on a held out set of
test shapes. The specific metric varies by domain. For 2D CSG, we follow CSGNet and use Chamfer
Distance (CD), where lower distances indicate more similar shapes. For 3D CSG and ShapeAssembly, we
use volumetric intersection over union (IoU).

For each domain, we run each fine-tuning method to convergence, starting with the same p(z|x) model
that has undergone supervised pretraining. The reward for RL models follows the similarity metric in each
domain: CD for 2D CSG; IoU for 3D CSG and ShapeAssembly. For PLAD fine-tuning methods, the si-
miliarity metric in each domain determines which program is kept during updates to PBEST. At inference

time, when evaluating the reconstruction performance of each p(z|x), we employ a beam search procedure,
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Figure 4.3: Qualitative comparisons of shape programs inferred for test-set shapes made by different fine-
tuning methods for 2D CSG (7op), 3D CSG (Middle), and ShapeAssembly (Bottom). We provide additional
qualitative results in the supplemental.

decoding multiple programs in parallel, and choosing the program that achieves the highest similarity to the
target shape. We use a beam size of 10, unless otherwise stated.

We present quantitative results in Table 4.2. Looking at the middle four rows, the two self-training
variants (ST and LEST) outperform RL as a fine-tuning method in all the domains we studied. The wake-
sleep variant (WS) also outperforms RL for both 3D CSG and ShapeAssembly. These are more challenging
domains with larger token spaces, posing difficulties for policy gradient fine-tuning. As demonstrated by
the last two rows, further improvement can be had by combining multiple methods: for each domain, the
best performance is achieved by LEST+ST+WS. In fact, for 2DCSG, the test-set reconstruction accuracy
achieved by LEST+ST+WS (0.811) outperforms previous state-of-the-art results, CSGNet (1.14) [187] and

CSGNetStack (1.02) [188], for paradigms where the executor is treated as a black-box.
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Mixing updates from multiple PLAD methods is beneficial because, in this joint paradigm, each method
can cover the other’s weaknesses. For instance, employing ST ensures that some samples of X are sourced
from S*, and employing LEST ensures that some samples of X have paired Z programs which are exact
labels. We present qualitative results in Figure 4.3. The reconstructions from the PLAD combination methods

better reflect the input shapes, reinforcing the quantitative trends.

4.3.4 Inner-loop Search Time

PLAD methods make use of PBEST to generate (X, Z) datasets that train p(z|x). To study how time spent on
inner-loop search affects each technique, we ran an experiment using different beam sizes to update PBEST,
We present results in Figure 4.2, left. On the X-axis we plot beam size; on the Y-axis we plot test-set
reconstruction Chamfer distance. Unsurprisingly, spending more time on the inner-loop search leads to better
performance; finding better programs for training shapes improves test time generalization. That said, across
all beam sizes, we find that it is always best to train under a combination of PLAD methods; the LEST+ST and
the LEST+ST+WS variants always outperform any individual fine-tuning scheme. Note, RL is not included in
this experiment because REINFORCE, as defined, has no inner-loop search mechanism. In this way, PLAD

provides an additional control lever, where time spent on inner-loop search modulates a trade-off between

convergence speed and test-set reconstruction performance.

4.3.5 Number of Training Shapes from S*

All the fine-tuning methods make use of a training distribution of shapes that are sampled from S*. For some
domains, the size of available samples from S* may be limited. We run an experiment on 2D CSG to see how
different fine-tuning methods are affected by training data size. We present the results of this experiment in
Figure 4.2, middle. We plot the number of training shapes on the X-axis and test set reconstruction accuracy
on the Y-axis. All fine-tuning methods improve as the training size of S* increases, but once again, combining
multiple PLAD methods leads to the best performance in all regimes. This study also demonstrates the sample
efficiency of PLAD combinations: LEST+ST and LEST+ST+WS trained on 1,000 shapes achieve better test

set generalization than RL trained on 10,000 shapes.



53

4.3.6 Convergence Speed

Beyond reconstruction accuracy, we are also interested in the convergence properties of a fine-tuning method.
Policy gradient RL is notoriously unstable and slow to converge, which is undesirable. For 2D CSG, we
record the convergence speed of each method and present these results in Figure 4.2, right. We plot recon-
struction accuracy (Y-axis) as a function of training wall-clock time (X-axis); all timing information was
collected on a machine with a GeForce RTX 2080 Ti GPU and an Intel 19-9900K CPU. All PLAD tech-
niques converge faster than policy gradient RL. For instance, RL took 36 hours to reach its converged test-set
CD of 1.097, while LEST matched this performance at 1.1 hours (32x faster) and LEST+ST matched this

performance at 0.85 hours (42x faster).

4.4 Discussion

We presented the PLAD framework to group a family of techniques for fine-tuning shape program inference
models with Pseudo-Labels and Approximate Distributions. Within this framework, we proposed LEST: a
self-training variant that creates a shape distribution X approximating the real distribution S* by executing
inferred latent programs. Experiments on 2D CSG, 3D CSG, and ShapeAssembly demonstrate that PLAD
methods achieve better reconstruction accuracy and converge faster than policy gradient RL, the current
standard approach for black-box fine-tuning. Finally, we found that combining updates from multiple PLAD

methods outperforms any individual technique.

Limitations While fine-tuning p(z|x), PLAD methods construct (X, Z) sets approximating the statistics
of S*, specializing p(z|x) towards S*. As a consequence, p(z|x) may not generalize as well to shapes
outside of S*; we explore this phenomenon in B.5. Training a general-purpose inference model for all
shapes expressible under the grammar is an interesting line of future work. While our work focuses on
reconstruction quality, producing programs with ‘good’ structure matters just as much, if the program is to
be used for editing tasks. Currently, the synthetic pretraining data is the only place where knowledge about
what constitutes “good program structure” can be injected. Such knowledge must be expressed in procedural
form, which may be harder to elicit from domain experts than declarative knowledge (i.e. “a good program

has these properties” vs. “this is how you write a good program”).



Chapter 5

Learning to Edit Visual Programs with

Self-Supervision

People seldom write code with a linear workflow. The process of authoring code often involves substantial
trial-and-error: possibly correct programs are evaluated through execution to see if they raise exceptions or
break input-output assumptions. When an error is identified, an edit is made, and this process is repeated. It
is difficult to imagine writing any moderately complex program in a one-shot paradigm, without being able
to debug intermediate program versions.

In this chapter, we present a model that learns how to edit visual programs in a goal-directed manner for
the task of visual program induction (VPI). Our network consumes a complete input program, this program’s
executed state, and a visual target. It then proposes a local edit operation that modifies the input program to
better match the target. In contrast with one-shot approaches, this framing allows our network to explicitly
reason over a complete program and its execution, in order to decide how this program should be modified.

We train our network without access to any ground-truth program annotations. To accomplish this, we
propose an integration of our edit network with the one-shot VPI models produced by PLAD (Chapter 4).
During iterative finetuning rounds, we source paired training data for our edit network by first constructing
pairs of start and end programs, and then using a domain-aware algorithm to find a set of edit operations
that would bring about this transformation. This process jointly finetunes both our edit network and a one-
shot network, and we propose an integrated inference algorithm that leverages the strengths of both of these

paradigms: the one-shot model produces rough estimates that are refined with the edit network. We find

54
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that this joint self-supervised learning set-up forms a virtuous cycle: the one-shot model provides a good
initialization state for the edit network, and the edit network improves inner-loop inference, creating better
bootstrapped training data for the one-shot model.

We experimentally compare the effectiveness of integrating our edit network into this joint paradigm
against using one-shot models alone. Controlling for equal inference time, over multiple visual programming
domains, we find that using the edit network improves reconstruction performance. Moreover, we find that the
reconstruction gap between these two paradigms widens as more time is spent on test-time program search.
Further, we demonstrate our method performs remarkably well even with very limited data, as learning how
to edit is an inherently more local task compared with learning how to author a complete program. Finally,
we run an ablation study to understand and justify our system design.

We release code for our experiments at: https://github.com/rkjones4/VPI-Edit

5.1 Method

In this section, we present our approach for learning how to edit visual programs. First we formalize our task
of unsupervised visual program induction. For a particular domain, we are given a domain-specific language
(DSL) L and an executor E that converts programs z from L into visual outputs z. Given visual inputs from
a target visual dataset that lacks program annotations, * € X™, our goal is to find find 2* € L, such that
E(z*) ~ x*. This measure of similarity is usually checked under a domain specific reconstruction metric M.

A general approach employed by prior visual program induction works is to use an autoregressive model
(e.g. a Transformer) that is conditioned on a visual encoding to predict a well-reconstructing program: p(z|z).
These one-shot models iteratively predict the next program token until the program is complete. We present
a framework that employs a similar autoregressive model, but instead of predicting a complete program from
scratch, we instead predict a local edit that modifies an input program. In the rest of this section, we first
present how we design our edit network (Sec. 5.1.1). Then we discuss our unsupervised training procedure
where we jointly finetune an edit network along with a one-shot network (Sec. 5.1.2. Finally, we describe

how we combine these networks to search for visual programs (Sec. 5.1.3).

5.1.1 Edit Network Design

Our edit network p(e|z, ) learns how to predict a local edit operation that improves an input program towards

a visual target (see Figure 5.1). We provide our network with a triplet input state: the tokens of an input
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Figure 5.1: We design a network that learns how to locally edit an input program towards a target. It first
predicts what type of edit operation should be applied, then it predicts where that edit operation should be
applied, and finally it autoregressively samples any parameters the edit operation requires.

program z, this program’s executed output [/(z), and a visual target z. From this state, our network is tasked
with predicting an edit operation e that could be applied to the input program.

Edit Operations. There are many ways to parameterize the space of possible program edits. We choose
to constrain the possible edit operations our network can produce by forcing it to select from a set of local
editing operations designed for visual programs. For instance, for functional visual programming DSLs with
transformation and combinator functions, we allow for seven different edit operations: modifying a trans-
form’s parameters (MP), modifying a transform (MT), adding a transform (AT), removing a transform (RT),
modifying a combinator (MC), removing a combinator (RC), or adding a combinator (AC). We provide more
details in Appendix C.4. Some of these edit operations do not take in parameters (removing a transform)
while others require new parameters (e.g. to modify the parameters of a transform we need to know the new
parameters). Each of these edit operations can be applied to a program at a specific token location, and results
in a local change. Subsequently, we task our edit network with predicting three items: an edit operation type,
a location for that edit operation, and any extra parameters that operation requires.

We design our system with this somewhat constrained edit operation set as it has a number of advantages.
First, the application and effect of each edit operation is local; this simplifies the learning task and allows us
flexibility at inference time. Moreover, ensuring that edit operations are tied to the semantics of the underlying
DSL helps to promote program edits that result in syntactically valid modified programs. We compare our
edit operation design against alternative formulations in our experimental results (Sec. 5.2.5).

Architecture. We implement our edit network as a Transformer decoder. This network has full attention

over the conditioning information: each visual input (the executed output of the input program and the target)
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is encoded into a sequence of visual tokens (e.g. with a CNN) and each token of the input program is lifted
with an embedding layer.

To predict the edit operation type, we take the output Transformer embedding from the first index of
input program sequence. This embedding is sent through a linear layer which predicts a distribution over the
possible edit operation types (yellow boxes, Fig. 5.1).

To predict the edit operation location, we consider the embeddings that the Transformer produces over
the tokens of the input program. Each of these location codes is sent through a linear layer, which predicts a
value for each operation type. For a chosen operation type, we then normalize these values into a probability
distribution across the length of the input program sequence (dark-blue boxes, Fig. 5.1). This distribution
models the likelihood of where a specific edit operation type should be applied.

Finally, we use our network to autoregressively sample any extra parameters that a chosen edit operation
might require. To accomplish this, we first slightly reformat the input program by inserting a special ‘sentinel
token’ [166] associated with the chosen edit operation in two places: (1) at the specified edit operation
location and (2) at the end location of the current program ($AT, Fig. 5.1). This ‘sentinel’ tokens allows the
network to know what operation is being applied to which position. Then, starting from the location of the
second sentinel token, we can use the network to iteratively generate a sequence of parameter predictions
with causal attention-masking, until an ‘END’ token is chosen (green boxes, Fig. 5.1).

Training. Given an input program, how do we know which edit operations are helpful? If we have
access to not only a visual target, but also its corresponding program, we can find a set of edit operations
that would transform the input program into this target. We follow this logic to source training data for our
edit network: given a start program and an end program, we analytically identify a set of edit operations
that would bring about this transformation with a findEdits function. We can then convert this set of edit
operations into a large set of (input, output) pairs that our network can train on. We provide further details
on this algorithm in Appendix C.4. Once we have sourced paired data, through teacher-forcing we can train
our network in a supervised fashion with a cross-entropy loss on the predicted operation type, location, and
each parameter token. Though we lack known programs for the target domain of interest, we next discuss a

bootstrapped finetuning procedure that provides a work-around for this issue.

5.1.2 Learning Paradigm

As we operate in a paradigm where we don’t have access to ground-truth programs for our target set X*,

we take inspiration from recent self-supervised approaches that employ bootstrapped finetuning for visual
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Figure 5.2: Left: our bootstrapping algorithm that finetunes an edit network and a one-shot model towards
a target dataset. Right: our inference algorithm that initializes a population with a one-shot model and then
mutates it towards a visual target through iterative rounds of edits and resampling.

Algorithm 1: Network Training Targetx*
1: p(z|z)< pretrain(L) sample p(zhe’)

Round 1

Sample p(e|z,x*)

R A

Round 2

Sample p(e|z,x*)

program induction [98, 53]. Specifically, we develop an algorithm (Alg. 1) that integrates edit network
training into the PLAD finetuning framework.

PLAD Finetuning. We begin with an overview of the PLAD method, which is depicted with the black
text in Alg. 1 (see Chapter 4 for details). At the start of each round, the program inference network p(z|x) is
run over the target dataset X *; the results of this inference procedure populate the entries of a best programs

data-structure PBEST

according to M. Then an unconditional generative model p(z) is trained over the entries
of PBEST and a set of ‘dreamed’ programs, P, are sampled from this network. The weights of p(z|z) are
then finetuned using paired data sourced from PBEST and P“. These steps are repeated for a set number of
rounds, or until convergence.

Edit Model Finetuning. The blue-colored lines in Alg. 1 indicate the modifications we make to the
PLAD algorithm to incorporate our edit network. Lines 8-10 explain the training logic. First we use p(z|x) to
sample a set of programs P° conditioned on the executed outputs of the generated programs P¢. Treat-
ing P° as the starting points and P as the end points, we can then use our findEdits operation to find sets
of edit operations F S that would realize these transformations. This provides us with paired data that we can
use to finetune the weights of the edit network through teacher forcing, as explained in the prior section.

Synthetic Pretraining. PLAD finetuning is typically initialized with a synthetic pretraining phase (Alg. 1,
line 1). During pretraining, random programs are sampled from L, and p(z|x) can be trained on the paired
data produced by executing these samples. Similarly, as we discuss in the results section, we find it useful to

‘pretrain’ the edit network on synthetic data (Alg. 1, line 2). While multiple formulations are possible here,
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Table 5.1: Across multiple visual programming domains we evaluate test-set reconstruction accuracy. In all
cases, we find that our joint paradigm that integrates an edit network with one-shot models outperforms the
alternative of using only one-shot models.

Layout cloU ff 2D CSG CD | 3D CSG IoU 1

0S Only 0.94 0.156 83.3
0S + Edit (Ours) 0.98 0.111 85.3

we re-use the same logic shown on lines 8-10, except we replace the set of target programs P¢ with random

programs sampled from L.

5.1.3 Inference Algorithm

With the above procedure we can train our edit network, but how can we use this network to find improved
visual programs? This question is not only relevant at test-time, but also impacts bootstrapped training, as
we run an inner-loop search to populate the entries of PBEST(Alg. 1, line 5). As depicted on the right side of
Figure 5.2, we design a search procedure that combines the strengths of the one-shot and editing paradigms.
This search procedure maintains a population of programs, which are evolved over a number of rounds. The
initial population is produced by sampling p(z|z) . Then for each round, we use the edit network to sample
sets of edits for every program in the current population. We apply each of these sampled edits, and then
re-sample the population for the next round according to a ranking based on M.

This formulation has a number of advantages. Instead of starting from a blank canvas, or with random
samples, we allow p(z|z) to produce initial rough program estimates. These guesses are then refined through
mutations over a series of editing rounds that are all directed at improving similarity towards the visual target.
In Section 5.2.5 we compare this algorithm against alternative formulations. Critically, by applying this joint
inference procedure during finetuning we form a virtuous cycle: improving the inference strategy leads to
better PBEST entries, which results in better training data for p(z|z) and p(e|z, z), which in turn allows us to
find to better PBEST entries in subsequent finetuning rounds. Finally, we note that this formulation maintains a
nice symmetry between p(z|x) and p(e|z, x): in out joint finetuning algorithm p(e|z, x) trains on sequences
sourced from sampling p(z|x), and in this way its training distribution of edit operations well matches the

population used to initialize the inference algorithm.
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5.2 Results

We evaluate our edit network with experiments over multiple domains. First we describe our experimental
design (Sec. 5.2.1). Then we compare the ability of different methods to accurately infer visual programs in
terms of reconstruction performance (Sec. 5.2.2). We analyze how this performance changes as a function of
time spent on inference (Sec. 5.2.3) or the size of the training target dataset (Sec. 5.2.4). Finally, we discuss

results of an ablation study on our method in Section 5.2.5.

5.2.1 Experimental Design

We provide a high-level overview of our experimental design. See Appendix C.3 for details.

Methods. We compare our approach (OS+Edit) against the alternative of using only a one-shot model
(OS Only). As described in Section 5.1, our approach jointly finetunes an edit network along with a one-shot
network, and uses both of these networks to infer visual programs (Fig. 5.2). To control for the added time
cost incurred by our inference procedure, we adapt a sampling-based inference loop for the OS Only variant,
which we find results in a surprisingly strong baseline.

Domains. We consider three VPI domains (see Appendix C.2): Layout, 2D CSG, and 3D CSG. In the
Layout domain, scenes are created by placing colored 2D primitives on a canvas, and optionally modifying
them by changing their size, location, or forming a symmetry group. In constructive solid geometry (CSG),
complex shapes are formed by combining simple shapes with boolean set operations (union, intersection,
difference). Our 2D CSG and 3D CSG domains differ in terms of their primitive types (e.g. squares vs
cuboids) and the parameterizations of transformation functions: generalizing notions of scaling, translating,
rotating, and symmetry grouping from R? to R3.

Network Details. For each domain, we implement p(z|x) as a decoder-only Transformer [209] that
conditions on a set of visual tokens and predicts up to a maximum sequence length SL. Similarly, we imple-
ment p(e|z, z) as a Transformer with the same architecture, except that it conditions on (i) two sets of visual
tokens and (ii) an input program of length SL, and it is only allowed to predict edit parameters up to a length
of EL. Our visual encoders are all standard CNNs. For Layout we use a 2D CNN that takes in an RGB 64x64
image, for 2D CSG we use a 2D CNN that takes in a binary 64x64 image, and for 3D CSG we use a 3D CNN
that takes in a 323 voxel grid.

Reconstruction Metric. The reconstruction metric M guides the inference algorithm and also performs
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early stopping with respect to a validation set. For Layout we use cloU, an intersection over union met-
ric which only counts intersections on color matches (see Chapter 6). For 2D CSG we use an edge-based
Chamfer distance (CD) [187]. For 3D CSG we use intersection over union (loU).

Target Data. Like prior bootstrapping methods, our finetuning algorithm specializes our networks
towards a target dataset of interest, X, that lacks known programs. For 2D CSG we use shapes from the
dataset introduced by CSGNet [187], originally sourced from Trimble 3D warehouse. For 3D CSG we use
shapes from the dataset introduced by PLAD, originally sourced from ShapeNet [16]. While we use the same
test-sets as prior work (3000 / 1000 for 2D CSG / 3D CSG), we find that our method is able to offer good
performance with much less training data. In our base experiments, we use 1000/100 train/val shapes for
2D CSG (from 10000 / 3000 available) and and 1000/100 train/val shapes for 3D CSG (from 10000 / 1000
available). For the Layout domain, we use the manually designed scenes sourced from the method described

in Chapter 6 (1000 train / 100 val / 144 test).

5.2.2 Reconstruction Accuracy

We compare our OS+Edit approach against OS Only on each method’s ability to infer visual programs that
accurately reconstruct test-set inputs in Table 5.1. As demonstrated, our joint finetuning paradigm that com-
bines an edit network with a one-shot network consistently improves reconstruction performance. In these
experiments, we ensure that each method gets to spend the same amount of time on inference by setting
search parameters so that the average inference time per shape was equal: ~ 5, ~ 10, ~ 60 seconds per
shape for Layout, 2D CSG, and 3D CSG respectively. For OS Only, we use a sampling-based inference
search where the model samples a population of complete programs for a set number of rounds. Though this
approach provides a strong baseline, it was not as effective as combining our edit networks with one-shot
initializations. In fact, for the 2D CSG domain, our formulation achieves reconstruction scores that surpass
the performance of related methods that assume access to executor-gradients. On the 2D CSG test-set, we
achieve a Chamfer distance (CD) of 0.111 (lower is better), whereas UCSG-Net [101] gets a CD of 0.320,
SIRI [53] gets a CD of 0.260, and ROAP [201] gets a CD of 0.210 . Note that as the DSL, architecture,
objective, and inference procedures differ across these various works, it’s hard to make any absolute claims
from this direct comparison. Nevertheless we would like to emphasize that our method’s reconstruction per-
formance on this task is very strong in the context of the related literature. We visualize reconstructions from

this experiment in Figure 5.3, and find that qualitative evidence supports the quantitative trends.
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Figure 5.3: Comparing reconstructions of one-shot models (fop) against our joint approach (middle).

5.2.3 Search Time

While one-shot models must author new programs from scratch without execution-feedback, our edit network
has the capacity to reason over an input program, compare its execution versus the visual target, and decide
how this program should be modified. As such, we hypothesize that integrating our edit network into our
inference procedure will be increasingly advantageous over the OS Only approach as more time is spent on
test-time search. To validate this hypothesis, we explore how the reconstruction gap between these paradigms
changes as a function of time spent on search (Figure 5.4, left). For 2D CSG we take a subset of the test-
set (300 shapes) and run more rounds of our inference algorithm. As demonstrated, as more time is spent
on test-time search (i.e. as the number of rounds increases) the reconstruction gap between OS Only and
OS+Edit grows wider. Moreover, we note that even on the first round there is a gap between the methods,

as the one-shot network trained in the OS+Edit paradigm had access to better PBEST

entries throughout the
finetuning process (i.e. the aforementioned virtuous cycle). We present qualitative results that show how the

edit network evolves the population of programs towards the visual target in Figure 5.5.

5.2.4 Training with limited data

While both OS+Edit and OS Only are unsupervised in the sense that they don’t have access to any ground-
truth program annotations, they do require an input set of visual data to form a target training set. We
hypothesize that our edit network will be especially useful for domains with limited data (even limited unan-
notated data) as the program editing task is inherently more local than trying to author a complete program.
Consider for instance that during finetuning, in a one-shot paradigm each visual datum can only contribute
a single training example, while in our paradigm an entire distribution of edit operations can be sourced by

considering the many possible edit paths one could take to transform a start program into an end program.
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Figure 5.4: For 2D CSG, we compare reconstruction accuracy (Chamfer distance, lower is better, Y-axis)
between using an edit network and using only a one-shot network while varying time spent on inference (/eft)
and training set size (right).

We validate this hypothesize with an experiment where we train versions of these systems while varying the
size of the target training set (Fig. 5.4, right). Our joint paradigm offers very strong performance even while
finetuning towards an input set of just 100 training shapes, matching the performance of OS Only when it has

10x more data.

5.2.5 Method Ablations

We run an ablation experiment to evaluate the design of our system on the Layout domain. We present results
of this experiment in Table 5.2. In the rest of this section we detail all of the alternative formulations we
compare against.

Edit Operations. Our default edit networks learn how to predict local edit operations from a limited
set of options. We compare this paradigm with two alternatives. In the next program mode, we task the
edit network with predicting all of the tokens of the program that would be created by applying the target
edit operation to the input program. In the final program mode, we task the edit network with predicting the
tokens of the final program associated with the visual target. This formulation was inspired by the success
of denoising diffusion models for visual synthesis tasks [77], though in our setting this variant is basically
an alternative one-shot model with extra conditioning information but with the same target sequences. As
demonstrated, neither of these approaches is as performant as our formulation where edits are predicted as
local operations. Moreover, predicting an entire program is much slower compared with predicting an edit,
so fewer rounds of our inference algorithm can be run with the same search time budget.

Program Corruption. We source paired training data for our edit network by constructing (start, end)

program pairs and then analytically finding a set of edit operations that would complete this transformation.
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For an alternative, we can look towards discrete diffusion methods [202, 242, 215, 172]. In our corruption
variant we take inspiration from these works and design a program corruption algorithm for the Layout
domain. This corruption algorithm takes an end program as input, and then samples corruption operations
(i.e. inverse edit operations) that can be used as paired data for our edit network (Appendix C.5). As seen,
this alternative formulation was not as performant as our default approach. One reason for this is that it
hard to design a corruption process that converts end programs (e.g. P%) into the distribution of programs
that we have access to at inference time (e.g. P®). Conversely, by applying our findEdits operation on
P% and P? pairs, we can source paired data for our edit network that does match this distribution.

Pretraining and Finetuning. In our default version there are three training phases. First, p(z|z) under-
goes pretraining on synthetic data. Second, p(e|z, z) undergoes pretraining on synthetic data using samples
from p(z|z). Then both of these networks are jointly finetuned with respect to X*. In the No FT variant,
we don’t finetune either network, in no one-shot FT we don’t finetune p(z|z), in no edit FT we don’t fine-
tune p(e|z, x), and in no edit PT we don’t pretrain p(e|z, z). While the performance of our system remains
remarkable strong even under these ablations, we get the best results by using all three training phases. In-
terestingly, for settings where p(z|x) is not specialized for X *, the reconstruction accuracy gap dramatically
increases between the best sample in the starting population and the best sample in the final population of our
inference procedure. For instance, for the no one-shot FT variant, the first round cloU score is 0.88 which
gets increased to 0.972 (0.092 improvement) through the mutations proposed by the edit model, while in our
default variant the first round cloU is 0.925 (an improvement of .055).

Inference Algorithm. We compare our inference algorithm with two alternative versions. In Naive
OS we initialize the first population with p(z|x), and make edits to each population member with p(e|z, x),
but we skip the population resampling step according to M , and instead apply the highest likelihood edit
from p(e|z,x). While the edit network is still helpful in this paradigm (0.022 improvement from the first
to the last round), it performs worse compared with our default implementation. In Rand+Edit, we re-
move p(z|z) and instead fill the initial population with random program sampled from L. This provides a
much worse initialization (0.302 cIoU in the first round), and though our edit network successfully mutates
these samples towards the target, better reconstruction performance is gained by combining our edit network

with initial guesses from a one-shot model.
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Table 5.2: Ablation study comparing our method against alternative formulations.

Method Final cloU 1}
Ours 0.980
Next program 0.941
Final program 0.920
Corruption 0.964
No FT 0.955
No one-shot FT 0.972
No edit FT 0.976
No edit PT 0.953
Naive OS 0.947
Rand+Edit 0.906
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Figure 5.5: Our inference procedure edits samples from an initial population (top) towards a target (bottom).

5.3 Discussion

In this chapter, we’ve introduce VPI-Edit: a system that learns how to edit visual programs in a goal-directed
fashion. We develop a self-supervised bootstrapping approach that allows us to train an edit network for do-
mains that lack ground-truth program annotations. We compare our proposed paradigm, that jointly finetunes
a one-shot model and an edit network, against the alternative of using only a one-shot model, and find that
our approach infers more accurate program reconstructions. Further, we find this performance gap is more
pronounced when more time is spent on program search or when less training data is available. Finally, we

justified the design of our method with an ablation experiment.
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Limitations Compared with prior work, we need to train another network, this impacts the time required
for both pretraining and finetuning stages. Moreover, the full benefit of using an edit network is best realized
with a more complex program search, and as such we advocate for search-time budgets that are slightly more
costly compared with prior work. Though our formulation would offer improved performance for work-flows
that can afford to spent more time on program search, it would be useful to consider potential speed-ups of
our system [29]. Finally we note that our current formulation requires access to a domain-aware findEdits
operation that can analytically find a set of edits that realizes a transformation from a start program to an end

program.

5.3.1 Relation with SIRI

SIRI [53] is another method for visual program induction that builds off of, and improves upon, the PLAD
framework introduced in Chapter 4. Like the VPI-Edit method, it treats program as structured objects than
can be improved through rewriters. Instead of training a network that learns how to edit programs, it inte-
grates domain-specific analytical code rewriting operations into the bootstrapped finetuning loop of a one-
shot network. It considers three types of rewriting operations: parameter optimization, code pruning, and
code grafting. These sub-modules are interleaved together to find rewritten program versions that improve an
objective function (some combination of reconstruction and program length). While these types of rewrites
are very helpful for correcting certain types of errors (e.g. better alignment by finding improved continuous
valued parameters) they also can lead to rewritten programs that are ‘out-of-distribution’ for the one-shot net-
work. As a result, SIRI only sparsely integrates these rewritten programs during network finetuning, whereas
in our VPI-Edit framework the one-shot network can finetune on the entire set of rewritten programs without
convergence issues. As the ideas of these two methods are largely complimentary, and it would be interesting

to consider ways to integrate these paradigms into a single system.

5.3.2 Relation with Tree Diffusion

Tree Diffusion [102] is a contemporary approach with many similarities to the method we present in this
chapter. This paper takes inspiration from execution-guided visual program synthesis works [41], and like
VPI-Edit trains networks that try to edit ‘complete programs’ in a goal-directed fashion. This editing process
is framed as a sort of discrete diffusion occurring over syntax trees of programs from context-free grammars.

To get training data, the high-level idea is to sample a node in this syntax tree, and then place the node with a
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same-typed newly sampled expression from the grammar. Much like our corruption ablation condition, this
noising process can then be converted into supervised paired training data for an edit network. In fact, their
edit network does not learn to undo the corruption directly, but instead treats the corrupted program as a start
program, and then computes a minimal set of edits that would convert it into the end program. Though their
version of findEdits is considerably more simple (as their DSLs and edit operations are more limited), this is
otherwise a remarkably similar paradigm as our pretraining phase, where the only difference is in how start
and end program pairs are sourced (Alg 1, L:2).

Beyond implementation/experimental details (network/domain/language design) there are two other ma-
jor philosophical differences between these works. First of all, our VPI-Edit system not only pretrains an
edit network with respect to some DSL, it also finetunes this network towards a target shape distribution
(jointly with a one-shot network). On the other hand, Tree Diffusion only focuses on synthetic pretraining,
and then tries to adapt to a target distribution at inference time. Secondly, different mechanisms are used to
guide test-time search. VPI-Edit initializes a population of programs with the one-shot network, proposes
mutations with an edit network, and then re-samples the next generation according to a reconstruction metric.
Tree diffusion initializes a population of programs by randomly sampling a grammar, proposes mutations
with an edit network, and then re-samples the next generation according to a value network’s prediction. This
value network predicts the edit distance (e.g. how many edit operations would be required) between two
programs, and is trained on the same distribution of data as the edit network. Though well-calibrating this
value network, especially to out-of-distribution samples, might prove challenging, it does offer an intriguing
alternative to the more local signals provided by reconstruction based rewards, and this paradigm is certainly

worthy of further investigation; see Section 10.1 for further discussion.



Chapter 6

Learning to Infer Generative Template

Programs for Visual Concepts

Humans understand the visual world through concepts [143]. Concept-level reasoning allows us to perform
a multitude of tasks over a range of situations, even after seeing a new concept only a few times [205]. In
this Chapter, we propose an inverse procedural modeling scheme that aims to endow machines with similar
abilities to learn flexible, general purpose visual concepts. For instance, to support creative applications, we
would like to be able to feed it a small set of visual exemplars and have it synthesize novel generations that
match the input concept. Or to support analysis tasks, our system should be able to parse the input exemplars
into corresponding parts in a consistent fashion. We desire a system capable of achieving these goals across
different visual domains.

Past work in the field of concept learning has explored systems capable of meeting some of these desider-
ata [116] Some attempts have proposed purely ‘neural’ approaches that learn to perform well on a single
concept-related tasks, like classification [211, 190] or generation [48, 173, 57]. A smaller number of ‘neural’
approaches have investigated how to learn concept representations that support multiple tasks [40, 75]. While
these methods often achieve domain-flexibility by learning from visual data directly, they are data-hungry and
don’t always generalize well to out-of-distribution concepts.

More relevant to the subject matter of this dissertation are concept-learners that construct structured task-
general representations. To the best of our knowledge, such methods have only been successfully developed

for stroke-based drawing domains. BPL [115] fits a structured hierarchical model of handwritten character
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production to human stroke data under a Bayesian framing, achieving human-level performance across gen-
erative and discriminative tasks. GNS [46] extends this framework with a neurosymbolic method, where the
distribution and correlation of strokes are modeled with learned networks. While these approaches demon-
strate impressive performance, their design is specialized for datasets such as Omniglot; we are unaware of
any successful attempts to generalize these approaches to other domains.

Working towards domain and task general concept learning, we introduce the Template Program frame-
work. Our neurosymbolic system learns how to infer programs that capture visual concepts. This framework
extends the ‘single input’ visual program induction method described in Chapter 4, introducing networks that
learn to find procedural models that explain a collection of visual inputs. Beyond simply parsing concepts,
our Template Programs can also be sampled to synthesize new generations from a particular concept.

Template Programs are structured symbolic objects from a domain-specific language that capture struc-
tural and parametric attributes common to a particular concept. They admit instantiated programs that accord
with these constraints, and convert these programs into visual outputs with a domain-specific executor. We
train networks that learn how to infer Template Programs with a training regime that works across visual
domains. This paradigm requires only a domain-specific language (DSL) and a visual dataset (e.g. images)
with concept groupings (e.g. class annotations). Our two-step learning approach first pretrains a series of
inference networks on synthetic data sampled from the DSL, and then specializes these networks towards the
target dataset with a bootstrapped fine-tuning procedure.

We experimentally validate that our method is capable of inferring Template Programs across multiple
visual domains: 2D layouts, Omniglot characters, and 3D shapes. We demonstrate that Template Programs
natively support a number of downstream applications, including few-shot generation and co-segmentation.
We are unaware of any other method that is able to perform these tasks in a domain-general fashion, so we
compare against either task-specific or domain-specific alternatives. With respect to task-specific approaches,
we find that our neurosymbolic method achieves superior performance. For the one domain, Omniglot [115],
where task-general methods have been proposed, we compare our domain-general method against domain-
specific approaches and find that we are able to achieve competitive performance.

We release code for our experiments at: https://github.com/rkjones4/TemplatePrograms
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Figure 6.1: Our inference process. First, a group of visual inputs are encoded (Step 1). Next, our TemplateNet
uses these encodings to infer a Template Program (7'P, Step 2). The T'P and each encoding are then sent to
the ExpansionNet to produce a Structural Expansion (SFE) for each input (Step 3), which are finally passed
to the ParamNet to produce a set of complete programs that explain the inputs (Step 4).

6.1 Method

Our framework learns how to infer Template Programs (Section 6.1.1) that capture visual concepts. We

describe our inference networks in Section 6.1.2 and our learning paradigm in Section 6.1.3.

6.1.1 Template Programs

Given a collection of related visual inputs, our goal is to find a symbolic structure capable of representing this
group as a concept. This structure must be able to account for both (i) the shared attributes across the group
and (ii) the allowable divergences that differentiate various group members.

Towards this goal, we introduce Template Programs to represent visual concepts. A Template Pro-
gram (T'P) is a partial program specification from a domain-specific language (DSL). We assume this DSL
is a functional language, where each function takes other functions or parameter arguments as input. Tem-
plate Programs admit fully instantiated programs (z). These programs can be run through a domain-specific

executor (F) to produce visual outputs.
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Template Programs are composed of a hierarchy of function calls (i.e an expression tree) and are option-
ally allowed to define relationships between parameter arguments (e.g. variable reuse). All instantiations
from a Template Program must invoke the specified functions and use the described relations. To allow
instantiations to vary structurally (i.e. use different functions), we introduce a special HOLE construct.
Each HOLE in the Template Program can be filled in with an arbitrary expression tree. This process cre-
ates a Structural Expansion (S E), which completely specifies the function call sequence of an instantiation.
Any function parameters that lack a specified relation in the SE are allowed to differ freely in the output

programs.

6.1.2 Inference Networks

We use a learning-based approach to infer Template Programs and their instantiations. Given a group
of visual inputs X from some concept X, our goal is to infer a Template Program 7P, such that for
each x in X© there is a program instantiation z from TP so that F(z) = .

We solve this difficult inverse structured prediction problem with a series of inference networks p;, that
we depict in Figure 6.1. To start, each x is converted into a latent code with a domain-specific visual encoder
(e.g. a 2D CNN for image inputs). These latent codes are then passed through a series of auto-regressive
networks, explained below.

The TemplateNet, p(T'P|X ), is responsible for inferring Template Programs. Attending over all of the
latent codes from X as conditioning information, it autoregressively predicts a series of tokens that form
the Template Program. We linearize this composition of functions with prefix notation. Using Figure 6.1 as
reference, these tokens are either (i) functions from the DSL (SCALE), (ii)) HOLE tokens, or (iii) parametric
relations, such as static variable assignment (Triangle) or variable reuse (Vp).

Given the inferred TP, we use the ExpansionNet and ParamNet to instantiate a complete program z.
The ExpansionNet, p(SE|T P,x) , conditions on T'P along with a single visual input x, and autoregressively
produces a SE by filling in HOLE tokens with a series of functions. This SE is then reformatted to expose
any free parameters and their relations. The ParamNet, p(z|SFE,z), conditions on this representation and
the same visual input x in order to autoregressively predict the value of each parameter which instantiates a

complete program z.



72

6.1.3 Learning Paradigm

How can we train our inference networks? With ground-truth program annotations, we could employ super-
vised learning, but datasets with this level of annotation do not exist. As our goal is to design a domain-general
framework, our problem formulation assumes the following as input: a target dataset of interest X* and a
relevant DSL. We assume that we can sample groups of visual concepts from this dataset (e.g. by using class
annotations), but otherwise assume the visual data is unstructured. Under these assumptions, we employ a
two-step process: we first initialize our networks by pretraining on synthetic data sampled from the DSL, and
then we specialize pj,r towards X * with bootstrapped finetuning.

Synthetic Pretraining We implement each autoregressive network within pj,r as a Transformer decoder
with causal masking (where the conditioning information varies across networks). With paired (input, output)
data, each of these networks can be trained with maximum likelihood updates (i.e. cross-entropy loss).
We can produce (input, output) pairs for all of our networks if we have an associated (X¢, TP, Z%)
group, where targets for the ExpansionNet and ParamNet can be derived by comparing the TP to each
z € Z%(further details in Appendix D.4.1).

One way to produce paired data is to generate it synthetically. Following previous VPI approaches [206,
187], we sample synthetic data from our DSL and use it to pretrain our inference networks in a supervised
setting. At a high level, this sampling procedure invokes the following steps: (1) sample a full program
from the DSL (e.g. by stochastically expanding the grammar), (2) convert the full program into a TP (e.g.
by collapsing random expression trees into HOLE tokens and randomly assigning parameter relations), (3)
sampling a group of programs Z¢ from the TP (e.g. through random expansion) and recording their
executions, X = (E(2)V z € Z%).

Bootstrapped Finetuning While synthetic pretraining attunes pjys to the DSL, it produces overly general
networks that make inaccurate predictions when run over concepts from X *. To specialize pj,s towards X*,
we develop an unsupervised bootstrapped finetuning approach that generalizes the PLAD framework de-
signed for single-input, deterministic programs (Chapter 4).

Our algorithm oscillates between inference and training steps. In each inference step, we run pj,r over
groups of visual inputs X drawn from concepts in the target dataset X € X*. We run a beam-search to find
the Template Program whose instantiations best match X ¢ under an objective O (Eq. 6.1). For each X, we
record the best inferred (TP, Z) pair for use in the training step.

The training step uses this paired data to finetune pj,;. Specifically, we convert (X&, TPY, Z%) inferred
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Figure 6.2: We learn to infer Template Programs that capture input concepts (Inp). Template Programs
produce consistent concept parses (Seg) and synthesize new generations (Gen). Our framework flexibly
extends across different visual domains and input representations.

groups into paired training data for p;,r under different self-supervised learning formulations. In the self-
training (S7) formulation, we leave the group as is. In the latent execution self-training formulation (LEST),
we replace X by executing each program in Z¢. Our wake-sleep formulation (WS) first trains a generative
model pgen(Appendix D.3.3). This model is a modified variant of p;,r, where the visual latent codes are
masked out, so that visual information does not affect the conditioning. We train pye, to model the inferred
(TPC, Z%) data, and then we sample a collection of synthesized (T P“, Z) pairings from the network.
Finally, we produce an associated X © for each generation by employing our program executor, following the
same procedure as in LEST.

From these three self-supervised approaches (ST, LEST, WS), we get three distinct datasets of (X G,
TPC, ZG) groups. We use these datasets to finetune pi,¢, using the same maximum likelihood updates as in
our synthetic pretraining phase. We randomly sample batches from each of these datasets in a training loop
until we reach convergence with respect to concepts from the validation set of X *.

Objective Our inference procedure takes in a visual group X ¢ and tries to find a Template Program 7' P whose

instantiations Z© best explain the group. We formalize this notion of best with an objective composed of two
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terms (i) reconstruction error (under a domain-specific metric M) and (ii) the description length difference

between each z and the T'P it originated from. Specifically, we try to minimize:

O=X*» M E(2)+Xx* » |z —|TPY (6.1)
(z,2)€(X%,29) 2€Z6G
In short, we search for Template Programs that encode as much commonality as possible while still producing

instantiations that capture the visual input.

6.2 Results

We validate the benefits of our method through comparisons with alternative approaches across three visual
domains. We describe the domains in Section 6.2.1 and our experimental design in Section 6.2.2. Next,
we evaluate performance on downstream tasks: few-shot generative modeling (Section 6.2.3, Figure 6.2
Gen rows) and parsing-based cosegmentation (Section 6.2.4, Figure 6.2 Seg rows). Finally, we discuss out-
of-distribution generalization, method ablations, and additional capabilities of Template Programs in Sec-

tion 6.2.5.

6.2.1 Visual Domains

We experiment over three visual domains that differ in input modality and concept groupings. We provide an

overview of each domain here, and further information in Appendix D.2.

2D Primitive Layouts We design a procedurally generated domain where concepts are represented with
a layout of simple 2D colored primitives. In addition to functions that move, scale, and color primitives,
our DSL also contains simple symmetry functions (e.g. REFLECT, Fig. 6.1). We hand-design 20 high-
level meta-procedures that correspond with manufactured or organic concepts (e.g. cats or clocks). Each
meta-procedure creates a distribution of concepts by expressing different combinations of four attributes,
allowing us to produce 384 distinct concepts. We divide these into 216 training-validation concepts and 168
testing concepts, where this split is designed to investigate out-of-distribution generalization performance
(Section 6.2.5).

Omniglot Characters [115] introduced the Omniglot dataset which contains handwritten characters

from 50 languages. These characters are split between a background set (964 characters) and a generalization
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Table 6.1: Across multiple visual domains we quantitatively evaluate few-shot generation and co-
segmentation performance. Our method outperforms domain-general but task-specific alternatives, and is
competitive against approaches that specialize for Omniglot.

Domain ———— Omniglot 2D Layouts 3D Shapes
Task Few-shot gen Co-seg Few-shot gen Co-seg — Few-shot gen — Co-seg
Method FDJ{ Conf{MMDJ{} Cov{} mloU{} FD{ Conf{MMDJ| Covf mloU{ FD{MMDJ Cov{} mIoU{

Domain BPL 130 579 958 611 799 - - - - - - - - -
Specific GNS 123 550 947 581 738 - - - - - - - - -

FSDM 196 5.17 12.6 486 - - - - - - - - -
Task ~VHE 139 246 104 520 - 819 59.0 8.06 224 - - - -
Specific arVHE 137 123 102 558 - 453 77.0 634 45.1 - 128 857 536 -

BAE - - - 343 - - - - 345 - - - 532

Ours 115 599 940 507 787 30.7 909 549 50.6 82.5 84.5 6.49 539 68.6

set (659 characters), where each concept comes with 20 examples. We use the background characters for
training and validation, and test on the generalization characters. Our DSL for drawing characters produces
strokes by moving a virtual pen. The pen moves at an angle, for varying distances, optionally bowing inwards
or outwards. It can be lifted up or put down and has the option to back-track to previous positions. As we are
more interested in modeling stroke structure than physical handwriting dynamics, we adopt a simplified ink
model compared with previous work: any pixel the pen passes through is filled completely.

3D Shape Structures Beyond 2D domains, we also run experiments on a dataset of 3D shapes. Following
past work, we use a structured part-based representation, where 3D shapes are modeled as a combination of
primitives (i.e. cuboids) [18, 80]. For our DSL, we use the ShapeAssembly modeling language (Chapter 3),
which creates complex 3D shapes by instantiating cuboids and assembling them together through attachment
and symmetry operators. We source 10,000 3D shape structures from the chair, table, and storage categories
of PartNet [141], holding out 1000 of these for our test set. We use the associated structural annotations
in PartNet to identify groupings of these shapes that correspond to concepts that are more fine-grained than
object category. While we use annotations to partition the dataset into groups, our networks receive only a
visual representation of each shape during training: either an unordered collection of primitives or a 3D voxel

grid.

6.2.2 Experimental Design

Networks We implement each autoregressive component of p;,¢ with Transformer decoder models that have
8 layers, 16 heads, and a hidden dimension of 256. We use causal attention masks with a prefix that contains

conditioning information (see Section 6.1.2, Appendix D.3). For the 2D layout and Omniglot domains we
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model our visual encoders with 2D CNNs that respectively take in RGB images of size 64x64 and binary
images of size 28x28. We train two different versions of pj,r for 3D shapes. When shapes are represented
as an unordered collection of primitives (primitive soup), we use a Transformer encoder with order-invariant
positional encodings (Fig. 6.2, left & middle). We additionally explore using a 3D CNN that takes in a 643
occupancy grid of voxels (Fig. 6.2, right). For each domain, we train pj,s with the procedure described in

Sec. 6.1.3 until we reach convergence on the validation set (additional training details in Appendix D.4).

Inference logic We infer Template Programs and their instantiations with a beam search. This algorithm
has two parameters: BMr p controls the size of the beam used to find Template Programs under p(T'P|X G),
while BM., controls the size of the beam used to find instantiated programs under p(SE|T P,z) and p(z|SE,x).
This search concludes by evaluating each candidate under O, which requires a domain-specific reconstruction
metric. We use a color-based IoU for 2D layouts, an edge-based Chamfer distance for Omniglot, and either
a primitive-matching score or IoU for 3D shapes depending on the input format (details in Appendix D.2).
During fine-tuning, we set BMrp and BM, to 5 (~1 second for inference per input group). For evaluation

tasks, we set BMrp to 40 and BM, to 10 (~20 seconds for inference per input group).

Comparison Conditions We compare how our method performs on concept-related tasks against alter-
native approaches. For the Omniglot domain, we compare against the task-general but domain-specific
BPL [115] and GNS [46] methods. Though they are designed to operate under one-shot paradigms, we
adapt them for our task settings. We also compare against alternatives that are domain-general but task-
specific. For few-shot generation, we compare against FSDM [57] and VHE [75]. These approaches both
train deep generative networks that condition on a group of input images but use different generative models:
VHE uses a VAE [107], while FSDM uses diffusion [77]). During our experiments, we found VAE training
to be highly unstable, so we also introduced an autoregressive VHE variant: arVHE. Our arVHE model first
tokenizes visual data (e.g. through vector-quantization [208]) then learns an autoregressive model over this
tokenization that is conditioned on groups of visual inputs. For co-segmentation tasks, we compare against
BAE-NET [25]. BAE-NET forms consistent parses by training a parameter-constrained implicit network to
solve an occupancy reconstruction task. Though this method is designed primarily for 2D and 3D shapes,
we adapt it to create segmentations across all of our domains. We provide additional details for all of our

comparisons conditions in Appendix D.6.
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6.2.3 Concept Few-shot generation

For few-shot generation, a method is given a set of examples from a concept as input and is tasked with
producing new instances that demonstrate variety while maintaining concept membership. Our method ac-
complishes this with a two step process: first we infer a Template Program that explains the input group, then
we sample new instantiations from the Template Program. To sample these instantiations, we use variants
of our p(SE|TP,x) and p(z|SE,z) that condition on a mean-pooled visual encoding of the input group
(Appendix D.3.3). Across our three domains, we show examples of our method’s few-shot generative capa-
bilities in Figure 6.2, Gen rows. Our method is able to capture input concepts and synthesize new outputs
that demonstrate interesting variations while preserving concept identity.

We present quantitative few-shot generation results in Table 6.1 (details in App. D.5). For each domain
and test-set concept, we provide every method with a group of 5 visual inputs and ask it to synthesize 5
generations. Comparing these generations to a reference set of held-out examples from the same concept, we
compute the following metrics using the latent space of a domain-specific auto-encoder: Frechet Distance
(FD), Minimum Matching Distance (MMD), and Coverage (Cov). For the Omniglot and 2D layout domains,
we also report class confidence (Conf), the average predicted probability of each generation being a member
of the target class under a classifier trained on all domain concepts.

As demonstrated, our method vastly outperforms task-specific alternatives (FSDM, VHE, arVHE) for
few-shot generation. Over all domains, we find that our method scores much better along metrics that measure
output concept consistency (Conf) and fidelity to the reference set (FD, MMD), while maintaining reasonable
output variability (Cov). Moreover, our domain-general method is able to largely match, and even somewhat
outperform, domain-specialized approaches (BPL, GNS) along measurements of concept consistency and
fidelity to the reference set.

We visualize few-shot generation results for Omniglot characters in Figure 6.3. While we again offer
much improved performance over the task-specific alternatives, we note that the methods that specialize for
Omniglot typically demonstrate a wider range of output variability, which confirms the trend we observe
with the Cov metric. We hypothesize this difference is due to BPL and GNS learning priors over human
stroke patterns (learning how people typically produce characters). In contrast, our method finds a Template
Program attuned to the visual data present in the input group without regard for structured priors beyond the

input DSL.
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Perceptual Study To further investigate few-shot generative performance, we designed a two-alternative
forced-choice perceptual study (Appendix D.5.2). We recruited 20 participants, and presented a series of
questions that compared generations from competing methods to the input group. We report results for
this study in Table 6.2. For the Omniglot domain, we compared our method against our best performing
task-general method (arVHE) and the domain-specific GNS method. We additionally compared our method
against ar VHE for the shape domain. We observed that there was an overwhelming preference for our method
compared with task-specific alternatives (our generations were preferred at rates of 94% and 84% against
those produced by arVHE). Even when our method was compared with GNS, we found participants had
a slight preference for the few-shot generations our system produced, with 64% preference rate. We point
to this result as another strong indication of the impressive performance that our domain-general method is

capable of achieving.

6.2.4 Concept Co-segmentation

Our method also natively supports co-analysis tasks. When we infer a Template Program and instantiations
that explain an input visual group, we can use the shared structure of the Template Program to parse the group
members in a consistent fashion. We visualize this capability in the Seg rows of Figure 6.2. This consistent

parsing allows us to perform a co-segmentation task: given an input visual group, where exactly one member
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Figure 6.4: We compare co-segmentations produced from voxelized shapes (Inpuf) to ground-truth annota-
tions (GT)

of the group has a labeled segmentation, our goal is to propagate this labeling to the other group members.
We provide further details in Appendix D.5.3.

We compare how our method does on co-segmentation tasks across domains. Our main comparison is
against BAE-NET [25], which is designed specifically for this task. For Omniglot, BPL and GNS can also
perform this task by parsing visual inputs to ordered strokes. We report results of our experiments in Table 6.1.
We evaluate performance with a mean intersection over union metric (mloU) that measures how closely the
output segmentation predictions match the ground-truth labelings. Despite the fact that our method never
trains on human stroke data, we achieve a better mIoU on this co-segmentation task compared with GNS,
and nearly match the metric value achieved by BPL. Though our output co-segmentations are less structured
compared with the ordered stroke parses BPL and GNS can produce, we are encouraged by our method’s
performance in this task. For our 3D shapes domain, as BAE-NET was originally designed to operate over
voxels, our comparisons against it use a variant of our method that also takes in voxel inputs. We visualize an
example co-segmentation of each method in Figure 6.4. Across domains and input modalities, we find that

we outperform BAE-NET for this task.
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6.2.5 Discussion

Out-of-distribution generalization Different domains require different levels of generalization. For in-
stance, in the Omniglot dataset there is no alphabet overlap between train and test characters, so strong
generalization capabilities are required for each test concept. As we procedurally generated the 2D layout
domain, we are able to control and evaluate the level of out-of-distribution generalization required for each
test-set concept. We consider three settings. Easy concepts have a new combination of attributes, but each
attribute has been seen before (e.g. chair back, top-left of Fig. 6.2). Medium concepts have a new attribute
not seen during training (e.g. double-sided leaves, top-middle of Fig. 6.2). Hard concepts are from a meta-
procedure that was not used at all during training (e.g. turtles, top-right of Fig. 6.2). We find that while
our method does become worse when evaluated on more difficult concepts, its performance remains more

consistent compared with alternative approaches. We explore this phenomenon further in Appendix D.1.1.

Ablations We consider the effect of different design decisions on our method with an ablation study. We
provide the details of this study and quantitative results in Appendix D.1.2. We find that our bootstrapped fine-
tuning process is critical to adapting networks pretrained on synthetic data towards a target dataset of interest.
We validate that our scheme of allowing the Template Program to capture parametric relationships improves
performance on downstream tasks. Finally we compare our three step inference approach (T'P — SE — 2)
against a two step alternative where each z is predicted directly from the 7T'P. In this comparison, we find
that our formulation, which allows the ParamNet to attend over the complete expression tree, outperforms

this alternative formulation.

Unconditional Concept Generation Though we mainly evaluate our method on few-shot generation and
co-segmentation, these are not the only concept-related tasks our framework can support. For Omniglot,
we explore how our approach can be used for unconditional concept generation. In fact, this is a task we
naturally solve as part of our fine-tuning procedure: the wake-sleep component of each training loop uses
an unconditional generative model to sample Template Programs that represent new concepts. We visualize

some of these generations in Figure 6.5.
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Table 6.2: Perceptual study results evaluating few-shot generation performance. Our method is greatly pre-
ferred over task-specific alternatives and slightly preferred over domain-specific alternatives.

Domain Omniglot 3D Shapes
arVHE GNS arVHE
Ours vs. 94% 64% 84%

6.3 Discussion

We presented the Template Programs framework: a neurosymbolic method that learns to capture visual con-
cepts with structured symbolic objects. We demonstrated that our method flexibly learns to infer Template
Programs across multiple visual domains: 2D primitive layouts, Omniglot characters, and 3D shape struc-
tures. Our approach supports multiple downstream tasks of interest, such as few-shot generation and co-
segmentation. On these tasks, we achieve superior performance over other domain-general, task-specific
alternatives, and find that we match, and in some cases slightly outperform, domain-specific, task-general

alternatives for the limited areas where they exist.
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Figure 6.5: Qualitative examples of unconditional concept generations on the Omniglot domain. We show
30 concepts synthesized by our method where each concept is associated with two rows of five images. The
bottom five images depict five samples from each concept, and the top five images show the nearest neighbor
in the training set by Chamfer distance to each sample.
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Macro Operation Discovery for Shape

Programs
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Figure 7.1: We propose ShapeMOD, an algorithm which takes as input a collection of 3D shape programs
and makes them more compact by automatically discovering common macros which can be re-used across
the collection. We apply ShapeMOD to datasets of ShapeAssembly programs and find that generative models
which train on refactored programs containing these macros produce more plausible output shapes than those
trained on the original programs. The discovered macros also facilitate shape editing by exposing only a
small number of meaningful parameters for manipulating shape attributes. For example, the four_leg_base
macro exposes two parameters (visualized as sliders with red handles); one parameter controls leg size, while
the other controls leg spacing.

To maximally realize the benefits of its representation, a good shape program should be compact and
expressed at a high level while still exposing important degrees of freedom for editing. One way to create
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such programs is to introduce higher-level functions, or macros, into the shape DSL. We define a macro to be
a function that, when executed, expands into a series of commands from the base DSL.

In this chapter, we present ShapeMOD, an algorithm for automatically discovering such macros from
a collection of shape programs. ShapeMOD operates on any imperative, statement-based language whose
commands are parameterized by discrete and continuous parameters. It is designed around the principle of
discovering macros that make programs more compact, where compactness is measured by the number of
function calls and number of free parameters required to represent the input shape collection.

In pursuit of compactness, one must consider the cost incurred by adding more functions (i.e., macros)
to the DSL. At one extreme, one could use no macros, which results in the maximum number of free param-
eters (i.e., minimal compactness). At the other extreme, one could define a macro for each shape program
in the input collection—this is maximally compact, but makes applications such as shape manipulation or
learning to generate novel shape programs impossible. Our insight is that the trade-off space between these
extremes can be navigated via optimization to find a middle-ground where a small set of macros explain a
high percentage of variations across the input collection of shape programs. Critically, these frequently-used
macros expose sufficient degrees of freedom to allow for shape manipulation and exploration across a shape
collection.

To demonstrate the benefits of ShapeMOD, in this chapter we apply it to collections of ShapeAssembly
programs (Chapter 3), where, in order to discover more useful macros, we modify the grammar slightly,
as described in Appendix E.1. In its original form, ShapeAssembly contains two base functions and three
macro functions. The base functions are Cuboid, which creates an cuboid part proxy, and attach, which
moves a Cuboid to satisfy the described spatial relationship. The squeeze, reflect and translate
commands are expert-defined macros that abstract common patterns of structural and geometric variation.
Each of these macros expands into a sequence of lower-level Cuboid and attach commands. As we
observed that these macros improved downstream task performance, in this chapter we explore how such
similarly beneficial macro operations could be automatically identified. ShapeMOD is the first approach
that discovers macro operations capturing parametric relationships between continuous parameters across a
collection of imperative programs. While specialized data structures such as version spaces and E-graphs
can efficiently reason about rewrites of functional programs [42, 31], they cannot efficiently reason over
semantic line re-orderings of imperative programs (i.e. maintaining correct execution behavior) and thus are
not applicable to languages such as ShapeAssembly.

We run ShapeMOD on multiple collections of shape programs expressed in the ShapeAssembly DSL to
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Figure 7.2: ShapeMOD consists of two alternating phases: proposing new candidate macros (top) and refac-
toring programs to use some of the proposed macros (bottom).

discover new libraries of macros. For example, in Figure 7.1, starting from a set of chair shape programs,
ShapeMOD discovers a reusable macro for four leg chair bases which exposes a compact set of associ-
ated control sliders. We demonstrate the benefits of working with these discovered macros, by evaluating
how adding the discovered macros into the language affects performance on downstream tasks: learning
a generative model for shape programs, learning to infer shape programs from unstructured geometry, and
goal-directed editing of shapes via their programs. In all cases, task performance is improved by using auto-
matically discovered macros. Finally, we show that ShapeMOD can find useful macros even when trained on
a set of ShapeAssembly programs from multiple categories.

We provide code for our method at https://github.com/rkjones4/ShapeMOD .

7.1 Macro Operator Discovery

ShapeMOD’s goal is to take a dataset of programs D and the library of DSL functions used to express
them £, and return a new library (with additional macros) which is able to express the programs in D with
fewer free parameters. The motivation here is that macros should remove free parameters that correspond to

extraneous degrees of freedom, i.e. degrees of freedom that can create implausible output shapes, such as
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Figure 7.3: Running ShapeMOD for multiple rounds allows for discovery of increasingly complex macros.
Here, a macro discovered in Round 2 uses a macro previously found in Round 1 as part of its function body.

independently changing the length of each leg of a table. At the same time, we want to keep the number of
functions in our library relatively small, so as not to remove necessary degrees of freedom that can create
meaningful shape manipulations. We formalize this trade-off in an objective function f which the algorithm

attempts to minimize.

7.1.1 Overview

The ShapeMOD algorithm has two phases. First, a proposal phase (Section 7.2) finds clusters of similar
programs and uses these clusters to propose a set of candidate macros. Then, an integration phase (Section
7.3) greedily iterates through a ranked list of these candidate macros and adds them to the library £ whenever
it would improve the objective function f. These phases can be alternated one after the other for multiple
rounds, with the output of one phase treated as the input for the next (Fig. 7.2). By iterating this procedure
for multiple rounds, increasingly complex macros can be found; as a macro discovered in round ¢ can use a
previously-discovered macro from round ¢ — 1 in its definition (Fig. 7.3).

Working with imperative programs that contain real-valued parameters presents unique challenges. For
instance, it is difficult to reason about valid line re-orderings of imperative programs when discovering macros
and deciding when they can be applied. ShapeMOD uses a sampling-based approach to discover macros
by creating clusters of shapes with shared program structure (Section 7.2.1) and a beam search procedure
to decide how to apply discovered macros to existing programs (Section 7.1.4). Moreover, when dealing
with real-valued parameters, it is challenging to find meaningful (non-spurious) parametric relationships,
especially within a single program. To achieve generality, ShapeMOD finds abstracted expressions that

simultaneously describe multiple programs from a cluster of related shapes (Section 7.2.2).
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Algorithm 2: ShapeMOD

Input: Library of functions £, Program dataset D, Objective f
Output: Updated £ with macros, best programs P*(D, L)

1: for num_rounds do

2:  candidate_macros <— Set() {Proposal Phase}
3:  for num_proposal_steps do
4: z, 0 < sampleProgAndOrder(D) {Sec 7.2.1}
5: Phmatches <— findMatchingProgs(D, z, o)
6: Petuster <— sampleByParamSim(Ppatches)
7: Zaps < findAbstractProg(Peruster, £) {Sec 7.2.2}
8: M« proposeMacrosForProg(zaps) {Sec 7.2.3}
9: M + generalize(M) {Sec 7.2.4}
10: candidate_macros += M
11:  end for
122 D « subsample(D) {Integration Phase}
13:  for num_integration_steps do
14: M <« getTopRankedMacro(candidate_macros) {Sec 7.3.1}
15: L'« optimize(f, £, L + {M}, D) {Sec 7.3.2}
16: if £’ # L then
17: L + L'; continue
18: end if
19: Minfreq ﬁndInfrequentMacros(ﬁ, L,L+{M})
20: if Minfrcq = @ then
21: continue
22: end if

23: L'« optimize(f, L, L + {M} — Minfreq, D)
24: if £’ # L then

25: L+ L

26: for M € Mipfreq do

27: L « optimize(f, £, L + {M}, D)
28: end for

29: end if

30:  end for

31:  for M € Ldo

32: L < optimize(f, £, L — {M}, D)
33:  end for

34. D « filterBadOrders(f, D, L) {Sec 7.3.3}
35: end for
36: return £, P*(D, L) {Sec7.1.4}

Complete pseudocode for ShapeMOD is shown in Algorithm 2; Sections 7.2 and 7.3 explain this proce-
dure in more detail. As input, it takes in a starting library of functions £, a dataset of imperative programs D
and an objective function f to be minimized. Each element of D is a tuple (z, O, ) containing program lines
z and the set of valid orderings for those lines O, (i.e. re-orderings of the lines which produce the correct

output when executed).
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7.1.2 Initialization

In our experiments, the library £ is initialized with the 5 manually designed functions from the ShapeAssem-
bly grammar. Then, starting with a collection of hierarchically-organized 3D cuboid structures from PartNet
[141], we use ShapeAssembly’s data parsing algorithm to find program lines z which recreate each shape.
We then developed a procedure to determine the set of valid orderings O, for that program (i.e. all order-
ings which produce the correct output geometry) to form our input dataset D. Further details about the data

parsing and valid ordering procedures can be found in the supplemental (Section A.3).

7.1.3 Objective Function

Our goal is to represent an entire dataset of programs compactly (removing free parameters) while also
keeping the number of functions in the library small. Specifically, our objective is to minimize a weighted
sum of the number of functions in £ and the number of free parameters needed to represent programs in the
dataset D. For ShapeAssembly, free parameters can have multiple types T: Choice of function per line (fn),
cuboid ID (cid), float/continuous (f), discrete (d), Boolean (b). One may care about compressing these types

differently, we allow each parameter type to be weighed differently in the objective defined as,

1
F=alll+ > AT (PH(D, L£))| + Aee(7, D, P*(D, L))
‘ | TeT
where P*(D, L) returns the best programs for D using the functions in £ (Section 7.1.4), 7(P) returns the
set of all 7-typed free parameters in the programs P, and ¢(7, D, P) returns the sum of errors in 7-typed
parameters incurred by using P* (D, £) in place of the original programs in D. The weights A\, {\-|7 € T}

and A, can be adjusted to express preferences for the types of macros the algorithm aims to find. In our

experiments, we use A\, = 1, Ay = 8, A¢ia = 8, \r = 1, A\g = 0.5, A\p, = 0.25, and A\, = 10.

7.1.4 Finding the Best Program for a Given Library

Calculating the value of f over a dataset of shapes requires finding the program under £ that minimizes the
objective function for each program (z,0,) € D. As O, is a collection of valid orderings of the program
lines z, we solve this problem by finding the best scoring program under £ for every o € O,. Combining
an ordering o with program lines z produces a program expressed in terms of base library functions z,. We

then want to find the best program, z*, that uses the functions in £ (including macros, if £ contains them)
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Figure 7.4: ShapeMOD’s proposal phase, which proposes candidate macros to be added into £. Each round
of this phase begins by identifying a cluster of structurally-identical programs with similar parameter values
within the input dataset (Section 7.2.1). It then finds a single abstracted program which subsumes most or all
of the programs in this cluster (Section 7.2.2); here, gray parameter values are abstracted as constants, blue

ones as continuous free variables, and pink ones as discrete free variables. Subsequences of lines in this
abstracted program (shown in green ) are isolated to form potential macros which could be used to re-write
the program (Section 7.2.3). Finally, this set of candidate macros is expanded by including generalizations of
the initial set (Section 7.2.4); |purple lines show lines that are generalized. Best viewed on a high-resolution
screen.

to recreate z, while minimizing f. We implement this procedure with a beam search that iteratively builds
partial programs in the beam by adding calls to functions from £ whose expansions cover lines in z,. For a
function expansion to cover a sequence of program lines, the expansion must match those lines on command
type, the values of the discrete / Boolean parameters must match exactly, and the continuous parameters must
differ by an amount no greater than e. We set ¢ = 0.05, finding that larger values lead to abstracted programs
with degenerate geometry. We rank partial programs in the beam by their objective value, normalized by the
number of lines in z, it is covering. This search runs until all programs in the beam have no more lines in
z, to cover; the program with lowest objective value is returned as the best program z*. In the case of ties,
we choose the program with the most canonical ordering, as explained in the supplemental material. In our
implementation, we use a beam width of 10. Other search strategies could be applied here; we chose beam

search as it was relatively fast and found good solutions.

7.2 Proposal Phase

The goal of ShapeMOD’s proposal phase is to construct a set of candidate macros which might be useful

for compressing the dataset of shape programs D. A schematic overview of the proposal phase is shown in
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Figure 7.4. In each proposal round, the algorithm first forms a cluster of similar programs sampled from D
(Section 7.2.1). Then, using the functions of £, it finds an abstracted program that explains the majority of
examples in the cluster while trying to remove free parameters whenever possible (Section 7.2.2). It converts
this abstracted program into a set of candidate macros (Section 7.2.3) and finds potential generalizations of
these macros (Section 7.2.4). This process is repeated for num_proposal_steps (we use 10000) to build up a

large collection of candidate macros.

7.2.1 Form a Program Cluster

The goal of the cluster formation step is to find a set of programs from D that can be represented by a single
abstracted program, i.e. a program with free variables. The blue box in Fig. 7.4 illustrates the procedure.
The algorithm first randomly samples a program z from D and then randomly samples an order o from
the possible valid orderings in O, (Algorithm 2, line 4). It then finds the set of programs Ppatches from
D that structurally match z and also have o as one of their valid orderings in (Algorithm 2, line 5). In
ShapeAssembly, two programs structurally match if they use the same set of commands which refer to the
same cuboid IDs (though their other parameters may vary).

For each program in Ppatches, We record the norm n of the difference of its continuous parameters com-
pared with those in z. We then form a probability distribution over Pratches, Where each program is given
a weight proportional to 1 — -, where nx was the maximum observed n. Taking the parameter distance
between programs into account results in clusters that are more semantically consistent, which increases the
likelihood the abstracted program we produce can discover meaningful parametric relationships. Finally, we
sample k programs from Ppatches Using this probability distribution in order to form Peyyster (line 6). We use

k = 20 in our implementation.

7.2.2 Find Abstracted Program for Cluster

Given the cluster of programs Peuster identified in the previous section, the next step is to use the library
of functions £ to find the most compact program (fewest free parameters) that can represent the majority
of programs in Pepuster (Algorithm 2, line 7). By construction, the sequence of functions and cuboid IDs
is the same across all programs in Pepster- T0 build up the abstracted program z,ps, the algorithm uses a
similar procedure to the best-program-finding routine in Section 7.1.4: covering each line in the cluster by

choosing functions from £. However, instead of using a beam search to find the sequence of functions, here
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Figure 7.5: ShapeMOD’s integration phase, which chooses which candidate macros to add to the DSL library
L. On each round of this phase, the algorithm heuristically ranks candidate macros based on which are likely
to improve program compression, adds the top-ranked macro to the library, then finds the best refactored
program for each program in the input dataset D under this new library. If this refactoring lowers the objective
value f(D, L), then the macro is kept in the library; otherwise, it is discarded.

we employ a greedy strategy. We create a preference ordering over the functions of £ based on how many
free parameters each function constrains (weighted by their respective A, weights). Then, whenever we need
to pick a function, we step through this ordering, until we find a function that is able to match the parameters
of at least p = 70% of the next lines from Peuster-

For each function added to the abstracted program, we iterate through its parameter slots to see if we
can remove more degrees of freedom. For discrete parameters, a constant can be used, a previously defined
parameter can be used, or a new free parameter can be declared. For continuous parameters, a constant can be
used, an expression over previously defined parameters can be used, or a new free parameter can be declared.
The details of this logic can be found in the supplemental material (Section B.1). In all cases, the value chosen
for each parameter must still be valid for at least p percent of programs in Peyster- This process iterates until
there are no remaining uncovered lines in the programs of Peyster- At this point, z,ps is complete. The green

box in Fig. 7.4 shows an example of finding a single abstracted program for two base programs.

7.2.3 Proposing Candidate Macros

The abstracted program z,,s found in the previous step represents multiple shape programs from our dataset
(via leaving some of its parameters as free parameters). Thus, its function body likely contains re-usable
shape programming patterns—in other words, it is a good source of potential macros M (Algorithm 2, line
8). In this next step, the algorithm iterates through the lines of z,,s and finds all line sequences that could
be turned into a valid macro (yellow box in Fig. 7.4). A valid macro M is a sequence of program lines
that simplifies the program, i.e. it must remove some degree of freedom from the program lines it aims to
cover. For both computational efficiency, and to encourage the creation of more meaningful macros, we

impose some additional restrictions on the definition of a valid macro; see the supplemental material (Section
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B.2). For each created candidate macro, we record what cluster it was found in and the lines of the cluster it

covered, in order to calculate frequency statistics used later in the integration phase (Section 7.3).

7.2.4 Generalizing Macros

AS zaps 1S designed to maximally condense all of the programs in Peyster, the generated candidate macro
operators M may be somewhat overly-specific to the subset of programs in Peyster- Furthermore, M may
also contain some very similar macros that are treated as distinct. To get around these issues, the proposal
phase concludes with a generalization step, where for each discovered candidate macro, we also find all
generalizing macros that are within n program edits (Algorithm 2, line 9). We set n = 2 due to running time
constraints; in principle, higher values of n will lead to better solutions. For a given macro M, another macro
M’ is defined to be generalizing if for every parameterization of M, M’could be parameterized to produce
the same output. From this generalization procedure we form a graph where each node is a macro and edges
between two nodes indicates a generalizing relationship (orange box in Fig. 7.4). This graph is used to update
frequency statistics (in that generalizing macros also cover all lines covered by macros they generalize) which

influences the candidate macro ranking logic used by the integration phase (Section 7.3).

7.3 Integration phase

Given candidate macros from the proposal phase, the integration phase chooses which macros to add to the
library £ in order to minimize its objective function f. Figure 7.5 shows an overview. Solving such a subset
selection problem optimally is intractable, so this phase instead employees a greedy approximation. It iterates
through the candidate macro operators, on each iteration taking the highest ranked macro based on expected
improvement to f (Section 7.3.1). It then decides whether to add the macro into the library £ by evaluating

its effect on the objective function (Section 7.3.2).

7.3.1 Ranking Candidate Macros

The proposal phase can generate tens of thousands of candidate macros; it is computationally intractable
to consider all of them. To prioritize which candidate macros to consider within a finite time budget, the
algorithm employs a heuristic ranking scheme (Algorithm 2, line 13). The rank of a candidate macro M is
based on an estimate of how much using M would improve the score of the objective function. The ranking

scheme first calculates the gain of the macro over the functions already in £. The gain g of a macro M is



93

the weighted sum of the number of free parameters (weighted by their respective A, weights) that would be
removed each time M were used in a program instead of the lowest-cost sequence of functions currently in
L that is equivalent to or generalizes M. Then our ranking scheme calculates the percentage of shapes p that
produced M as a candidate macro during the proposal phase. The ranking score of M is then simply p - g.
This score is a simple estimate of the effect on the actual objective value f(D, £+ {M }) that does not require

the expensive step of finding the best programs for the whole dataset.

7.3.2 Evaluating & Selecting Candidate Macros

Given a candidate macro operator M, the next step is to see if adding it to £ would actually improve the value
of the objective function f. For this, we define a function opt imi ze which takes in f, the current library £,
a modified version of the library LT , and a subset of programs from the dataset D C D. It returns whichever
version of the library has the lower objective value, i.e. argmin(f(D, L") < f(D,L)). Using a subsample
D of the full dataset reduces computation time, i.e. we are using an unbiased estimator of the true objective
value for the dataset.

The algorithm first calls optimize with a modified library where M is added to £ (line 14). If this
leads to a library change, then it continues to the next candidate macro operator (lines 15-16). If £ remains
unchanged, it checks if any of the functions currently in £ are used significantly less in finding the best
programs over D when the modified library version is used (line 17). If the set of functions in £ whose
frequency decreased significantly, Mipgreq, is not empty, then it runs optimize once again with a modified
version of the library that includes M but removes all elements of Mipgreq (lines 18-20). This step allows the
algorithm to avoid a local minima where M would not be added to £, even if it could ultimately improve f,
because similar macros to M had been added to £ earlier. If this step changes the library, then £ has been
updated to include M, but it does not include any of the functions in Mjpgreq. Thus, the algorithm attempts
to add each M € Mingreq back into £, by once again calling opt imize and keeping the library version
with the better score (lines 23-24). Finally, after evaluating num_integration_steps=20 macros, the algorithm
checks if f can be improved by removing any of the functions in £ (lines 25-26). This can be beneficial, for
instance, when a macro discovered in an early round becomes a sub-routine of a macro discovered in a later

round, and therefore appears less frequently (or not at all) in P*(D, £).
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7.3.3 Removing Bad Program Orders

When L is composed of only original library functions, any valid ordering in O, for z will lead to a program
that produces the same score under f. As macros are added into £, using different line orderings in O, may
result in different scores under f (as some line orders will prohibit certain macros from being applied). As
such, after each integration round, the algorithm removes any orders from O, that lead to objective function
scores that are significantly worse (using a threshold of 7, = 1) then the score produced by the order, o*;
the order that leads to the best objective function score for z (Algorithm 2, line 27). The following proposal
rounds will then only be able to use orderings that have not been filtered out of D. Keeping the orderings
that perform best during the preceding integration phase produces more accurate heuristic rankings of macros
from the proposal phase (Section 7.3.1). We found this encouraged the discovery of complex macros, e.g.

without this step, the ‘four leg base’ macro was not discovered.

7.4 Results and Evaluation

We experimentally evaluate ShapeMOD’s effectiveness at compressing shape programs and at supporting
downstream tasks. Our experiments use three categories of manufactured shapes (Chairs, Tables, Storage)
from CAD models in PartNet. We use the same data parsing procedure as described in Chapter 3 to produce
3836 Chair programs, 6536 Table programs, and 1551 Storage programs. In Section 7.4.1, we examine
the properties of ShapeMOD’s discovered macros on dataset compression. In Section 7.4.2, we show that
using these macros improves the performance of generative models of 3D shape structures. In Section 7.4.3,
we demonstrate that macros aid in visual program induction tasks. And finally, in Section 7.4.4, we report
the results of a user study comparing performance on goal-directed shape editing tasks with and without

discovered macros.

7.4.1 Discovered Macros

For each shape category, we run ShapeMOD until fstops decreasing (5 rounds in all cases) to discover a
small set of macro operators. Instead of applying ShapeMOD directly on hierarchical programs, we form
D by decomposing each ShapeAssembly program into a collection of non-hierarchical sub-programs (e.g.,
a single Chair might contribute one program for its back sub-part and one program for its base sub-part). We

implement ShapeMOD in Python and run the algorithm on a computer with an Intel 19-9900K CPU, which
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Table 7.1: We measure how well different libraries can compress a dataset of shape programs (metric details
in Section 7.4.1). For all compression metrics, lower values are better, as our goal is to find a small collection
of functions that remove many degrees of freedom from the underlying shape programs. ShapeMOD operates
by attempting to minimize f, and we show that it does in fact improve f compared to the No Macros version.

Category Method £ 1L] tn(P*) d(P*) f(P*) b(P*)

No Macros 411 5 298 178 844 113
Chair Baseline Macros 312 36 21.7 7.0 80.2 4.2
ShapeMOD 260 17 21.0 64 581 8.6

No Macros 356 5 25.6 16.3 707 9.6
Table Baseline Macros 263 36 18.0 64 658 3.2
ShapeMOD 214 15 174 51 487 56

No Macros 453 5 304 216 922 117
Storage  Baseline Macros 314 48 18.4 7.6 8845 2.65
ShapeMOD 283 17 21.1 76 689 40
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Figure 7.6: We show some macros (top-middle) that ShapeMOD discovered when run on the Table dataset,
and program refactors that use these macros to significantly compress the number of exposed free parame-
ters (ShapeMOD arrows from outside to inside). We show program edits (down arrows) of corresponding
parameters in both programs with macros (green) and without macros (red). The discovered macros capture
parametric relationships that better preserve shape plausibility under manipulation; for example, all chair legs
remain the same size in the third column (macros), while the shape in the fourth column (no macros) becomes
disconnected and physically implausible .

takes 5 hours for Chairs, 12 hours for Storage, and 19 hours for Tables.

Fig. 7.6 shows examples of some of the macros discovered for Tables; see the supplemental material for
complete discovered libraries for all shape categories (Section F). These macros are used by multiple shape
programs in our dataset, explaining common patterns and shortening programs that use them. They also
better facilitate editing: making edits to a few parameters in macro-refactored programs tends to produce
more plausible shape variations than edits to the corresponding parameters of the macro-free program. For

instance, discovered macro_1 introduces a relationship that the heights of the table base and the table top
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should sum to the height of the table bounding box. Without this macro, edits to base ShapeAssembly
functions can easily cause the table top to overlap and intersect parts of the table base in an implausible
manner (left side of figure).

We compare the library of functions generated by our ShapeMOD procedure to two baselines:

1. No Macros: The base library of functions from ShapeAssembly that is used to initialize our ShapeMOD

procedure.

2. Baseline Macros: A naive single-pass approach for macro discovery that creates macros out of the
most common structural sequences present in the dataset and replaces parameters with constants when-
ever a high percentage of its parameterizations share similar values. See Appendix E.2 for details.

Table 7.1 compares these baselines to ShapeMOD’s discovered language on the task of compressing a dataset
of 3D Shape programs. We consider the following metrics:

* Value of ShapeMOD’s objective function (f)

* Number of functions in library (|£|)

* Average number of lines in the best programs (fn(P*))

* Average number of discrete parameters in the best programs (d(P*)

* Average number of continuous parameters in the best programs (f(P*))

* Average number of Boolean parameters in the best programs (b(P*))

By adding only a handful of macros to the language, ShapeMOD significantly compresses programs in terms
of number of lines and number of free parameters. For instance, the 12 Chair macros discovered remove
30% of program lines, 64% of the discrete parameters, and 30% of the continuous parameters needed to
represent the same dataset without macros. In total, these macro functions are able to decrease the value of
the objective function we aim to minimize by 37%. Moreover, ShapeMOD is able to compress programs to
a greater degree than the baseline approach, especially for continuous parameters, while using half as many
(or fewer) new macros.

The examples shown in Fig. 7.6 suggest that programs refactored using ShapeMOD macros produce more
plausible shapes under variations of their free parameters. We ran an experiment to quantify this behavior.
Given a set of ground-truth Chair programs, we run ShapeMOD and our baseline macros procedure on them
to create a set of macro-refactored programs. We then perturb the free parameters of both macro refactored
and no macro programs by increasingly large perturbations, and we check how distributionally similar the

outputs of the perturbed programs are to a held-out validation set of Chair shapes using Frechet Distance [73]
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Figure 7.7: We measure distributional similarity (Frechet Distance [73]) between a set of reference chairs
and a set of chair programs subjected to perturbations. We simulate perturbations by adding noise from a
normal distribution (x-axis is standard deviation) to continuous parameters in the programs. Programs with
ShapeMOD macros retain more similarity under larger perturbations, suggesting the macros remove degrees
of freedom that permit shapes to move outside of their original distribution.

ShapeMOD

Figure 7.8: Some example outputs of generative models trained to produce ShapeAssembly programs ex-
pressed with macros discovered by ShapeMOD, along with their training set nearest neighbors (NN) by geo-
metric and program similarity. Each cuboid represents a part proxy bounding volume. Structures are formed
through attaching parts to one another (red dots). The generative models produce a variety of plausible struc-
tures without memorizing their training data. All corresponding programs can be found in supplemental
material.

in the feature space of a PointNet classifier pre-trained on ShapeNet [162, 16]. Figure 7.7 plots this distance
against the magnitude of parameter perturbation. Frechet Distance increases more slowly for programs that
use macros, and increases the slowest for macros found using ShapeMOD. This indicates that the modes of
variation in programs expressed with our method’s macros are better at producing plausible output shapes

that stay within the distribution that the collection of input programs originally came from. In Section 7.4.4,
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we conduct a shape-editing user study to further validate this behavior.

7.4.2 Generating 3D Shapes

We are interested in how well ShapeMOD’s discovered macros support the downstream task of generative
shape modeling. Our hypothesis is that using macros will restrict the output space of a program-generating
model, making it harder to output ‘garbage’ shapes. To test this hypothesis, we train generative models on
programs with and without ShapeMOD macros.

For our generative model, we use the variational autoencoder architecture from Chapter 3, modified
slightly to support programs that use an arbitrary number of functions as opposed to a fixed, predefined
set (see Appendix E.3 for details). We train each model for 5000 epochs with a learning rate of 2¢~* and a
batch size of 64. At the end of training, we choose the model from whichever training epoch produced the
lowest Frechet Distance [73] to the training set; we report all other metrics on a held out set. Training was
done on a computer with a GeForce RTX 2080 Ti GPU with an Intel 199-9900K CPU, consumed 2GB of GPU
memory, and takes approximately 14 hours for Chairs, 22 hours for Tables, and 8 hours for Storage.

Fig. 7.8 shows some examples of novel shapes synthesized by these generative models, as well as their
nearest neighbor from the training set according to both program similarity and geometric similarity. The
generative models are capable of producing valid, plausible output shapes, and they do not simply memorize
their training data.

We quantitatively assess the quality of the generative models’ output shapes using the following metrics

(additional details in supplemental Section C):

* Rootedness f} (% rooted): percentage of shapes whose leaf parts all have a path to the ground.

* Stability 1} (% stable): percentage of shapes which remain upright when subjected to a small vertical
drop.

* Realism 1} (% fool): percentage of test set shapes classified as “generated” by a PointNet [162] trained
to distinguish between generated shapes and training set shapes.

* Frechet Distance |} (FD): distributional similarity between generated shapes and training set shapes
in the feature space of a pre-trained PointNet [73].

Table 7.2 shows the results of this experiment. Metrics related to realism/plausibility (% fool, FD) are
always best for programs that use ShapeMOD macros as opposed to other language variants. Complexity

(# Parts) and validity (% rooted, % stable) metrics also generally improve. The simple baseline macros are
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Table 7.2: Comparing the quality of programs sampled from a learned generative model. Generative models
trained on programs with ShapeMOD macros tend to produce more visually plausible, physically valid, and
complex shapes than those trained on programs expressed with other libraries.

Category Method % fool f} FD |} # Parts } % rooted {} % stable 1}
No Macros 21.2 17.8 7.6 93.9 82.3
Chair Baseline Macros  16.9 24.1 8.5 89.8 74.2
ShapeMOD 25.6 16.7 8.6 92.7 79.5
No Macros 27.7 26.0 8.0 88.8 76.1
Table Baseline Macros  11.5 38.1 7.0 90.2 79.6
ShapeMOD 29.2 23.2 7.8 93.2 84.3
No Macros 4.9 70.0 6.0 92.4 85.5
Storage  Baseline Macros 5.5 78.9 7.6 86.2 78.3
ShapeMOD 11.1 38.1 7.7 95.1 90.5

Point Cloud

ShapeMOD

No Macros ‘

Figure 7.9: Example visual program induction results from our point cloud — program inference experi-
ment. ShapeMOD macros are especially helpful for the heterogeneous Storage category. All corresponding
programs can be found in the supplemental material.

considerably worse; worse, in fact, than using no macros at all. We provide some qualitative comparisons of

generated outputs from ShapeMOD vs No Macros in Appendix E.4.

7.4.3 Inferring 3D Shape Structures

Another downstream task is visual program induction: inferring a shape program from unstructured input
geometry. Here, we consider inferring ShapeAssembly programs from a point cloud. As with generative
modeling, our hypothesis is that macros will regularize this problem, making it harder to output invalid
shapes.

We train the program inference networks end-to-end in an encoder-decoder paradigm. The encoder uses
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Table 7.3: Quantitative results from our visual program induction experiment, where we train encoder-
decoder models that learn to infer ShapeAssembly programs from point clouds. ShapeMOD macros reg-
ularize the output program space, leading to significant and consistent improvement in both reconstruction
accuracy and physical validity. Note: Chamfer Distance (CD) values are multiplied by 1000 for clarity and
we use a F-Score threshold of 0.03 [108].

Category Method CD |} F-Score f} % rooted {} % stable 1

Chair No Macros 44.2 54.8 93.7 83.6
at ShapeMOD 41.7  56.1 96.9 88.0
Tubl No Macros 41.1 64.0 92.8 78.2
%€ ShapeMOD 367  68.7 95.2 88.5
Storace No Macros 56.5 41.1 95.0 87.7
8¢ ShapeMOD 47.0  53.0 97.6 92.6

a PointNet++ architecture to embed a point cloud sampled from dense surface geometry into a latent space.
The decoder is identical the one used for generative modeling, it converts a point in this latent space into a
hierarchical shape program. We create a 80/10/10 training/validation/test set split for all categories. Each
network is trained for 2000 epochs with a learning rate of 2e-4 and a batch size of 32. We report metrics on
test set shapes, and choose the model that reported the best Chamfer distance on the validation set.

Table 7.3 shows the results of this experiment. As with generative modeling, using ShapeMOD macros
results in significantly better performance. Using ShapeMOD macros leads to better reconstruction accuracy,
in terms of Chamfer distance and F-score, for all categories (average relative improvement for both is 11%).
Moreover, the programs that are inferred with macros also always result in shapes that are more physically
valid in terms of stability and rootedness. Fig. 7.9 shows some example input point clouds and the shapes
produced by their inferred programs. Macros help considerably, especially for Storage, which is the most
structurally- and geometrically-heterogeneous category and thus most likely to cause structured prediction

models to output garbage.

7.4.4 Interactive Shape Editing

Our final downstream task is interactive shape editing. We hypothesize that programs with macros will
support easier, more efficient shape editing. To test this hypothesis, we built an interactive ShapeAssembly

editor and conducted a user study with it.

Editing interface We designed an interactive editing interface tailored to the goal-directed editing task of

modifying a ShapeAssembly program such that its output shape matches a target output shape as closely
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Figure 7.10: A screenshot of our editing interface. The key elements are: (1) A view of the ShapeAssembly
program’s text. (2) Contextual sliders (enlarged in the figure) that allow the user to edit program parameters.
(3) A view of the current program’s output. Note the optional wireframe of the target shape and the ability to
highlight correspondences between cuboids in the text and the 3D viewer (blue highlights shown). (4) The
target shape.

as possible. Fig. 7.10 shows our interactive editing interface. The left panel shows the text of the current
ShapeAssembly program. The top-right panel shows the current output shape produced by this program; the
bottom-right panel shows the target shape. The cameras of the two shape view panels are synchronized, such
that if a user moves the viewpoint of one, the other one follows. The user also has the option of toggling a
wireframe display of the target shape overlaid on the current output shape, which can assist with making fine-
tuning edits. Finally, in this interface, the text of the program is frozen: users are only allowed to manipulate
the continuous programs parameters via contextual slider widgets that appear when a parameter is clicked.

See the supplemental video for a demonstration of the interface.

Experiment design Our study asked participants to perform a series of goal-directed editing tasks. To
ensure that it was possible to complete these tasks, we selected each target shape by finding a program in our
dataset that was identical to the input program up to continuous parameters. We recruited 38 participants, all
of whom were university students with some programming background. Participants were randomly divided
into one of two conditions: editing programs with ShapeMOD macros or programs without them. Participants

were not told the meaning of their assigned condition. First, each participant was shown a short tutorial which
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Figure 7.11: Top row: the initial program output shape (gray) and target shape (yellow) for each task in our
goal-directed editing study. Bottom row: plots of how quickly participants were able to edit a program’s
parameters to match the target shape, with 95% confidence intervals shown. The x axis is time elapsed in
minutes, while the y axis is the mean of the running minimum of each participant’s corner distance to the
target shape. In general, participants using ShapeMOD macros more quickly converged to the target shape
and achieved a closer fit. To allow users to take breaks between tasks, time starts when the user makes their
first edit for each task .

explained the features of ShapeAssembly and allowed them to become familiar with the editing interface.
Then, participants completed six editing tasks (two for each of Chair, Table, and Storage). Participants were
given 10 minutes to complete each task. After completing these tasks, participants completed an exit survey
which asked them to rate the ease of each task (1-5, with 5 being easiest) as well as to provide qualitative

feedback about their experience.

Results We first ask the question: how long did it take participants to edit the program to produce a close
match to the target shape? Fig. 7.11 plots the running lowest corner distance of the program output to the
target shape as a function of task time elapsed, for each of the six study tasks, averaged across participants
in each condition. For all tasks, participants using ShapeMOD macros more quickly converged to the target
shape.

We also examined the participants’ responses to survey questions. Fig. 7.12 shows the ease rating given
to each task, averaged across participants in each condition. For most tasks, participants using ShapeMOD

macros rated the task as slightly easier to complete.

7.4.5 Cross-category Macro Discovery

We also wondered: can one discover useful macros from a dataset consisting of multiple categories of shapes?

To answer this question, we ran the ShapeMOD algorithm on the union of our Chair, Table, and Storage
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Figure 7.12: Participants in our user study rated the ease of completing each task; here, we plot each task’s
average difficult rating for each condition (5 = very easy, 1 = very difficult) with 95% confidence intervals
shown. Participants using ShapeMOD macros generally rated tasks as easier to complete.

datasets, and report full quantitative results in the supplemental material (Section E). Interestingly, the library
of functions discovered across multiple categories led to better program compression statistics, but slightly
degraded performance on novel shape generation and program inference tasks, compared with libraries dis-
covered by category specific ShapeMOD runs. These experiments show that for downstream tasks it is
slightly better to run ShapeMOD on a per-category basis, although the marginal performance gap provides

evidence that the discovered macros can generalize.

7.5 Discussion

We presented ShapeMOD, an algorithm for discovering useful macros across a dataset of shape programs. To
our knowledge, ShapeMOD is the first method that discovers common abstractions from a set of imperative
programs with relationships between continuous variables. The macros ShapeMOD finds significantly com-
press the input programs, and these compressed programs lead to better results when used to train models for
generating shape structures and inferring shape programs from point clouds. We also conducted a user study

which showed that compressed programs allow for more efficient shape program editing.

Limitations The abstractions that ShapeMOD currently considers when proposing macros are relatively

simple refactorings of free parameters (e.g. into constants or expressions of other variables).
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As mentioned in Section 7.3, ShapeMOD'’s integration step is intractable to solve optimally. But even the
greedy approximation we use can be slow for large collections of shape programs. The major computational
bottleneck is the cost of finding optimal programs z*(D, L).

While ShapeMOD finds macros that are useful across shape program collections, it does not give them
semantic names. In fact, some users in our editing study found the base ShapeAssembly functions easier to

work with than the macros for this reason (even though they edited more efficiently with the macros).



Chapter 8

Discovering Abstractions for Visual

Programs from Unstructured Primitives

ShapeCoder |~ Abstractions | G ot - ont
Abs6(.05,.6,.39,1.37,.39), Absys(.07,.65,-.41,1.23,.41), Absy(.06,.51,.33,1.47,.33),

Abs(.05,1,.5,1,.5),

Def Abszs(a, b, ¢, d, e): Abss(07,76,64,25), Abs1o(.07,.82..62,.20), Abs1o(.03.6,-78,.23). Edit | Absio(05.1,5.5),
y Abs7(1.37,.07) Abs;(1.37,.03,.91,.31), Abs;(.06,.06,.67,.24), Abs;(1.05,.05,1.05,.55),
Union( ) Abs(.03,.8,.65,.2,1.22,-42), Abst1(.64,.03,.77), Absi(1,.05,1),
Absi4(a, b, c), ) ) )

Absy(d, a, b-a/2., e)
> } I I ]
Def Absis(a, b, ¢, d): p
SymRef( & \ [

Move(
Cuboid(a, a, b),
c,d,a*d
), AX

Dataset of Shapes
Collections of )
unstructured primitives

Figure 8.1: ShapeCoder automatically discovers abstraction functions, and infers visual programs that use
these abstractions, to compactly explain an input dataset of shapes represented with unstructured primitives.
For example, the orange abstraction uses only five parameters to encode a distribution of 4-legged table bases
with adjoining horizontal support bars.

In Chapter 7, we demonstrated that not all visual programs are equally useful. Well-structured programs
that capture and constrain properties of the visual data they represent typically benefit downstream applica-
tions (e.g. editing, generation, analysis). On the other hand, badly written programs lose this advantage. For
instance, given an input visual scene composed of a collection of primitives, a visual program that simply
unions instantiated primitives together might achieve a perfect reconstruction, but would lose all of the afore-
mentioned benefits of the underlying representation. The functions a DSL contains influences the types of

programs it can represent, and access to a ‘good’ collection of functions is often a prerequisite for finding
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well-structured programs. Abstraction functions that extract out common patterns of structural and paramet-
ric use for a particular domain, can significantly improve visual program quality, but these types of programs
(and their abstractions) are hard to obtain without expert manual design.

In this chapter, we present ShapeCoder, a method that is able to discover useful abstractions for visual
data under relaxed assumptions. ShapeCoder consumes a base DSL and a dataset of shapes represented as
collections of primitives without any additional annotations. It discovers a collection of abstraction functions
(a library) over the base DSL that is tailored to the input distribution. It uses the discovered library to find
programs with abstractions that explain the shapes from the dataset (Figure 8.1).

Our approach is inspired by, and improves upon, other abstraction discovery approaches, especially
DreamCoder [42] and ShapeMOD (Chapter 7). ShapeMOD can discover abstractions that extract out mean-
ingful relationships in terms of both parametric expressions and program structure. Yet, it does not solve
the problem completely. ShapeMOD is able to find these abstractions under fairly stringent input assump-
tions: it requires a collection of imperative programs as input, as its integration stage relies on enumerative
search over a limited, curated subset of possible program line-orderings. ShapeCoder shares the same goals
as ShapeMOD, but aims to discover useful abstractions while making much weaker assumptions: it does
not assume access to ground-truth programs, canonical line-orderings, or hierarchy decompositions. Instead
ShapeCoder takes in a dataset where each shape is expressed as an unordered set of primitives. Discovering
abstractions under these assumptions requires both developing logic to infer programs that explain the input
shapes, along with extending the abstraction phase so that it is able to reason over arbitrary reorderings of the
inferred programs. We solve the latter problem through the use of e-graphs and a conditional rewrite scheme.
We provide a more detailed discussion comparing ShapeCoder and DreamCoder in Section 8.6.1

We run ShapeCoder over multiple visual domains, and demonstrate that across all domains ShapeCoder
finds abstractions that dramatically simplify the input datasets by discovering meaningful parametric and
structural relationships. With respect to an objective function that tracks how well the input dataset has
been abstracted, we find that ShapeCoder significantly outperforms ShapeMOD (even when given access
to our wake phase) and DreamCoder (which fails to converge without a curriculum of tasks). In a series
of ablation experiments, we justify the design decisions of our method, and demonstrate the importance of
our conditional rewrite scheme and bottom-up recognition network. Finally, we investigate combining our
approach with methods that automatically convert 3D shapes into primitives in an unsupervised fashion,
allowing us to discover programs and abstraction functions directly from ‘in the wild’ 3D meshes [16].

In this setting, we observe ShapeCoder still discovers interesting, high-level abstractions, even over noisy,
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Figure 8.2: Overview. ShapeCoder consumes an initial library £, an objective JF, and a dataset of shapes D
(brown boxes). Each round of the algorithm iterates through a series of phases that progressively add abstrac-
tions into £ to improve F. A dream phase trains a recognition network by sampling from £. A wake phase
infers programs for shapes in D. A proposal phase produces candidate abstractions. An integration phase
uses a refactor operation to decide when these abstractions should be added into L.

inconsistent primitive decompositions.

We provide code for our method at https://github.com/rkjones4/ShapeCoder .

8.1 Overview

ShapeCoder automatically discovers a library of abstraction functions tailored for an input dataset of shapes.
It takes the following as input: a library £ describing a functional domain-specific language, a dataset of
shapes D, and an objective function F. Each d € D is represented as a collection of unstructured primitives,
and we assume that there exists some program expansion of £, z, such that executing zwould recreate d.
ShapeCoder’s goal is to minimize F (Section 8.1.1), which expresses a trade-off between how well-
suited L is for D (program complexity) and how many abstractions functions have been added to £ (library
complexity). We break this task into multiple steps that each tackle a tractable sub-problem. We depict the
distinct phases of ShapeCoder in Figure 8.2. The dream phase (Section 8.2.2) samples scenes from L to
train a program recognition network. The wake phase (Section 8.2.3) uses this network to infer programs P
that recreate shapes in D. The proposal phase (Section 8.3.1) consumes P as input, and generates candidate
abstraction functions. Finally, the integration phase (Section 8.3.2) considers proposed candidate abstractions
and finds modified versions of £ to improve F, which can be passed in to a subsequent dream phase. Of note,
the integration phase uses a refactor function (Section 8.4) to find minimal cost equivalent programs under

different libraries in a tractable manner through use of e-graphs and a novel conditional rewriting scheme.
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In the following sections, we walk-through these various stages, where examples in the text and figures
use programs from a toy 2D grammar for rectilinear shapes (Appendix F.1). Further implementation details

are provided in Appendix F.2.

8.1.1 Optimization Objective F

ShapeCoder’s objective function JF takes in two arguments: a library £ and a collection of programs from
L that correspond with a shape dataset D. F measures the trade-off between two competing terms: the
complexity of £ and P.

The complexity of each z& P is computed according to Occam’s razor: all else equal, shorter programs
are better. We compute program length with a weighted sum of program tokens: if £ has token types T (e.g.
booleans, floats, etc.), we allow users to specify a weight A for each 7 € T. Further, ShapeCoder employs a
geometric error function, err, that compares the executed geometry of each z € P against its corresponding
shape, d € D. If err(z, d) returns a value above a user-defined threshold, F returns co. Otherwise, the error
is added into F with weight ..

Library complexity can be measured by tracking the number of functions that £ contains. ShapeCoder
allows users to specify a function weighting scheme, w. w consumes a function f from £ and returns a value
in the range (0, o). Lower w values make it easier to add f into £. As an example, we find it useful to
increase the w of f according to the number of input parameters f consumes, as this often indicates an overly
general pattern.

With this machinery, where 7 (z) expresses the number of tokens in zthat have type 7, we can express

ShapeCoder’s objective as:

FeP) = (Z (Z A *T<z>) A emz,d)) +Y ()

z€P \1eT fec

8.2 Inferring Visual Programs

While ShapeCoder consumes a shape dataset D as input, it doesn’t know what programs P from a given
library version £ can best represent d € D. To solve this problem, ShapeCoder uses a program recognition
network (Section 8.2.1), trained on randomly sampled programs from £ (dream phase, Section 8.2.2), to infer

‘P that minimize F (wake phase, Section 8.2.3).
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Figure 8.3: Dream and Wake Phases. (Left) ShapeCoder’s recognition network is a Transformer decoder
that attends over tokenized input primitives and autoregressively predicts functions and parameterizations.
(Middle) The dream phase trains the recognition network by sampling expressions from library functions,
which are randomly combined together to form (input, target) training pairs. (Right) The wake phase uses
the recognition network to find programs that explain input shapes. In a series of iterative steps, it samples
expressions, chooses the expression that achieves the best cost, and removes covered primitives from the
input canvas, until the canvas is empty.

To simplify this search, our recognition network learns to infer partial solutions: expressions from £
that recreate a subset of input primitives. Found expressions are then combined together to form a complete
program that explains an input scene. This framing requires that £ contains a combinator operation (e.g.
Union). To ensure that our search procedure never fails to find some solution, we assume access to an
analytical procedure for finding expressions in £ that can recreate any primitive in d (e.g. any cuboid can be

represented with a scale, rotation, and translation sequence).

8.2.1 Recognition Network

We depict ShapeCoder’s recognition network on the left side of Figure 8.3. The recognition network con-
sumes a scene of geometric primitives as input, and aims to output an expression from £ that corresponds
with a subset of the input primitives. We implement this network as a Transformer [209] decoder that au-
toregressively predicts a sequence of tokens from £. The network is conditioned (through causal-masking)
on an encoding of the input primitives: if M primitives are each represented with K parameters, the network
attends over ' X M conditioning tokens (M = 3 and K = 4 in the figure example). To convert expressions
into token sequences, discrete elements of £ are given a unique index. To tokenize real-valued parameters,
we employ a simple mapping procedure: for a given input scene, we take all real values in the primitive pa-
rameterizations, bin them through rounding (to 2 decimal places), and sort them to produce a token mapping
(light-blue box). This mapping is used to form the conditioning tokens, and converts network predictions

back into real values.
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8.2.2 Dream Phase

The dream phase trains the recognition network by randomly sampling example scenes from £. We show
this process in the middle box of Figure 8.3. To begin the dream phase, for each function f € £, ShapeCoder
creates Np number of dreams for f. Dreams are generated by sampling random instantiations of each
parameter slot of f. Rejection sampling is employed to avoid dreams that create bad geometry by checking
easy to enforce properties (geometry outside scene bounds, primitives with negative dimensions, primitives
wholly contained by other primitive, etc.).

However, as shapes in D often contain scenes best explained by more than one function, its not enough
to train on function-specific dreams directly. We solve this issue with composite scenes formed by sampling
function-specific dreams and combining their output primitives together (blue arrow). If a composite scene
was formed by combining K sampled dreams, then we can derive K paired training examples for the recog-
nition network: the input to the network will be the composite scene, and each of the K sampled dreams
would be a target output. For instance, given the input scene with orange and green primitives in Figure
8.3, we would train the network to predict both the green and orange expression sequences (i.e. there is a
one-to-many mapping). Once this paired data has been assembled, by ensuring that each f € £ appears in
at least Np target sequences, the recognition network can be trained in a supervised fashion with maximum

likelihood updates.

8.2.3 Wake Phase

The wake phase takes an input shape d and aims to infer a program zthat minimizes F using the recognition
network. We depict this process on the right side of Figure 8.3.

To begin, the scene is initialized to contain the primitives of d. Then the wake phase performs the fol-
lowing steps in an iterative fashion. First the input scene is used to condition the recognition network, which
samples a large set of expressions from L according to its output probabilities, up to a timeout (1 second).
For every sampled expression, e, we record its cost: the program complexity of e under F, normalized by
the number primitives it explains. Note that if e does not recreate a subset of primitives in the input scene, it
will have a high geometric error, and F will return oo (red X in figure). The wake phase chooses the lowest
cost e* (dotted green lines), and removes all primitives it covers from the input scene, which is then fed back
into the recognition network. These steps are repeated until the canvas is empty. Once this condition is met,

the final program zexplaining d is formed by applying the combinator operation in £ over each e* (e.g. the



111

Greedy Abstraction Search

Input Programs Structures  Parameters Cluster partial . _
o e IR Union( [ AbsiPo Py |.[ AbsaPo ) Abstraction E’:pmsmn ,,,,,, Gain  frea  Sere
Inion| N
E -oA(ns ©.3) (]~ i HIBIEE Union(Abs,( ? Lf:r 7777777777 ': Z 77777 [1{2 777777 9;7%
e 4 2 || 4|4 -
ARG B HIE :
R I - Abs.(6,2) (o] — | ¢ | 3 Sample Structure l ] [ I

}

and Parameters

Union(Abs,(Vo, ?

i < Union( ' > def abs(Vy, Vy):
Union{ Gnion(
Pt 12,
Absq(Vo, V1) l P 1.0 075 075

Repeat )
}

Record

Candidate Abstractions ‘
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Union of the orange and green expressions in the bottom-row). For every input scene, the ‘naive’ expression
for a single primitive under £ is added to the sampled set of expressions, so that a valid solution is guaranteed
to be found.

During each ShapeCoder round, the wake phase uses the recognition network to infer a set of programs
that explain D. But should we treat these predictions independently? One option is to clear all program
entries in P before every wake phase. However, this would cause ShapeCoder to ‘forget’ good solutions
discovered in previous rounds. Instead, we use the following approach: for round r, » > 0, if P contains
previously discovered programs, and P, contain programs discovered in round r’s wake phase, then we set
each entry of P to be the result of combine(z, z,), where combine performs a greedy replacement search to

optimize F.

8.3 Proposing and Integrating Abstractions

Together, the dream and wake phases train and use a recognition network to infer a set of programs P that
explain the shapes of the input dataset D. The proposal phase (Section 8.3.1) reasons over P to suggest
candidate abstractions functions, used by the integration phase (Section 8.3.2) to find library variants that

improve F.

8.3.1 Proposal Phase

The goal of the proposal phase is to search over P for abstraction functions that would improve F if added

into L. As this search is computationally intractable to solve globally, ShapeCoder’s proposal phase instead
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solves more tractable sub-problems (subsets of P), and aggregates local solutions. Figure 8.4 outlines this

process.

Identifying Structures and Parameters. As L is a functional language, generating an abstraction a re-
quires two steps: deciding the structure of a (what are its sub-functions) and deciding how a is parameterized
(what input does a take, and how are those mapped to its sub-functions). What structures should we con-
sider for possible abstractions? Each program z€ P is found in the wake phase by combining expressions
that solve sub-tasks, so zwill have no consistent or canonical ordering. Therefore, we would like to factor
out expression ordering by considering structural variants over any possible function reordering of each z¢€
‘P. However, as the general solution is intractable, we instead consider a limited set of potential abstraction
structures: singleton and paired combinations of sub-expressions found in P. We record all such observed
structures as keys and how those structures were parameterized as values (see bracketed data structure in
figure). We additionally find it useful to apply a simple filtering step that removes infrequently observed

structures in P from this mapping (seen in less than 5% of P).

Cluster Sampling and Search. Once potential structures and their observed parameterizations have been
recorded, the proposal phase begins an iterative process. To convert the global problem into a local one, a
random structure and a subset of its parameterizations are sampled to form a cluster. Then a greedy search
is run over this cluster to find an abstraction a that would optimize . The generated function is recorded
into a candidate abstraction data structure that keeps track of a coverage set of z& P that could be simplified
through applications of a. This procedure is repeated many times, and coverage sets are expanded whenever

the candidate abstraction data structure receives a previously observed abstraction.

Greedy Abstraction Search We employ a greedy search to find an abstraction a for a given cluster (right
side Figure 8.4) This search is guided by a score function that provides a heuristic estimate of how a would
improve F if it were added into £. The score of a is a product of two terms: the frequency and the gain. The
frequency (Freq column in figure) is the percentage of instances in the cluster that a could recreate (with the
correct parameterization). The gain tracks the number of parameters removed from a program z, whenever
zcould be rewritten with a, denoted as z,. For instance, the proposed abstraction in Figure 8.4 would remove

two float-typed parameters whenever it could be applied, corresponding with slots P; and Pj in the cluster.
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Figure 8.5: Refactor. The refactor operation uses e-graphs to identify when abstractions can be applied.
Input programs are converted into e-graphs, which are expanded with semantic and library-specific rewrites
to uncover lower-cost equivalent expressions that can be extracted. We develop a conditional rewrite scheme
that reasons over parametric relationships (green highlights) without adding excessive e-nodes for parametric
operators (red box).

Using the weighting from F (Section 8.1.1), we have:

gain(a) = Z Arx (1(2) = 7(20)) -

TET

The function sequence in the proposed abstraction is determined by the structure of the sampled cluster,
but how should we fill in the parameter slots? For each slot, we consider a set of possible expressions,
calculate the score of each option, and add the expression with the highest score into the partial abstraction.
If the frequency is ever zero, then the score is voided. For float-typed parameter slots, ShapeCoder produces
expressions by iterating over a preference ordering of possible parametric relationships. For discrete-typed
parameter slots, a previously instantiated parameter can be reused, or a static value can be assigned. This
search always includes defining a new free parameter (e.g. using the parameterization in the sampled cluster)

as an option (depicted as the top-row of each step).

8.3.2 Integration Phase

The integration phase takes in a library L, a set of programs P, and candidate abstractions from the proposal
phase. It searches for modified version of £ that can be used to refactor P to improve F. The refactor opera-
tion (Section 8.4) uses e-graphs to efficiently search for minimal cost equivalent programs under different £
variants.

The integration phase begins by first recording the starting objective value: F (£, P). It then iterates
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through a series of steps in an attempt to greedily improve this value. First, a new library variant £’ is formed
by sampling a candidate abstraction and adding it into £. The abstraction with the top score value is chosen,
where the notion of frequency is generalized from clusters to all of P. Then a new program set, P’, is formed
by applying the refactor operation over each z€ P under £’. Finally, if F (£’, P’) is better than F (L, P),
both £ and P are replaced with their modified versions.

Evaluating a modified library £’ is expensive, as it requires running the refactor operation for every z€
‘P, so we usually consider a small number, NV 4, of top-ranked candidate abstractions during each integration
phase. To keep the score heuristic as accurate as possible, whenever £’, that added a to £, improves F, we
check which z€ P contributed to the frequency of a and discount the frequency of other abstractions that
overlapped on the covered set.

Beyond this greedy search, two other forms of library variants are also considered during the integration
phase. Whenever adding a to £ does not improve F, we compute the set of functions whose frequency
between P and P’ decreased significantly; call this set fge.. We then consider Lgoe = { L + @ - faee }
as a library variant. This procedure allows the greedy integration search to avoid a local minima where a
would not be added to £ because similar (but worse) functions already exist in £. In addition, to finish the
integration phase, we consider library variants where each f € £ is removed one at time. In all comparisons,
the library variant becomes the new default if it improves the objective function. At the end of the integration
phase, the £ that achieved the best F score is then passed into the subsequent dream phase to begin a new

ShapeCoder round.

8.4 Refactoring Programs with E-Graphs

ShapeCoder’s integration phase evaluates how library variants can be used to compactly represent P but how
does it know when abstractions can be applied? For this task, we use the refactor operation: it takes as input a
program, z, and aims to find p*, an equivalent program to zthat minimizes . This is a hard search problem,
which we make tractable through the use of e-graphs [204] and a conditional rewriting scheme. In the rest
of this section, we provide a quick background on e-graphs, and walk-through their role in refactor with a

running example, depicted in Figure 8.5.

Background on e-graphs. E-graphs are a specialized data structure capable of efficiently representing a

large set of equivalent programs. We show an example e-graph in the left call-out of the figure. E-graphs
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are made up of e-nodes (solid boxes) and e-classes (dotted boxes) Each e-node is associated with a term
from £ and has a pointer (arrows) to e-class children, if that term is a function. Each e-class contains a set
of equivalent e-nodes. The root of the e-graph is the e-class that contains the e-node associated with the
outermost operator in the input expression (Union in the figure).

This representation becomes useful when it is combined with rewrite rules. Rewrite rules are domain-
specific, pattern matching program transformations that maintain semantic equivalence. For instance, for any
?a and ?b: Union(?a, 7b) is equivalent to Union (?b, ?a). E-graphs are expanded by iteratively applying
rewrite rules to create new e-classes and new e-nodes. These newly created constructs reference existing
e-class and e-nodes, allowing the e-graph to represent a large set of equivalent programs in a space-efficient
manner. Importantly, e-graphs also provide support for quickly finding minimal cost rewritten versions of a

starting expression, by running a greedy recursive algorithm starting at the root e-class.

Refactor Operation. The refactor operation consumes an input program zfrom the wake phase. First, it
converts zinto an e-graph, as depicted in the left call-out of Figure 8.5. In this step, each float-typed token is
replaced with an independent variable (V} to V7).

The operation also consumes a library £ as input. It uses £ to source two types of rewrite operations.
Semantic rewrites express domain-knowledge over base DSL functions and are provided as part of the lan-
guage definition. For instance, the blue rewrite expresses the following logic: a sub-expression ?s moved
to xy position (?a, ?b) and reflected over the X axis is equivalent to moving ?s to xy position (-1 x ?a, ?b)
and reflecting it over the X axis. Abstraction rewrites correspond with the abstractions in £, where rewrites
express the conditions that need to be met in order for the abstraction to be applied. For instance, Absy
(top-middle) in the input library creates the purple highlighted abstraction rewrite (lower-right).

ShapeCoder expands the e-graph by iteratively applying these rewrite operators. In the middle-frame, the
orange rewrite first introduces a new AX e-node into a new e-class and a new SymRef e-node into the root
e-class. Following this, the blue rewrite can be applied, matching on the orange e-nodes, to add the blue
highlighted e-nodes. At this point, the purple abstraction rewrite can be applied, and a new Absy e-node is
added into the root e-class. The refactor operation will continue expanding the e-graph until it is saturated
(nothing can be added) or a timeout is reached.

Once the rewrites have expanded the e-graph, we can run an extraction procedure on the root e-class to
find the minimum cost expression p* in the e-graph equivalent to the starting program z. In this example,

p* will be equal to Absy(Vy, V1), which we can rewrite to Absy (.1, .2) using the reverse of the parameter
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mapping we used to convert the initial program into an e-graph.

Conditional Rewrite Scheme. The above explanation is complete up to one critical step: how do know
when rewrites can be applied? E-graphs typically search for structural pattern-based matches, and some
semantic rewrites can be included in this framework (e.g. the blue rewrite). However, other rewrites, such
as the purple abstraction rewrite, require both structural and parametric matches. For instance, the structural
matching requirement to apply Absx would be finding some sub-graph of e-classes that matches the pattern
of: SymRef (Move (Rect (?a, ?b), ?c, ?d) , AX), where ?a through ?d can be filled in with any e-class.
Beyond this, applications of Absy also require parametric matching with logic expressed in green highlights:
the ?c spot must be equal to the sum of the ?a and ?b slots, and the ?d spot must be equal to the ?b slot minus
the ?a slot.

How we can support this type of parametric matching? A naive solution would convert parametric con-

straints into structural ones:
SymRef (Move (Rect (?a, ?b) ,Add (?a, ?b), Sub (?b, ?a) ), AX). The issue with this approach is
that it requires adding e-nodes for parametric operations (e.g. Add or Sub) into the e-graph, before it is
known whether or not that e-node will be useful. When there are many input parameters (V;’s) this naive
solution will blow up the size of the e-graph, making the refactor operation ineffective. We visualize our
choice to avoid this blowup with the disconnected red box in the figure.

ShapeCoder addresses this issue of exploding e-graph size by leveraging a conditional rewrite scheme.
Conditional rewrites are rewrite operations that first find structural matches but only make a rewrite applica-
tion if additional checks pass. In this way, each parametric relationship (green highlights on rewrites) is only
evaluated lazily, after a structural match has been identified.

Concretely, in the working example applying the purple rewrite will find the following matches: ?a with
Vo, 7b with Vq, ?¢ with Mul (Va,-1), and ?d with V5. To check that the parametric relationships hold, we
need to know the real value associated with each matched e-class. Then to check a relationship such as 7d
= 7b - ?7a, we can simply compare the difference in values between V3 and V) - V;. This check does not
enforce exact matches, but rather allows the user to specify a maximum error threshold, allowing us to apply
approximately-equivalent rewrites, which is typically a limitation of e-graphs.

For some e-classes, finding their associated real-values is trivial: for each e-class associated with a float-
typed parameter e-node (V; to V7) we record a mapping between e-class ids and values. This procedure is

complicated by the fact that some rewrites create new float-typed nodes (e.g. the blue Mul e-class). We handle
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Table 8.1: Comparing our conditional rewriting scheme against the naive alternative. The conditional scheme
is able to quickly saturate the e-graph (time reported in seconds), even for complex input expressions with
many parameters. The naive approach times out when the complexity is too high.

Rewrite Scheme 8 params 16 params 32 params

Naive 22 2.6 X
Conditional .01 0.04 2.1

this case by dynamically updating the e-class-to-real-value mapping during all rewrite steps (represented with
green-highlights on e-classes), which is a constant time operation. Our conditional rewrite step is just as fast
as a non-conditional rewrite step and critically avoids unnecessarily expanding the e-graph with unneeded
parametric operator e-nodes. In sum, conditional rewrites provide a dramatic speedup over the naive approach

for the kinds of refactoring problems that ShapeCoder typically reasons over (see Table 8.1).

8.5 Results and Evaluation

We run ShapeCoder over distributions of visual shapes represented as collections of unstructured primi-
tives. We describe these domains in Section 8.5.1. In Section 8.5.2, we compare how well the abstractions
discovered by ShapeCoder improve the objective function compared to alternative approaches. Our main
comparison is against ShapeMOD (Chapter 7). In the main text, we do not include comparisons against
DreamCoder [42], as we found it performed poorly on a toy grammar with parametric relationships (see
supplemental). In Section 8.5.3, we analyze properties of the discovered abstractions and investigate their
generality with a post hoc inference procedure. In Section 8.5.4, we run an ablation experiment to investi-
gate the importance of various algorithm components. In Section 8.5.5 we show another application of our
method: inferring visual programs, that contain abstractions, given only a dataset of 3D meshes as input,
where we leverage noisy primitives sourced from a pretrained unsupervised cuboid decomposition approach
[230]. Finally, in Section 8.5.6 we explore how ShapeCoder’s discovered abstractions benefit downstream

tasks.

8.5.1 Experimental Domains

For the main result section, we consider domains of 3D shapes. We provide experimental results over a
toy dataset of 2D shapes in the supplemental. Our experiments use manufactured objects sourced from
PartNet [141], where manual annotations are used to convert each 3D object into an unstructured collection

of cuboids, that represent part bounding boxes. We follow past-work in the 3D shape abstraction discovery



118

Table 8.2: Abstraction discovery performance, measured with objective function JF, for libraries of abstrac-
tions discovered by different methods.

Category  Method F{ |£] NumStruct Num Param
Input Prims 146.0 6 29 61
Chai ShapeMOD+Input  109.0 21 16 46
ar ShapeMOD+Wake ~ 83.0 21 12 36
ShapeCoder 63.6 33 10 27
Input Prims 125.0 6 25 51
Tubl ShapeMOD-+Input 84.2 25 11 34
abte ShapeMOD+Wake ~ 69.1 17 10 30
ShapeCoder 40.9 37 8 18
Input Prims 154.0 6 30 62
Storave ShapeMOD+Input  119.0 16 20 48
8 ShapeMOD+Wake  103.0 10 19 45
ShapeCoder 71.3 31 11 33

space, and run experiments on shapes from the Chair, Table, and Storage categories of PartNet. We perform
the cuboid simplification steps outlined in ShapeAssembly (Chapter 3), so that our starting primitive set is
the same as that used by ShapeMOD, except we remove all hierarchy and canonical ordering information.
The DSL (Appendix F.1) we use for our experiments has 4 low-level operations: (i) instantiating a prim-
itive (Cuboid); (ii) moving a shape (Move); (iii) rotating a shape (Rotate); and (iv) unioning two shapes
together (Union). We also provide two mid-level symmetry operations in the base DSL, that correspond

with (v) reflectional and (vi) translational symmetry (SymRef and SymTrans).

8.5.2 Discovering Abstractions

For each PartNet category, we run ShapeCoder for four rounds over 400 shapes from that category. ShapeCoder
is implemented in Python and Rust, using PyTorch and Egg, an e-graph library [218]. We run ShapeCoder
on a machine with a GeForce RTX 3090 Ti GPU and an Intel i7-11700K CPU, and find that it takes less than

24 hours to finish discovering abstractions for a single category (taking at most 4GB of GPU memory).

Discovering abstractions that improve our objective We report how the abstractions discovered from
ShapeCoder impact the objective function we optimize over, in Table 8.2. From left to right, the columns
express the objective function score (F, where lower is better), the number of functions that the library
contains (|£]), and the average number of operations (Num Struct) and parameters (Num Param) that are
needed to represent the input dataset of shapes using programs that make use of the discovered abstractions.

The top Input Prims row for each category conveys the starting objective function value for ShapeCoder.

This row reports the cost of using ‘naive’ programs to cover the primitives of the input shapes, where each
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primitive is rotated, moved, and instantiated, whenever that command would have an effect (e.g. moving zero
distance would be ignored). The final objective function score found by ShapeCoder, in the bottom rows, is
dramatically better than this starting point. For Chairs, Tables, and Storage, the starting objective function
value drops by 56%, 67%, and 53%, respectively. This improvement is achieved by adding abstraction
functions (2nd column) that remove degrees of freedom needed to represent the shapes of the input set (3rd
and 4th columns).

We also compare how ShapeCoder performs against ShapeMOD in this setting. The ShapeMOD algo-
rithm requires a dataset of imperative programs as input, along with the possible ways that the lines of the
programs can be ordered. As we lack ground-truth programs for our problem setting, we compare against
two versions of ShapeMOD, that attempt to optimize the same objective function as ShapeCoder:

* ShapeMOD+Input: We take the ‘naive’ programs that can be directly parsed from the input collection

of primitives, and provide this as input to ShapeMOD.

* ShapeMOD+Wake: We take the output from ShapeCoder’s first wake phase as the input to Shape-
MOD. Note that the only ‘non-trivial’ functions in the library for the first wake phase are the symmetry
operations, roughly equivalent to running symmetry detection on the ‘naive’ programs.

For both program datasets, we have no way of knowing how the various expressions (e.g. sub-shapes com-
bined through Union) should be ordered, so we pass a random subset of all possible valid orderings to
ShapeMOD, as without limiting the set of orders ShapeMOD takes prohibitively long to run (see supplemen-
tal).

Comparing ShapeMOD variants and ShapeCoder in Table 8.2, it is clear that ShapeCoder finds abstrac-
tions that significantly improve the objective function over those found by ShapeMOD. While ShapeCoder’s
wake phase provides a better starting point than the ‘naive’ programs, in either case, the complexity of the in-
put programs is too high for ShapeMOD to handle-well when canonical orderings and hierarchy annotations
are absent.

We also compare ShapeCoder against approaches that operate over single programs, like Szalinski [145].
Szalinski also uses e-graphs in the context of visual programs, and while its fixed rewrite rules are well-suited
for simplifying a single heuristically-inferred CAD program of a mechanical object, we found that these rules
did not significantly compress shape programs in our domain: Szalinksi’s rewrites improved our objective

function from 146 to 131, for chairs, whereas ShapeCoder reached 63.
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Table 8.3: We measure the generality of the abstractions that ShapeCoder discovers by comparing how well it
can compress shapes (objective function F) from a held-out set (Val) with post hoc inference (PHI) compared
with the programs it discovers during normal operation (top-row).

Shape Set  Inference Method F  Abs Count

Train ShapeCoder 63.6 4.31
Train PHI 67.5 4.67
Val PHI 70.6 4.77

8.5.3 Analysis of Discovered Abstractions

We visualize a subset of abstractions discovered by ShapeCoder when run over PartNet shapes in Figure
8.6. The recognition network learns how to use these abstractions to explain shapes in the input dataset
(first three columns). Programs rewritten with these abstractions can be edited to create new shapes, as we
show in the fourth column. The discovered abstractions contain many desirable properties: they capture
diverse geometric expressions and constrain many extraneous degrees of freedom by introducing parametric
relationships. Abstractions in later rounds of ShapeCoder can reference previously discovered abstractions
in sub-function calls, forming a nesting hierarchy of abstractions. In extreme cases, ShapeCoder can even
discover single abstractions that explain entire input shapes, e.g., in the first and third columns of the top-row,
a single abstraction function, that consumes five input parameters can output an entire chair when executed.
Access to these types of abstractions can even be helpful for structural analysis of 3D shapes. For instance,
the shown abstraction for tables (2nd row) is consistently mapped to the same semantic part (regular table
legs), even though the part has a wide range of possible output geometries. For each abstraction, we also
visualize a subset of random parameterizations (i.e. dreams), to give a sense of the possible output space

described by each function.

Post hoc inference During the course of abstraction discovery, ShapeCoder finds programs that use abstrac-
tions to explain the shapes in its input dataset. We investigate if these abstractions can generalize to shapes
from the same distribution that were not included in its optimization procedure. We leverage ShapeCoder’s
recognition network to find programs that explain shapes that were not included in the ‘training’ phase of
abstraction discovery. We run the wake phase over these shapes, to find programs that explain the input set of
primitives. These programs are then passed through the refactor operation, to see if any of the library rewrites
can further improve the program.

We present the results of this post hoc inference (PHI) procedure in Table 8.3, for shapes from the Chair
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Figure 8.6: Qualitative examples of discovered abstractions. We show one abstraction each for Chair and
Table, and two abstractions for Storage furniture. The abstraction code is shown on the left, followed by three
different usages of the abstraction in our shape dataset discovered by ShapeCoder. In the right-most column,
we manually edit the discovered program to create a new shape. Along the bottom, we visualize randomly
sampled dreams.
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Table 8.4: (Left) Ablating design decisions of ShapeCoder by tracking objective function improvement (see
condition details in Section 8.5.4). Our default configuration (bottom) performs best. (Right) Measuring
output execution validity (with Frechet Distance) under increasing perturbations (Noise Level) for programs
with, or without, abstractions. Abstractions help keep shapes ‘in distribution’ under parameter edits.

Condition F

No Abstraction 104.9 Noise Level No Abs  With Abs
Single Iter 81.6 0.1 8 8

No Dream+Wake 99.0 0.2 18 13
No Semantic Rws 75.2 0.3 40 27
No Conditional Rws  100.0 0.4 88 48
No Abs Preferences 70.7 0.5 157 84
ShapeCoder 63.6

category of PartNet. The top row of this table shows the objective function values, and the average number of
abstraction-uses, for the programs that were iteratively built up during ShapeCoder ‘training’ (e.g., abstraction
discovery). In the middle row, we take this same set of shapes, ‘forget’ the programs discovered during
abstraction discovery, and run the PHI procedure, which aims to infer programs from scratch. In the last row,
we run PHI on validation shapes, never before seen by ShapeCoder. While doing inference post hoc is slightly
worse than iteratively discovering programs over multiple rounds, the difference between running PHI over
the ‘training’ shapes and ‘validation’ shapes, is relatively small. This fact, along with the consistently high-
values in the abstraction usage column, indicates that many of the abstractions that ShapeCoder discovers can

generalize beyond the dataset of shapes it optimizes over.

8.5.4 ShapeCoder Ablations

To evaluate the design decisions behind ShapeCoder, we run an ablation experiment, by tracking how the
removal of different components of our method impacts the types of abstractions we discover, and how those
abstractions impact the optimization of the objective function. We consider the following ablation conditions:

* No Abstraction: We report the results of running just the wake phase, once, without an abstraction

phase.
* Single Iter: We only run ShapeCoder for a single round.

* No Dream+Wake: We run multiple rounds of ShapeCoder without access to a recognition network.

Instead ‘naive’ programs are used to initialize the algorithm.

e No Semantic Rws: We remove all of the semantic rewrites associated with our base DSL in the refactor

operation.
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Figure 8.7: We leverage an unsupervised primitive decomposition approach [230] to run ShapeCoder over
datasets of 3D meshes. Even on these noisy primitive decompositions, our method still finds high-level, useful
abstractions that capture meaningful degrees of shape variation. Interestingly, the two top-level abstractions
we show, in orange and blue, both make use of the same abstraction sub-function (highlighted in yellow) to
create a four-leg base.

* No Conditional Rws: We replace our conditional rewriting scheme with the ‘naive’ approach described

in Section 8.4.

* No Abs Preferences: We remove the preference weighting w, described in Section 8.1.1.

We report how these different variants perform in Table 8.4, left, using shapes from the Chair category of
PartNet. All ablation conditions lead to worse optimization behavior than our default configuration (bottom
row). Without an abstraction phase, the programs returned from wake can’t leverage higher-order functions.
With just a single iteration of ShapeCoder, hierarchical abstractions can’t be discovered, and the wake phase
can’t learn to apply the discovered abstractions more broadly. When the abstraction phase is run without a
dream or wake phase, the method runs into a similar problem, where the abstractions can be underutilized, and
won’t be integrated into all of the shapes that they could be used to represent. The semantic rewrites allow e-
graphs to represent a large set of equivalent programs that we efficiently search over during refactoring; when
we don’t consider this large set of equivalent programs, we, once again, under-apply proposed abstractions.
The importance of our conditional rewrite scheme is made evident by the no conditional rewrite ablation:
within the computational budget allotted for this ablation experiment (3 days) the version of ShapeCoder that

used the ‘naive’ rewrite scheme failed to finish a complete abstraction phase. As such, we report its objective
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function value at this 3-day cut-off. Finally, our preference weighting scheme helps ShapeCoder avoid local
minima: mostly by down-weighting obviously bad (e.g. too constrained or too general) candidate abstraction

functions.

8.5.5 Discovering Abstractions from Unstructured Shapes

As an illustrative application of ShapeCoder, we investigate its ability to jointly discover a library of ab-
straction functions and programs that use those abstractions, when run over a dataset of 3D meshes. To
source this kind of input data, we use a method that performs unsupervised cuboid decomposition of 3D
shapes [230]. Specifically, we employ this approach to convert sets of ShapeNet meshes into arrangements
of unstructured, noisy primitives — a data format that ShapeCoder can reason over. We provide details of this
data preprocessing in Appendix F.2.8

Similar to the experiments in Section 8.5.2, we construct a dataset of 400 shapes, with primitives produced
by this unsupervised algorithm. We run ShapeCoder over a dataset of chairs sourced from ShapeNet [16] for
three rounds and show results of some of the discovered abstractions in Figure 8.7. Even though the primitive
decompositions that ShapeCoder receives are noisy and irregular, it still manages to discover a collection
of meaningful abstraction functions that expose higher-order properties and can be applied across instances
of the input distribution. For instance, the discovered Abssyg, captures the same fundamental chair structure
found by ShapeCoder when run over PartNet annotations (Abso4, Figure 8.6). In fact, over the course of 3
rounds, ShapeCoder improves the objective function score by 61% (140 — 53.9), which is similar to the
quantitative improvement observed when ShapeCoder operates over clean, manually annotated parts. These
results are promising, and indicate that systems like ShapeCoder can be used to discover useful high-level

programmatic representations of complex visual phenomena, without reliance on manual annotations.

8.5.6 Downstream Benefits of Abstractions

In this section, we investigate how ShapeCoder’s discovered abstractions can benefit downstream applications

with two experiments: maintaining validity under perturbations and novel shape synthesis.

Maintaining validity under perturbation As we aim to discover abstractions that remove extraneous de-
grees of freedom, we can evaluate success by perturbing degrees of freedom in shape programs, and checking
whether they ‘stay in distribution’. We take two shape program datasets, where programs are written with or

without abstractions, and perturb their parameters under different noise levels. Specifically, the noise level



125

modulates the standard deviation of Gaussian noise distributions fit to each parameter slot of each DSL func-
tion. For each perturbed set of programs, we measure how similar their output executions are to a validation
set with Frechet Distance (FD) in the feature space of a pretrained model. We report results of this experi-
ment in Table 8.4, right. We find that rewriting programs with abstractions discovered by ShapeCoder helps to
keep shapes ‘in distribution’ under parameters perturbations, which is an important property for goal-directed

editing tasks.

Novel Shape Synthesis We evaluate if generative models that learn to write novel shape-programs benefit
from training over programs that have been rewritten with discovered abstractions. For this experiment, we
use the PHI procedure (Section 8.5.3) to construct a dataset of 3600 chair-programs written with ShapeCoder
discovered abstractions. We use this dataset to train an auto-regressive network, a Transformer decoder,
that learns to generate sub-programs conditioned on a canvas that tracks the execution output of previously
predicted program parts (Appendix F.2.9). To synthesize novel shapes, the network starts with a blank canvas,
and then gradually builds up a complex program by iteratively sampling expressions, and adding their outputs
to the canvas, until a STOP token is predicted.

We visualize outputs of this model in Figure 8.8. Qualitatively, we find that this model can create new
shapes not observed from the training set, that clearly stay within the training-distribution. Quantitatively, we
compare the outputs of this model against an ablated version that trains over programs without abstractions,
and find that learning over programs written with abstractions improves Frechet Distance (against a validation
set) from 17.1 to 13.8, a 19% improvement. Moreover, generative models of visual programs that learn over
abstractions are particularly attractive, because the programs they output have less extraneous degrees of

freedom, and will be better suited for downstream tasks.

8.6 Discussion

We have presented ShapeCoder, a system capable of discovering visual program abstractions in a collection
of shapes represented as unstructured primitives. Our method does not require any additional supervision
such as ground truth programs, any specific ordering of program operations, or any program curriculum.
We have shown that ShapeCoder discovers high-level abstractions, that result in significant compression, on
domains that other state-of-the-art methods cannot handle. ShapeCoder can find programs that use these

abstractions to explain shapes not observed during optimization, compactly. Finally, we demonstrated the
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Figure 8.8: Sampled programs (top) from a generative model that writes programs containing abstractions,
along with nearest neighbors (bottom).

flexibility of ShapeCoder by showing that it can discover useful abstractions, that capture meaningful degrees

of freedom when run over noisy primitive decompositions produced by an unsupervised method.

8.6.1 Relation with DreamCoder

DreamCoder proposes a system that jointly discovers abstractions and performs program induction over arbi-
trary functional programming languages [42]. At its core DreamCoder uses three phases to perform this hard
task. A dream phase samples random programs from a library (optionally augmented with abstractions). A
wake phase trains a recognition network to infer programs based on the dream samples. An abstraction phase
looks over a corpus of returned programs from the wake phase, and proposes and integrates abstractions that
improve an objective function. The objective function trade-offs program likelihood under the library with
the complexity of the library.

Similar to this framing, ShapeCoder employs an iterative procedure with interleaved phases (dream, wake,
proposal, and integration). These phases are run repeatedly, gradually discovering a library of abstraction
functions that minimize a compression-based objective function. The dream phase trains a recognition net-
work, which is used by the wake phase to infer visual programs that explain input shapes. Critically, we
design our recognition network in a way that allows it to find partial solutions for difficult input scenes. This
allows ShapeCoder to still work on input datasets that lack a curriculum of examples (some inputs are easy

to solve under the base DSL).
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While DreamCoder’s generality allows it to effectively scale across a wide-variety of program inference
tasks, its abstractions are purely structural, treating real-valued program components as discretizations. This
means that it is not well-suited for shapes (or other visual domains) where ideally abstractions would capture
both complex parametric and structural relationships. Another challenge of applying DreamCoder to shape
programs is that its iterative procedure is reliant on a curriculum to solve tasks: all of its stages (dreaming,
waking, abstraction) rely on the assumption that solutions to at least some of the input tasks have a high
probability under the current library functions. When the input tasks form a curriculum (e.g. some tasks
are very easy to solve under the base DSL), then this procedure works very nicely, gradually discovering
more and more abstractions that allow it to solve increasingly complex VPI tasks. Unfortunately, when this
curriculum assumption is broken, DreamCoder can fail to discover any programs or abstractions for a given
domain. Based on these properties, we ran investigations of how DreamCoder fairs on a simple grammar with
parametric relationships, and found that it wasn’t able to discover the kinds of abstractions that ShapeCoder

is able to find. We provide details in the Appendix F.4.

8.6.2 ShapeCoder Limitations

While ShapeCoder is the first method to discover non-trivial program abstractions directly from unstructured

primitives, it does have some important limitations:

(i) Redundant abstractions. We find multiple abstractions that explain the same concept. While these can
be seen as structural variations for the same semantic concept (e.g. pedestal chair bases and four-leg chair
bases), the abstracted programs can feel redundant for downstream tasks. This is hard to avoid as, at present,

we do not ‘execute’ the programs to compare their geometric output.

(ii) Unsaturated e-graphs. For complicated input expressions, it can be computationally infeasible to fully
saturate e-graphs, as they lack the ability to efficiently represent associativity-commutativity constraints.
While ShapeCoder doesn’t offer a direct solution to this issue, our use of conditional rewrites avoids inserting
extraneous parametric operation nodes. This helps to alleviate exponential blowup, and allows ShapeCoder
to explore a much richer range of possible program structures than prior work. Despite this, we cannot
always saturate our e-graphs within the allotted computational budget. This implies that some possibly useful

rewrites go unexplored and never get appended to the abstraction library.



128

(iii) Bottom-up wake network. ShapeCoder’s recognition network (used in the wake phase) solves sub-
problems that are stitched together through combinator operations. A downside of this design decision is that
the recognition network must be retrained whenever the library version changes. Further, as the network does
not predict an entire program in one-shot, inference can be expensive to run, and there is less consistency in

how programs will be inferred across a dataset.
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Figure 9.1: ShapeLib guides an LLM to design a library of procedural shape functions from a given set of
(20) seed shapes and textual descriptions. Using an LLM prior makes the functions semantically interpretable
and easy to edit, while aligning them with the seed shapes specializes the functions to a given domain and
reduces LLM hallucinations. The library can be used to train a network for visual program induction that
generalizes well beyond the seed shapes.

Methods like ShapeMOD (Chapter 7) and ShapeCoder (Chapter 8) aim to automatically discover good li-
braries of procedural shape functions. These methods use data-driven approaches to optimize a compression-
based objective. They operate in a ‘bottom-up’ fashion, starting from a base modeling language with ele-
mentary functions, and gradually grow their library, in a greedy manner, by defining new and more domain-
specific abstraction functions based on how much they help to compress shapes from a large dataset. While
these approaches can successfully optimize their compression objective, they base their library development
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solely on compressing out common geometric patterns over a large shape dataset, without any semantic ‘top-
down’ guidance. As a result, the functions they produce can only align to shape semantics by chance, making
them difficult to interpret and meaningfully manipulate.

As an alternative, we investigate how Large Language Models (LLMs) can help with this procedural lan-
guage design problem. LLMs have demonstrated remarkable success over a surprisingly diverse range of
tasks, from 3D layout synthesis [81] to general code generation [88]. There are reasons to believe they might
be useful in helping to design procedural models. They have top-down world knowledge about the semantic
relationships of parts within shapes and they are proficient at writing code. Despite these properties, LLMs
also have limitations that temper their procedural modeling capabilities. As we demonstrate experimentally,
latest frontier LLMs still struggle to understand complex geometric layouts and often misinterpret or mis-
attribute constraints and relations between parametric controls. Their mistakes manifest as hallucinations,
leading to implausible geometry or structures that cannot represent assets in existing 3D datasets.

In this Chapter, we introduce ShapeLib, a hybrid system that guides an LLM through the creation of a
library of procedural abstraction functions from a specified design intent. An expert user provides this design
intent to our system with two modalities: (i) function descriptions in natural language, and (ii) a seed set of
exemplar shapes. The two modalities are complementary: the first mode allows the user to specify the kinds
of functions they would like to interface with; while the second mode provides geometric references that
guide and constrain library development.

ShapeLib breaks the complex library design process into a series of sub-problems. First, we use an
LLM to design the library interface with a prompting workflow conditioned on the function descriptions.
Next, we task an LLM with proposing applications of these functions to explain shapes from the seed set
(from the interface only, without any actual implementations). We then use these proposed applications
to automatically formulate input/output examples that guide the LLM to propose implementations of each
function. We finalize the library with a validation step that performs a geometric analysis over the proposed
function implementations and applications. To apply these functions to represent shapes beyond the seed set,
we additionally train a recognition network that learns to map input shapes to output programs written with
the library functions. To train this network, we create a synthetic data generator by prompting an LLM with
the finalized library implementation and asking it to produce a function that randomly generates an input
shape using the abstraction functions. In this way, even starting from only a small seed set, ShapeLib can find

programs that use these abstraction functions to explain a much larger collection of shapes (see 9.1).
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We evaluate ShapeLib by using it to design libraries of procedural functions over multiple shape cat-
egories (chair, table, storage, lamp, faucet). We find that our method generates functions that
(1) adhere to the top-down semantics provided by the natural language descriptions, and (ii) produce geomet-
ric outputs that reflect structures observed from the exemplar shapes. Beyond this, we experimentally validate
that our discovered library helps us to realize the benefits of representing shapes procedurally along a number
of axes. Generalization (a): they are useful for modeling shapes outside of the seed set; Interpretability (b):
they are aligned with semantics and expose a small number of parameters that produce predictable edits;
Plausibility (c): they constrain outputs to maintain shape semantics under manipulation. We compare against
alternative problem framings, and find that our dual modality design intent is crucial for our success. When
semantic information from (i) is missing, systems like ShapeCoder find abstractions that improve compres-
sion, but lack interpretability and do not maintain plausibility. When reference geometry from (ii) is missing,
LLMs design sensible library interfaces, but produce function implementations that can not generalize across

shape distributions.

9.1 Overview

ShapeLib guides an LLM through the process of developing a library of procedural functions that matches
an input design intent. In our problem framing, we assume that a user has a procedural modeling domain
in mind (e.g., a particular category of shapes). The user will communicate their design intent to our system,
which is then tasked with producing a fully realized library of abstraction functions that meet our desiderata:
(a) they should generalize, (b) they should be interpretable, and (c) they should produce plausible outputs.

Our system receives a number of benefits from the prior knowledge encoded in LLMs. Since LLMs have
been trained extensively on human-written code, they are able to author functions with meaningful names
and parameters. This exposes an interface that a person can easily work with and understand. However, we
also find that LLMs are prone to hallucinate, generating mismatches from ‘real’ distributions of shapes (e.g.,
collections of 3D assets).

To overcome this issue, we guide and ground the LLM outputs under the supervision of the user provided
design intent, consisting of a textual description and a set of seed shapes. Textual descriptions of desired
function properties help constrain the interface design, prompting the semantic prior of the LLM to attune
towards a particular modeling task. Each seed set we consider is composed of twenty 3D shapes with part-

level semantic segmentations and textured renders. Our system validates the plausibility of its productions by
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Figure 9.2: Method overview. We design a function library in four steps, starting from a user intent (light
blue) that consists of function descriptions and a set of seed shapes. First, (a) we prompt an LLM to create
function interfaces that define parameters and annotate the function’s purpose. Then, (b) the LLM is prompted
to propose multiple applications of the functions that reconstruct the seed shapes. Next, (c) we use this
information to guide the LLM to propose multiple function implementations. The library is finalized with a
validation step (d) that searches for pairs of applications and implementations that best reconstruct the seed
shapes. We can use the library to extend beyond the seed shapes by guiding the LLM to author a synthetic
data generator with the library functions, and using the resulting paired data to train a recognition network
for visual program induction.

searching for function implementations and applications that can explain sub-structures in these exemplars.
In the following, we explain how ShapeLib solves this problem. In Section 9.2, we describe how we
convert design intent into a fully realized library of abstraction functions. In Section 9.3, we describe how we

can expand the usage of this library beyond the seed set by training a recognition network on synthetic data.

9.2 Library Design

ShapeLib converts design intent into a library of functions through a series of steps, which we depict in
Figure 9.2. The interface creation step converts function descriptions into a library interface (Section 9.2.1).
The application proposal step identifies which library functions should model which seed set shapes (Sec-

tion 9.2.2). The implementation proposal step generates candidate function implementations (Section 9.2.3).
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The library is then finalized with a validation step that checks combinations of proposed function applications

and implementations against seed set examples (Section 9.2.4).

9.2.1 Interface Creation

ShapeL.ib first converts user function descriptions into a library interface (Fig. 9.2, a). We prompt an LLM to
produce a structured interface, where for each function it produces a typed signature and an accompanying
doc-string.

We provide the LLM with two default classes: a ‘Part’ class that creates primitives that abstract detailed
geometry and a ‘CoordFrame’ class that defines a local bounding volume. Our prompt contains task instruc-
tions and in-context expert demonstrations sourced from different categories. By default, we use axis-aligned
cuboid primitives, though this design decision could be generalized by modifying prompt instructions and
examples.

The LLM produces function signatures that expose parametric handles, e.g. the numbers of bars in a
ladder back or the height of base runner. Each function is instructed to take in a special first parameter, CF,
a ‘CoordFrame’ that specifies the expected extents of the functions outputs. Functions are typed so that they
return a List of ‘Part’ objects.

Through our in-context examples and instructions, we prompt the doc-string to have a particular structure.
First, it defines a description field to explain the high-level goals of the function. Then, it defines a parts
field, that specifies what parts should be produced depending on the input parameters. Finally, it defines a
parameter field, that explains how they should affect the output structure. This interface is then used to guide

the library development.

9.2.2 Proposing Function Applications

As LLMs are prone to hallucinate, we do not directly implement each function following the prior step.
Instead, we would like to ground each function implementation by referencing structures from the seed set.
To find such references, we propose programs that apply library functions that explain exemplar shapes
(Fig. 9.2, b).

This step begins by sampling a shape from the seed set. We ask a VLM to describe the parts that is sees
from a render of the shape. We also convert the 3D semantic part annotations into a list of labeled ‘Part’

objects. We combine these inputs together, and task an LLM with deciding what parts should be explained by
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which library functions (even though these functions lack implementations). The LLM outputs this decision
by authoring a ‘program()’ function that proposes library function applications (along with parameters). We
ask the LLM to use a special ‘group_parts’ function when constructing this program, that consumes a list
of input ‘Part’ objects and returns a bounding ‘CoordFrame’ object. In this way, the ‘program’ provides
information about which parts of the input shape should be explained by which library functions.

As we later demonstrate empirically, the accuracy of individual LLM calls has a high variance which
makes them hard to trust. Therefore, instead of finding a single program for each shape, we run this procedure

K times for each shape in the seed set (K=5).

9.2.3 Propose Function Implementations

ShapeLib now has the information from the prior steps it needs to author good function implementations:
typed signatures, doc-string guidance, and input-output examples. These input-output example pairs can be
automatically found from the proposed function applications. From this input, we ask the LLM to complete
the implementation of each function so that it matches the signature type, meets the doc-string specification,
and respects the observed patterns present in the usage examples (Fig. 9.2, c).

Of note, we find that the LLM predictions in the previous application proposal step do a good job of
identifying which functions should explain which parts, but do a much worse job at predicting parameter
values. With this in mind, we mask out parameter values with a special token ‘?’ in all input-output examples.
We do this for every parameter value, except for the first CF ‘CoordFrame’, as the correct value for this
parameter can be found automatically with the ‘group_parts’ function.

Similar to previous step, we find that some implementations produced by the LLM produce better or
worse matches against the input specification. So for each function in our library, we propose K different

ways that it could be implemented (K=4).

9.2.4 Library Validation

At this point we are close to having a fully realized library. From the prior steps we have (a) function
doc-strings and signatures, (b) proposals of how the functions should be applied to explain groups of parts
in seed-set shapes, and (c) proposals of how the function should be implemented. This validation step is
responsible for deciding which of these proposals are ‘good’, and not just LLM hallucinations (Fig 9.2, d).

To make this decision, we search over pairs of proposed implementations and parameterizations, and
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record those that geometrically match structures present in the seed set shapes. For each proposed function
implementation from (c) we check which of proposed part groups from (b) this implementation can explain.
Specifically, we try executing the function with the proposed parameterizations sourced from (b), calculate
the observed error between the target parts and function output, and record the parameterization that achieves
the best error. Our error metric compares corner-to-corner distances between sets of geometric primitives,
and mark function applications as invalid if the paired structures are not similar enough (see Appendix G.1.1
for details).

At this point, for each group of parts from (b) we know which implementation from (c) best matches the
observed part structure. We keep the implementation that achieves the best error across the most part groups,
and remove all others proposals. If this best implementation found valid applications across multiple seed
set shapes, we update the library interface entry with its implementation logic. Otherwise, we remove the

function entry from the interface.

9.3 Using the Library for Program Synthesis

In Section 9.2, we constructed a library of functions that have meaningful signatures and structured doc-
strings. Each function has an implementation that is capable of producing structures that capture patterns
observed in the seed set, but a question remains: how can we use these functions to represent new shapes?
In this section, we describe our strategy for expanding library function usage beyond the seed set (Fig. 9.2,
right). To begin, we once again make use of the strong prior of LLMs by providing it with our library interface
and asking it to design a procedure that uses the abstraction functions to randomly synthesize synthetic
shapes. Once we’ve developed this synthetic data sampler, we can use it to produce paired training data for a
recognition network that learns how to solve an inverse task: given an input shape structure, write a program

using the library functions that explain its parts.

Generating a synthetic shape sampler In this step, we design a prompt that describes the library we’ve
developed, including the interface of each function and examples of how to use it (sourced from the validation
stage). We give this prompt to an LLM and ask it to write a ‘sample_shape’ function that randomly produces
new shapes using the provided abstractions. Interestingly, we find that frontier LLMs are able to provide
useful implementations of such a ‘sample_shape’ function. A shown in Figure 9.2, some of these random

outputs produce good shape abstractions, while other random samples violate class semantics. With this in
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mind, instead of attempting to get the LLM to perfect its implementation, we treat its output as a synthetic data
generator for a recognition network. To broaden the coverage and variety of structures that these ‘sample_-
shape’ functions produce, we employ an iterative refinement loop that provides automatic feedback to the
LLM. This refinement procedure ensures that all functions and parameters in the library get used, and instructs
the ‘sample_shape’ function to produce outputs spanning the observed structures from validation step (see

Appendix G.1.3).

Training a recognition network Once we’ve improved the ‘sample_shape’ function through rounds of
iterative refinement, we can use it to produce training data for a recognition network. This network takes as
input a shape represented as a set of unordered primitives (e.g., Cuboid dimensions and positions). It outputs
a program that uses library functions to reconstruct this input shape. We implement this network as an
autoregressive Transformer decoder [209] with a causal prefix mask over the input shape representation. We
train this network from scratch, streaming random samples from the synthetic data generator: each program
we sample becomes a target output and we execute the program to find the corresponding input. Once
trained, we can use this network to find library function applications that explain shapes from outside of the
starting seed set (Fig. 9.2, right-bottom). Our inference procedure prompts the network with an input set of
unordered primitives and samples a large number of programs according the network’s predicted distribution.
We try executing each program, and we record its complexity (the number of tokens it uses) and its geometric
error against the input set. We choose the program that minimizes an objective that is a simple weighted

combination of these two values.

9.4 Results and Evaluation

We run experiments over multiple categories of 3D shapes (chair, table, storage, lamp, faucet).
For each category, an expert user provides design intent as (a) natural language descriptions of functions
that would be useful for this category and (b) a set of 20 seed shapes sourced from PartNet [141], which
has per-part annotations. We obtain corresponding renders of each shape from ShapeNet [16]. This input
is provided to ShapeLib, which then produces libraries of abstraction functions for each category. Unless
otherwise noted, we use OpenAI’s ol-mini as the LLM.

We find that ShapeLib discovers libraries that match the design intent, with validated implementations for

almost all of the functions specified in natural language (chair 8/8, table 5/6, storage 6/6, faucet
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Table 9.1: We compare how well ShapeLib’s library of abstraction functions can generalize from the seed
set to held-out validation shapes. We report the objective score achieved by our method compared with
alternatives. Obj is a weighted average of the program DoF and the geometric error.

Set Method Obj| ProgDoF | Error| #LibFns| DevTime|
Prims  73.0 73.0 0.000 0 Oh

Seed LLM-Direct 64.0 61.6 0.242 5.6 0.25h
€% ShapeCoder 43.8 39.9 0.389 19.2 20.26 h
ShapeLib  43.5 39.6 0.393 5.6 0.85h

Method Obj| ProgDoF | Error| #ShapeFns| InfTime |
Prims  71.5 71.5 0.000 17.133 5.137s
Val LLM-Direct 65.3 63.5 0.184 14.482 4.792 s
“ ShapeCoder  52.1 48.6 0.354 13.485 7.361s
ShapeLib  51.5 47.8 0.369 9.592 5.137s

5/5, 1amp 4/4). Figure 9.3 shows examples of these implementations and applications.

We verify that our method is able to help realize the benefits of representing shapes in a procedural fashion
with experiments that match our stated desiderata (see Figure 9.4.). To evaluate generalization, we compare
recognition networks that infer programs from structured inputs (Section 9.4.1) and from unstructured ge-
ometry (Section 9.4.2). We then evaluate how well function applications are aligned with class semantics
(Section 9.4.3). Finally, we show that our interface is interpretable and maintains plausibility under manipu-
lations with a perceptual study that evaluates how well an LLM can edit our shape programs compared to a

baseline (Section 9.4.4)

9.4.1 Library Function Generalization

We measure how well our library generalizes beyond the patterns in the seed shapes. We compare against
three alternatives: Prims, LLM-Direct, and ShapeCoder. Prims refers to our representation of input shapes as
collection of unordered primitives — it is used as lower performance bound; LLM-Direct is an ablated version
of our method that only reasons over the natural language descriptions to discover a library of abstraction
and does not use seed shapes; while ShapeCoder only uses seed shapes. In our evaluations we show that
ShapeLib, which uses both forms of design intent, offers clear advantages over these alternatives.

We evaluate the ability of different methods to compress programs in Table 9.1. We report this over two
different shape sets: the seed set (20 shapes per category) and a held-out validation set (400-1000 shapes
per category). For ShapeLib and LLM-Direct, program applications are found for validation shapes using
the recognition network that takes as input a shape represented as a collection of unordered primitives (Sec-

tion 9.3). ShapeCoder develops and learns such a recognition network during its ‘library learning’ stage.
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Table 9.2: We train networks that learn to map unstructured geometry (point clouds or voxels) to shape
programs. Learning with ShapeLib functions improves reconstruction Chamfer distance and voxel IoU.

Method CD | (Point Clouds) IoU 71 (Voxels)

ShapeCoder 0.0490 0.5708
ShapeLib 0.0467 0.6404

For both the seed set and the validation set, we report the total compression objective value (Obj). This is a
weighted sum of the degrees of freedom the program exposes (Prog DoF, weight 1), and the geometric error
of the reconstructions (Error, weight 10). We also report the number of functions used in each library (# Lib
fns), the time it took to discover each library (Dev time), the number of functions used per shape (# Shape
fns) and the average time it takes to infer a program for a validation shape (Inf Time).

From the results, we note LLM-Direct performs poorly, and its function implementations can’t find
applications that match well to real geometry (resulting in its limited objective improvement over Prims).
ShapeCoder is designed solely to perform well at program compression, but despite this, ShapeLib is able
to match or slightly outperform ShapeCoder with respect to the objective. Moreover, we achieve this result
much faster, using a smaller collection of library functions, and require less function calls to reconstruct
shapes during inference. We find library implementations in under an hour, whereas ShapeCoder’s bottom

up procedure takes around a day to converge (though our LLM API calls cost $5-10 per category).

9.4.2 Shape Programs from Unstructured Geometry

So far, we demonstrated that our recognition network from Section 9.3 can successfully convert semi-
structure geometric inputs into programs, but what about completely unstructured geometry such as point
clouds or voxels? To support this application, we train new recognition networks that take either point clouds
or voxels as input. We source training data using the original ‘structured’ recognition network to annotate
shapes in PartNet with corresponding programs. Per category, we use 400-4000 shapes for training and re-use
the same 400-1000 shapes as described previously for validation. We sample both point clouds and voxels
for each of the shapes.

Table 9.2 compares the reconstruction performance of a recognition network trained with function from
ShapeLib to a recognition network trained with functions from ShapeCoder. For point clouds, we track
Chamfer distance [45] between input point cloud (sampled from mesh geometry) and point cloud sampled
from abstracted cuboid outputs. For voxels, we track IoU between input voxelizations and voxelizations of

program outputs. We find that functions from ShapeLib enable more accurate reconstructions compared to
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Table 9.3: We measure the ‘semantic entropy’ of library function applications by analyzing the distribution
of functions used to reconstruct parts in validation shapes. Lower values indicate more semantically aligned
usage.

Method  Chair Table Storage Lamp Faucet

ShapeCoder 1.67 1.578 2.077 1.732 2.103
ShapeLib  0.484  1.095 0.745 0.684 1.243

Table 9.4: Fine-grained semantic segmentation performance found by applying functions over validation
shapes, and assigning labels with a voting scheme decided by seed-set usage patterns.

Method Precision?T Recallt F1 Score 1

ShapeCoder 0.25 0.30 0.27
LLM-Direct 0.34 0.12 0.18
ShapeLib 0.50 0.30 0.36

functions from ShapeCoder. We visualize some qualitative results for some validation shapes in Figure 9.4.
In addition to leading to better reconstructions, we also see that the application of our functions are more

strongly correlated with class semantics.

9.4.3 Sematic Consistency of Function Usages

Beyond reconstruction, the way in which functions are used also impacts the usefulness of the resulting
model. We design an experiment to evaluate the semantic consistency of function usages. We track how each
function is applied when reconstructing validation shapes, and record the semantic labels of the parts that it
matches against. Then, for each semantic label, we analyze the distribution of functions that were used to
construct parts of this type. If functions are well-aligned with semantics, i.e. have a consistent usage pattern,
then this distribution should have low entropy. We report results of this experiment in Table 9.3. Compared
with ShapeCoder, ShapeLib has a much lower semantic entropy, indicating that its assignment of functions

to part structures is more semantically aligned.

Semantic Segmentation Alternatively, we judge the semantic alignment of these libraries by using them
to perform semantic segmentation. We design an experiment to test these capabilities. For each function, we
look at validated applications made over the seed set, and record the semantic labels of parts that each function
explains. We then aggregate this information by counting the most commonly covered part labels to produce
a simple voting function to assign semantic labels when the function is applied. We evaluate the semantic
segmentation performance on fine-grained part labels from PartNet over validation shapes, and report results

of this experiment in Table 9.4. ShapeCoder and ShapeLib achieve a similar recall, but ShapeLib is twice as
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Table 9.5: Results of our perceptual study evaluating edits made by an LLM to programs that use shape
abstraction libraries. We report judgments along two axes: shape plausibility and match to edit intent.

More Plausible(%) Better Matches Intent (%)
vs. ShapeCoder 75% 73%

precise in its semantic predictions. LLM-Direct is more precise then ShapeCoder, however without access to

seed set exemplars it cannot find many successful function application, resulting in poor recall.

9.4.4 Editing Shape Programs with LLLMs

In this section, we investigate two critical questions concerning our library: is it interpretable and does it help
constrain shape plausibility. We consider these questions under the framing of a shape editing study. First,
we use the application network from Section 9.3 to find programs that explain validation shapes, using either
functions from ShapeCoder or ShapeLib. We then design a series of shape edit requests, and ask an LLM to
edit the text of the shape program to meet the request (i.e. change function parameters and how functions are
used, as depicted in Figure 9.1, for example).

To evaluate performance, we designed a two alternative forced choice perceptual study. We choose 5
shapes from the validation set of each category, and consider 4 edits per shape, giving us a cross-product
of 100 total comparison conditions. We provide olmini with the fully implemented function library for
both ShapeLib and ShapeCoder conditions. For the ShapeCoder condition, we observed that o/mini produced
a program that failed on execution for 11/100 editing tasks, so we omit those from the study. olmini never
produced a program that failed on execution for the ShapeLib condition. We recruited 13 participants who
made 50 perceptual judgments each. For each comparison, we show the original shape in the middle, and
arrange edits made using ShapeCoder/ShapeLib programs on either side, randomizing the left/right order.
We then ask each participant to make two judgments: (i) which manipulated shape was more plausible, and
(i1) which edit better matched the input edit request.

We report preference rates of ShapeLib over ShapeCoder along these two axes in Table 9.5. These results
support our claim that our library of shape abstraction functions provides an interface that is easy to interpret
and maintains strong plausibility under parameter variations. We show qualitative demonstrations of these
edits in Figure 9.4, and observe higher semantic alignment of LLM edits, when these edits are made over

ShapeLib programs.
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9.5 Discussion

We have presented ShapeLib as the first method that combines general semantic priors from LLMs with
domain-specific information in the form of small seed set of shapes to produce a function library that gener-
alizes to a full category of shapes and exposes interpretable parameters that produce plausible results under
manipulation. This addresses the long-standing problem in visual program induction to create programs that
are not only compact, but also semantically well-aligned and thus easy to work with for both humans and

LLMs.

9.5.1 Relation with LILO

LILO is a related contemporary approach that proposes making use of an LLM prior for general (i.e., non-
shape-specific) library learning [58]. Interestingly, the LLM in this method does not guide a top-down search
for new abstractions, but rather tries to add semantic information to functions proposed in a bottom-up fash-
ion. The method is a spiritual successor to DreamCoder [42], with a few critical differences. It does not train
a recognition network, so there is no dream phase. Instead the wake phase uses both enumerative search and
a LLM as a program synthesizer. The interface of the abstraction phase is unchanged, but the STITCH [11]
algorithm replaces the version space reasoning from DreamCoder. Once abstractions have been proposed,
LILO uses the LLM to automatically document each function: given its definition and example usages the
LLM gives the function a readable name and a doc-string explanation. This reformatting is what allows the
LLM to act as successful program synthesizer in the wake phase.

Like DreamCoder, LILO is dependent on the wake phase for finding complete solutions for at least some
tasks before any abstraction discovery can take place. While LLM program synthesis priors can help allevi-
ate this issue for many types of general domains, zero-shot visual program induction for complex shapes is
outside of the capabilities of current models. Further, when abstraction functions are proposed in a purely
bottom-up fashion, interpretability issues will remain, even with LLM integration, as there can be no guaran-

tee that the function logic, or exposed interface, will have relevant semantic mappings.
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CF,

CF: CoordFrame,

orientation: str, N 'lateral’
size: float, 22 ’
runmer_heightsfoat, 0.09,

include_top. stretchers: bool = False
ist[Part]: 0.11
" - i

Description: Creates a sled base for table objects with four Fa [Se)
vertical legs positioned at the corers. It includes two sled

ing pairs of legs to provi . The
runners can be oriented either laterally (connecting the back
and front legs) or horizontally (connecting the left and right legs). CF
Optionally, top bar stretcher parts can be added above each sled B
runner in a mirrored fashion, attaching to the top of the CF.

'lateral’,
0.07,
0.07,
Parameters:

~CF: controls the dimensions and position of the structure True)

- orientation: specifies the orientation of the sled runners.
Valid options: (lateral’, 'horizontal’

-size: controls the size of each leg and runner CF

- runner_height: controls the height of the runners s

-include.top_stretchers: optionally includes top bar sretchers
above the runners, default is False

Parts: When include_top_stretchers is False returns a list with 6
Part objects (4 legs and 2 runners). When include_top_stretchers
is True returns a list with 8 Part objects (4 legs, 2 runners, and
2top stretchers). Valid options: [6, 8]

'lateral’,
0.08,
0.09,
False)

left = CF.x_pos - CF.width /2

right = CF.x_pos + CF.width /2
front = CF.z_pos +CF.depth /2
back=CF.z_pos- CF.depth /2

# Create legs at the four corners
legs=[]

Storage Furniture
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def cabinet_drawers(
CF: CoordFrame,
number_of_drawers: int,
vertical_gap: float,
drawer_depth: float,
handle_width: float,
handle_height: float

) -> List[Part]

Description: Creates a series of vertically stacked cabinet drawers|

cabinet_drawers(CF,
2,0.0,0.03,
0.24,0.02)

within the given CoordFrame. Each drawer features a centrally
located handle. The number of drawers, the vertical gap between

them, depth, and the handle dimensions can be customized,
Parts: For each drawer unit, two Parts are created (the drawer
andits handle). Thus, the total number of Parts is 2 multiplied
by number_of_drawers. Valid options: 2,4, 6,8, 10]

Parameters:

- CF: controls the dimensions and position of the structure
~number_of_drawers: specifies the number of drawer units
to create (min 1, max 5)

~vertical_gap: controls the vertical space between each pair
of drawer units

cabinet_drawers(CF,

5,0.04,0.04,
0.17,0.04)

~drawer_depth: controls the depth of each drawer part

- handle_width: controls the width of each handle part
- handle_height: controls the height of each handle

front_thickness =0.03 # Fixed thickness
# Calculate the height of each drawer
total_gaps = vertical_gap * (number_of_drawers - 1)\

if number_of_drawers > 1 else 0
drawer_height = (CF.height - total_gaps) / number_of_drawers
# Starting y position (bottom drawer center)
start_y = CF.y_pos - (CF.height / 2) + (drawer_height /2)
foriin of_drawers):

forxin [left +size /2, right - size / 2]:
for zin [back + size /2, front -size / 2J: CF
legs.append(Part( )
width=size,

'lateral’,
0.07,
0.07,

False)

cabinet_drawers(CF,

1,0.19,0.09,
0.15,0.02)

# Calculate y position for the current drawer

y_pos=start_y +i *(drawer_height + vertical_gap)

ight=drawer_height,

depth=front._thickness,
X_pos=CF.x_pos,
¥_pos=y_pos,
2_pos=drawer_z_pos)

cabinet_drawers(CF,
4,0.0,0.04,
0.15,0.03)

| tabletop_with_underneath_frame(...) |

| def shelving_units(...)

| tabletop_with_side_frame(...) |

+3fns

Faucets

+4fns

def lever_handle_set(
CF: CoordFrame, lever_handle_set(CF,

handle_width: float,
handle_cross_size: float, 0.44, 0.13 5
support_cross_size: float,

0.17,0.31,
0.29,0.04

support_height: float,
base_cross_size: float =0.0,
base_height:float=0.0

) > List[Part]:

Description: Creates a pair of sink handle units arranged in a
bilaterally symmetric layout. Each unit features a horizontally
oriented lever handle supported vertically by a support part.
The centers of the levers and the supports are offset along the
Xaxis to allow the levers to swing. For example, the right lever
has its left end positioned over the center of ts support part.
Optionally, a base part can be added underneath each support
to provide additional stability.

Parts: When both base_cross_size and base_height are greater
than 0.0, returns a lst with 6 Part objects. Otherwise, returns
alist with 4 Part objects. Valid options: [4, 6]

lever_handle_set(CF,
0.39,0.09,
0.14, 0.55,
0.21, 0.04)

Parameters:
- CF: controls the dimensions and position of the structure
- handle_width: controls the width of each lever handle

- handle_cross_size: controls the cross-sectional size

(height and depth) of each lever handle lever_handle_set(CF,
- support_cross_size: controls the cross-sectional size

(width and depth) of each vertical support part 0'45’ 0'25’

- support_height: controls the height of each vertical support part]

0.17,0.15,

0.32,0.07)

~base_cross_size: optionally controls the cross-sectional size
(width and depth) of each base part. Default is 0.0
base_height: optionally controls the height of each base part.

# Calculate handle positions
left_handle_x= CF.x_pos - (CF.width /2) + (handle_width /2)
right_handle_x = CF.x_pos + (CF.width / 2) - (handle_width / 2)

lever_handle_set(CF,
0.52,0.14,
0.16,0.38,
0.29, 0.08)

# Calc support positions with offset to allow swinging
support_offset = handle_width /3
left_support_x=eft_handle_x + support_offset
right_support_x = right_handle_x- support_offset

def hanging_lamp(
CF: CoordFrame,
mount_height: float,
mount_size: float,
chain_size: float,
shade_height: float,
shade_size: float,
lamp_head_height: lo
lamp_head_size: float = 0.0
)= List[Part]:

.0,

hanging_lamp|(CF,
0.02,0.18,
0.08,0.17,
0.75,0.34,
0.68)

Description: Creates a ceil iging lamp object f

a ceiling mount, a central chain, and a lamp shade, all vertically
aligned and descending from the ceiling. Optionally, a lamp head|
can be inserted between the chain and the lamp shade. All parts
have sq dth and depth). T

heights of allincluded parts equal the height of the bounding CF:
Parts: When both lamp_head_height and lamp_head _size are
greater than 0.0, returns a list with 4 Part objects. Otherwise,
returns a list with 3 Part objects. Valid options: [3, 4]

Parameters:
- CF: controls the dimensions and position of the structure

hanging_lamp(CF,
0.03,0.14,0.2,
0.25,1.21,0.0,
0.0)

~mount_height: controls the height of the ceiling mount part

-mount_size: controls the cross-sectional size
(width and depth) of the ceiling mount part
- chain_size: controls the cross-sectional size
(width and depth) of the central chain part
- shade_height: controls the height of the lamp shade
- shade_size: controls the cross-sectional size.
(width and depth) of the lamp shade part
- lamp_head_height: optionally controls the height of the lamp.
head part, defaultis 0.0
~lamp_head_size: optionally controls the size
(width and depth) of the lamp head part, defaultis 0.0

hanging_lamp|(CF,
0.09,0.12,
0.02,0.15,

0.12,0.06,0.2)

parts =[]

# Calculate y boundaries
F.y_pos + CF.height /2
F.y_pos - CF.height / 2

# Calculate total height of specified parts

specified_height =mount_height + shade_height

if lamp_head_height > 0.0 and lamp_head_size > 0.0:
specified_height += lamp_head_height
include_head = True

hanging_lamp(CF,
0.04,0.24,
0.02,0.38,
0.48, 0.08,
0.16)

| basic_upright_lamp

| tube_and_spout...) |

+3fns

+2fns

Figure 9.3: Examples of functions from the shape libraries discovered by ShapeLib. For each category,
we show a function implementation, and a few example applications of the function. For each application,
we show the full output shape, with parts corresponding to the function marked in the same color as the
function name, and the function parameters. We can see that function applications are well-aligned with part
semantics and that each function typically requires only a small set of parameters to represent a rich variety

of part shapes.
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Figure 9.4: ShapeLib’s abstraction functions provide a semantically aligned and interpretable interface that
support downstream applications: text-based LLM editing and visual program induction from unstructured
geometry.



Chapter 10

Conclusion and Future Directions

This thesis has introduced a series of neurosymbolic methods that aid in shape analysis and generation.
These works demonstrate how the traditional limitations of procedural shape representations can be miti-
gated through the thoughtful integration of learning-based components and sub-modules. Our discussion
focused on three lines of investigation. Generating Shape Programs (a): We proposed one of the first sys-
tems that realized the complementary strengths of neural and procedural generative models by introducing
a hybrid neural-procedural approach for synthesizing novel shape structures. Visual Program Induction (b):
We developed PLAD, a flexible and general framework that trains VPI networks without program annota-
tions, treating the executor as a black-box, and offering better convergence properties compared with policy
gradient alternatives. We explored extensions of PLAD, finding that we could improve VPI performance by
training networks that learn how to edit programs and that this self-supervised framework could be used to
infer partial programs that could capture a collection of visual inputs, e.g. a concept. Abstraction Discovery
(c): We investigated methods that automatically produce DSLs tailored for a particular modeling task (e.g.
a category of objects). In ShapeMOD, we introduced the first work that successfully scaled library learning
techniques to complex 3D shape structures, starting from a input dataset of imperative programs. ShapeCoder
relaxed this input assumption, discovering abstraction libraries from a dataset of shapes represented as col-
lections of unstructured primitives. As these bottom-up approaches lack semantic guidance, we developed an
alternative top-down solution in ShapeLib, that guides a LLM through the process of designing procedural
abstraction functions.

While these narrative delineations might imply that these lines of investigation are isolated, the reality
is that they are actually quite complementary. Training generative neurosymbolic models (a) often requires
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access to a dataset of shape programs, these could be sourced by methods from (b). Conversely, the training
schemes we’ve developed within (b) often make use of generative models that author shape programs (a),
e.g. in ‘wake-sleep’ phases. Access to better domain-specific libraries produced by abstraction discovery
methods (c) simplifies learning tasks (a, b), while identifying when procedural libraries are better or worse
often requires the ability to know how candidate abstractions could be used to represent shapes from some
collection (b). Together, these neurosymbolic approaches form a cohesive toolkit, promising a virtuous cycle
of improvement, and help to realize the strengths of procedural shape representations in a flexible, adaptable

fashion.

10.1 Future Work

While we propose a catalog of neurosymbolic techniques that help to alleviate the limitations of procedural
shape representations, there are many avenues of future work left to explore. Our contributions advance the
state-of-the-art performance of neurosymbolic methods for shape analysis and generation tasks, yet these
capabilities are still largely tied to relatively simple domains and problem framings when compared with
‘production-level’ procedural assets. While there is some hope that existing methodology could narrow this
gap through resource scaling (e.g. data, annotations, computation), closing this gap completely (or, at the
very least, in a cost-effective manner) will likely require further research and innovation. We conclude this

dissertation by discussing future directions of particular note.

10.1.1 Controllable Dense Geometry

In this dissertation, we have mostly discussed structured shape representations. Instead of trying to capture
the geometric surface details (i.e. dense geometry) directly, these methods might use primitives as coarse part
proxies to represent a shape at a slightly abstracted level. Some complementary analysis and manipulation
works have made use of such structured representations for tasks such as segmentation [51] or deforma-
tion [192, 234]. In terms of shape generation, end-users typically want high-fidelity assets that could be
placed directly in artificial worlds and applications; this demand is driving the rising popularity of easy-to-
use text to 3D models [65, 125, 79]. To create such detailed assets in a structured, controllable fashion, some
methods have been proposed for shape stylization, where (decoupled) coarse geometry can be ‘up-sampled’
through a style encoding [20, 23]. These aforementioned approaches treat structure generation and detal-

ization as separate steps, but is this the only way neurosymbolic methods can be used for shape modeling?
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One alternative is to ‘bottom-out’ symbolically: e.g., attempt to find a program that can explain the detailed
version of a shape. This is a very sensible approach for certain domains, like CAD modeling of mechanical
parts, as having access to a ‘complete’ program can be important for downstream analysis and many such
shapes were designed through CAD programmatic workflows. On the other hand, for some domains the ben-
efits of this framing is less clear: scans of real-world 3D objects might not have a good procedural equivalent,
or even if one can find a good procedural equivalent it may be too complex to offer any real benefit. For
these domains, we may want to keep an explicit separation between ‘structure’ and ‘style’, but this doesn’t
mean that these modes need to be ignorant of one another. One option here is to guide the outputs of an un-
structured generative shape model through structured conditioning [185, 239]. Alternatively, the DSL could
contain ‘neural’ operators that produce controllable sub-shapes that can be manipulated by other program-
matic functions [34]. Beyond a successful decoupling of shape structure and style, these methods will realize
their full potential when this style decoupling matches our design criteria for the shape structure: exposing a

controllable, interpretable interface that allows for analysis and creative manipulations.

10.1.2 Visual Program Induction beyond Shapes

We’ve introduced a number of methods that advance the field of visual program induction. Most of this
analysis has been performed on manufactured 2D and 3D shapes, but there exist many exciting opportunities
to scale these insights to related domains. Closely related to manufactured shapes are organic shapes like
humans, animals and plants: great effort has already been expended to develop structured proxies for some
members of these classes [117, 128, 179, 226]. When procedural analogs are available, this inverse task
becomes more constrained, though often there is still room for these representations to become more ‘pro-
grammatic’. Building and facade modeling is another interesting problem area with higher visual complexity,
but more within-sample regularity [142, 186]. For graphics content more broadly, one could imagine find-
ing programmatic representations for movement, e.g. agent behavior [127], repetitive exercise [112], sports
analytics [238]; environments, e.g. indoor rooms [212], floor plans [214], city scapes [225]; or even ‘natu-
ral’ images or videos. Further afield, some of our insights might even be relevant to more general program
synthesis problems that are non-visual, including music synthesis [83] or molecule generation [196].

In terms of methodology, there are few unanswered questions that would be interesting to explore. In
Chapter 5, we found that training program editing networks on data sourced from edit difference scripts
outperformed data sourced from corruption processes. Both approaches require a hand-crafted machinery

(how to corrupt, how to convert one program into another), so it would be interesting to try to automate these
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in a fully domain-agnostic fashion. One could also investigate if edit scripts and program corruption are
complimentary with one another, or what types of domains favor either approach. Beyond that, it would be
interesting to formulate a system that integrates such ‘learning’ based program rewriters with ‘non-learning’
based rewriters like those used in SIRI [53]. When the executor is not just a black-box, some types of program
manipulations can be better done automatically (e.g. using parameter optimization to tweak continuous
values), while other types of program manipulations might be better left for the edit network (e.g. structural
manipulations). Relatedly, extending these types of VPI methods to more natural image/video domains will
likely require some form of ‘neural’ concept integration [240], and one could imagine concept embedding
manipulation as another form of ‘program-rewriting’.

A subtle, though powerful, benefit of performing visual program induction over shape domains lies in
the reconstruction-based reward formulation. Shape program ‘goodness’ is usually evaluated with geometric
error with respect to a target shape: this error metric provides a relatively non-sparse signal that rewards
partially correct predictions. Like other unsupervised program synthesis approaches, the PLAD framework
(Chapter 4), and its extensions, require signal to judge the fidelity of predicted programs. Finding an error
metric that is compatible with PLAD training may be more challenging for other domains, and some alter-
ations to the method may need to take place to explicitly reward well-matching local structures produced by
self-consistent sub-program components (i.e. a chunk of code that reconstructs one building out of many in a
city). An attractive alternative might be to instead use a policy network to guide self-supervised training, for
instance a network that models how ‘far-away’ a program is from a target state [102]. Though learning such
a network is challenging, this framing could be very powerful under the right conditions.

Typically, networks for visual program induction have been trained ‘from scratch’ (i.e. without a pre-
training phase on some other task / dataset). As mentioned in Chapter 4, these networks are often initialized
by training on synthetic data: programs (and their executions) sample from some random procedure. The
rise of LLMs challenges this paradigm, as many visual program induction tasks can be framed as program
synthesis tasks in more general languages (e.g. a python program that imports a visualization/graphics li-
brary). Though this approach is clearly superior for general languages, its less clear what advantages LLMs
(or VLMs) offer for program synthesis tasks under more constrained DSLs. Their pretraining phase gives
them a strong ‘coding prior’, but when synthetic data generators can be produce infinite in-domain data, how
much of this prior is needed? Investigations that offer robust analysis into this tradeoff would likely be well
received. A related idea has explored how LLMs can act as an ‘easy-to-implement’ data generator. The

aforementioned random program sampling procedures typically require some domain-specific logic, which
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is sometimes carefully crafted to match expected test-time distributions [206]. With LLMs, this process can
be dramatically simplified, if one is willing to pay a compute/API cost: simply append a few seed example
programs to a prompt, and ask the LLM to produce similar programs [123, 122]. One unexplored idea in this
space is to take a hybrid framing: ask a LLM to gradually improve the design of a programmatic sampling

procedure.

10.1.3 Procedural Abstraction Discovery

This dissertation has introduced three works that discover libraries of procedural abstractions functions:
ShapeMOD (Chapter 7), ShapeCoder (Chapter 8), and ShapeLib (Chapter 9). The formulation presented
in ShapeLib reflects our current best guess concerning the future of library learning for complex 3D shapes:
using LLMs, under minimal human guidance, to search for abstractions that meet an input specification. In

the following paragraphs we reflect on the future avenues along this research direction.

ShapeLib extensions One limitation of the current framing of ShapeLib is that we require users to specify
up-front all of the abstraction concepts they would like the system to discover. This could be improved by
recasting this process in an iterative loop: the user specifies some initial concepts, ShapeLib tries to find
implementations, and then reports back to the user. The user could then update concept descriptions to better
align them with LLM priors, or may be inspired to suggest new concept descriptions by looking at shapes
that are poorly covered by the proposed abstractions. Alongside this, it would be interesting to investigate
how well an LLM prior could be used to automatically propose new abstraction concepts based on the initial
design intent (descriptions or seed set).

ShapeLib’s functions produce cuboid primitives that represent part bounding boxes. Instead of trying to
completely reproduce surface geometry, we capture a structured shape representation useful for downstream
tasks. While this representation can already be directly useful for analysis and manipulation tasks, more ma-
chinery must be developed to convert these structured representations into production quality assets. Ideally,
this could be done in a way that decouples local geometry (so each individual function can still be edited)
while still exposing relevant tunable parameters for the style (dense geometry / texture / materials).

While ShapeLib is able to find abstractions that meet a user’s design intent, currently this process starts
from scratch with each invocation. With the proper infrastructure, one could imagine ShapeLib blossoming
into an organic ecosystem, where successful abstractions are maintained and curated by a community of

procedural modelers. This centralized knowledge-base would at once simplify ShapeLib’s directive, allowing
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it to reuse or be inspired by its previous solutions, while at the same time reforming task-specific abstraction

functions into a category-general procedural modeling library.

Merging bottom-up and top-down methods While ShapeLib’s top-down framing offers many benefits,
this perspective cannot make full use of the bottom-up abstraction discovery machinery developed within
ShapeMOD and ShapeCoder. One might then ask: is there a hybrid solution that meets somewhere in the
middle? This may be possible, consider for instance a method that first partitions the broad library learning
objective into digestible sub-tasks, that are then satisfied through bottom-up candidate proposal, and finally
validated with top-down semantics. The LILO system [58] takes a hybrid stance along this line, using top-
down semantic knowledge to document abstractions found from a bottom-up procedure, but there may be

further opportunities to integrate top-down reasoning into such library learning systems.

Leveraging existing procedural assets The library learning works we’ve proposed often try to reduce the
amount of structured system inputs as much as possible. Though this framing is general, and intellectually
interesting, it neglects to make use of an available resource: existing procedural models! Why might these be
useful? A well-structured procedural model could become relevant context as part of LLM prompts, e.g. as
a guide for what ‘well-designed’ means. One could also imagine a gradual evolution of a procedural model,
where a starting version is improved through iterative edits to capture a more diverse output distribution or
specialize its productions with respect to certain criteria. Beyond making use of single procedural models,
there are also opportunities for works in this space to learn from or condition on datasets of procedural

representations and functions [165, 168, 167].

10.1.4 Programmatic Shape Analysis

Up to this point, we’ve discussed methods that aim to represent shapes in a neurosymbolic fashion to sup-
port generation and analysis tasks. A subtly different line of investigation might try to analyze shapes in a
neurosymbolic manner. For instance, there has been some recent works that explore how programs can be
used in visual analysis tasks, especially within the field of visual question answering, or VQA. In VQA, a
visual input (usually an image) and a question (in the form of natural language) are presented to a system,
which must output an answer. Prior works have explored converting such questions into ‘query programs’,
which can then operate over a processed version of the image (e.g. object-centric representations). While

a number of these methods have shown proficiency on artificial domains [89, 90, 131, 233, 69], only very
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recently have similarly inspired approaches seen success in scaling to ‘real-world’ use-cases by leveraging
LLMs [67, 199, 195].

Though these advances for neurosymbolic image analysis have not yet proved useful for 3D shapes, this
is an area ripe for investigation. Semantic segmentation is a foundational visual computing problem that
might especially benefit from this sort of neurosymbolic framing. Many applications and methods, including
some of the ones proposed in this dissertation, require fine-grained hierarchical part decompositions of 3D
shapes. A large body of research has investigated learning-based approaches for this task, but a key issue is
that labeled data is often limited, especially for fine-grained label sets. Though this issue can be mitigated
somewhat through modular approaches that factorize this task into more manageable sub-problems ([96],
[97]), these approaches are still quite data-hungry and significantly underperform against expert annotators.

For inspiration on how these systems could be further improved, one can look to how people go about
decomposing shapes into parts. PartNet [141], is one of the only existing large-scale datasets of 3D shapes
that has fine-grained part annotations. Interestingly, in the interface that PartNet labelers used to make the
annotations, the instructions for how to label each semantic part were given in the form of both rules &
examples. For instance, when labeling a back-frame part, an annotator would be shown an example of a
back-frame part in the context of a chair, and then also given a definition that a back-frame typically ‘outlines
the backbone of a chair back’. Could learning-based approaches for semantic segmentation benefit from the
same kinds of symbolic information? Exploring how to convert discrete part-based relationships, like one

part outlining another part, into programmatic rule-expressions promises an intriguing future direction.



Appendix A

Additional Details for ShapeAssembly

In Appendix A, we supply additional details for the ShapeAssembly method introduced in Chapter 3.

A.1 Semantics of the attach Command

In designing the SHAPEASSEMBLY interpreter, our goal is to ensure that its internal operations stay limited
to simple fixed-function, differentiable operations. Thus, implementing the attach command, we opt not
to use any constrained optimization routines which could resolve a globally-optimal configuration of cuboids
given the attachment constraints. Instead, the interpreter immediately executes each attachment as it is de-
clared, i.e. it greedily solves for attachments. To make the behavior of this procedure as predictable as
possible, the greedy attachment procedure should induce the fewest changes possible to the current cuboid
shapes.

With these desiderata in mind, we designed the following procedure for attaching cuboid ¢ to cuboid ¢,
(see Figure A.1). The logic that executes depends upon how many prior attachments c¢; has and the aligned
flag of c;:

No prior attachments In this case, cuboid ¢; can connect to cuboid c2 by simply translating until the
attach points are colocated.

One prior attachment Here, the interpreter scales cuboid c; along one of its axes and then rotates it such
that the attachment is satisfied. To choose the axis along which to scale c;, the interpreter checks how quickly
scaling each of its three dimensions would reduce the ratio n/k, where n is the distance between ¢, ’s existing

attachment point and the new target attachment point, and  is the distance between c;’s existing attachment
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Side view

. 0<1t?

Figure A.1: Tllustrating how the attach command executes, depending on the number of existing attach-
ments (left column) to the cuboid in question. Cuboids with no existing attachments can simply be translated
into place (top). Cuboids with one existing attachment can be scaled along one axis and then rotated (middle).
Cuboids with two or more existing attachments are more complicated, and the attachment may not always be
satisfiable. Our interpreter attempts to rotate and scale the cuboid to get as close as possible to valid solution.
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point and the new source attachment point. The interpreter then scales ¢; by n/k along this dimension, which
gives it the correct length. Finally, c; is rotated such that the source and target attachment points are colinear
(and thus colocated).

Two or more prior attachments In this case, it is not always possible to satisfy the attachment, as three
point constraints on a cube may be overconstrained. If a solution exists, however, our interpreter will find
it. And in the case where no solution exists, it attempts to approximately satisfy the attachment (which we
decided to be more user-friendly behavior than throwing an error).

First, the interpreter checks if c;’s existing attachment points are all colinear. If they are, then it rotates
c1 about this axis of colinearity to make the source attachment point face the target attachment point. The
final step is to scale c; along the normal of the face containing the source attachment point. If the existing
attachment points were not colinear, and this face was not rotated to point toward the target attachment point,
then this may not be a useful operation (i.e. it may introduce undesirable change to the cuboid shape while
doing little to bring the source point closer to the target point). Thus, the interpreter only executes this scale
if the angle between the source face normal and the vector to the target point is smaller than a threshold 7 (25
degrees in our implementation).

Aligned Cuboids Cuboids that are marked as aligned in SHAPEASSEMBLY programs cannot have their
orientations changed through attachment. In fact, with correct cuboid dimension parameterization, a single
attachment is enough to properly position and orient an aligned cuboid. However, in order to ensure that
aligned Cuboids remain connected through edits and predictions of our generative model, we minimally
grow aligned cuboid dimensions to satisfy the part-to-part connectivity specified through attachments. That
is, for aligned cuboids we do not guarantee attachment point colocation after the first attachment, as this is
often impossible to exactly fulfill without changing a cuboid’s orientation. Rather, we guarantee that aligned

cuboids will fulfill attachment relationships with cuboids they are attached to at some attachment point.

A.2 Semantics of SHAPEASSEMBLY Macro Functions

We provide an account of the logic for macro function expansion in SHAPEASSEMBLY :

Squeeze. The squeeze macro is parameterized by three cuboids (¢,1, ¢p2, ¢n3) a face f and a (u,v)
position on f’s 2D coordinate system. A squeeze command expands into two at tach functions. The first
attach function attaches the center of ¢,,1’s f face to the (u, v) position on the opposite face of f on ¢,2. The

second attach function attaches the center of ¢,;’s opposite face of f to the (u,v) position on the face of f



154

on c,3. For example, the line squeeze (c,1, Cna, cns, left, .1, 4). It expands into attach(c,1, cpe, 0.0, .5,
.5, 1.0, .1, 4) and attach(cp, cns, 1.0, .5, .5, 0.0, .1, .4).

Reflect. The reflect macro is parameterized by a cuboid ¢,, and an axis a. A reflect command first
expands into one Cuboid function, that creates a new cuboid c,,» with the same parameters as c¢,,. Then for
every previous attachment line pair that had moved ¢,,, of the form attach(c,, ¢m, 21, Y1, 21, T2, Y2, 22)»
the reflect command creates a new attachment line: attach(c,, ¢m, 1, Y1, 21, R(Z1, Y1, 21, Cns Cm, a)). R
is a function that applies a reflection of the global point specified by (1, y1, z1) in the local coordinate frame
of ¢,, about the axis a, and then returns the local coordinates of that point within c,,.

Translate. The t ranslate macro is parameterized by a cuboid c¢,, an axis a, a number of members
m, and a distance d. A translate command first expands into m Cuboid functions, that each creates a
new cuboid c,,, with the same parameters as c,,. Then for every previous attachment line pair that had moved
Cn, Of the form attach(c,,cm, T1,Y1, 21, T2,Y2, 22), the translate command creates a new attachment
line attach(ey,, ¢m, 1,91, 21, T(21,Y1, 21, Cn, Cm, a,d)). T is a function that applies a translation of the
global point specified by (z1,y1, 21) in the local coordinate frame of ¢,, along the axis a (of the bounding
volume) for for a distance of d (where d is normalized by the size of the bounding volume), and then returns

the local coordinates of that point within ¢, .

A.3 Program Extraction Procedure

Here, we provide an account of our program extraction procedure in greater detail:

Part Shortening Before any hierarchical processing, we first attempt to regularize any artifacts in the input
data. Specifically, for each leaf cuboid part proxy, we check if any of its faces are completely contained
within any other leaf cuboid. If we find that we can shorten a leaf cuboid without changing the visible,

non-intersecting, geometry of the part graph, we do so.

Semantic Hierarchy Arrangement During our data preprocessing stage when converting PartNet part
graphs into SHAPEASSEMBLY programs, we locally flatten part graph hierarchies based on semantic rules as
depicted in Figure 3.5. For chairs we flatten the following nodes: back, arm, base, seat, footrest and head. For
tables we flatten the following nodes: top and base. For storage we flatten the following nodes: cabinet frame,
cabinet base. For storage, we move the following nodes into the cabinet frame sub-program: countertop,

shelf, drawer, cabinet door and mirror. We also perform a semantic collapsing step where the intermediate
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nodes containing detailed geometry are converted into leaf nodes and their children are discarded. For chairs
we collapse the following nodes: caster and mechanical control. For tables we collapse the following nodes:
caster, cabinet door, drawer, keyboard tray. For storage we collapse the following nodes: drawer, cabinet
door, mirror and caster. Empirically we observed that this method of hierarchy re-arrangements produces

cleaner and more regularized training data for our generative model.

Attachment Point Detection In order to identify which cuboids connect, and where they connect, we use
a point cloud intersection procedure. We sample a uniform 20x20x20 point cloud within the volume defined
by each cuboid. To check if two cuboids are attached, we find the set of points in the pairwise point cloud
comparison that have a minimum distance to any point in the other point cloud within a distance threshold
determined by the scale of the larger cuboid. For cuboids that attach (i.e. this intersection set is non-zero)
we sample a denser 50x50x50 point cloud within the bounds of the detected intersection volume, forming a
set of candidate attachment points. From this set we first filter all attachment points that are outside of either
cuboid. If any remaining attachment points form face-to-face connections between cuboids we choose them,
otherwise we define the attachment as taking place at the mean of the remaining attachment points. With the
same procedure, we also record if cuboids connect to the top or bottom of the bounding volume. Sampled
points with bounding volume local y-coordinates in the ranges of [0, 0.05] and [.95, 1.0] are assigned to the

bottom and top respectively.

Symmetry Detection We enforce that all members of a symmetry group share the same connectivity struc-
ture in the input part graph. Cuboids are grouped together by symmetry if they: (i) connect to the same
cuboids, (ii) share a reflectional or translational symmetry about the X, Y or Z axis of their parent bounding
volume, and (iii) each attachment point involved in their outgoing connections also shares this same symmet-
rical relationship. Two cuboids, or two attachment points, are considered to share a symmetrical relationship
if applying the symmetry transformation matrix to one member produces a parameterization close to that of
the other member.

Notice that this procedure can disqualify symmetry formation about groups of interconnected cuboids
that share a symmetrical relationship. As such, before forming symmetry groups about individual cuboids,
we attempt to form symmetry groups about connected components of multiple cuboids. Whenever such a

component is found, we locally abstract its structure with a bounding volume, and create a symmetry group
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sub-program. In this manner, we capture additional spatial symmetries while continuing to enforce the rela-
tionship between symmetry and part connectivity. The "H-leg” program (Program3) in Figure 3.2 shows an

example of where such a symmetry sub-program was formed.

In total, our parsing procedure finds valid SHAPEASSEMBLY programs for 46% of Chairs, 65% of Tables

and 58% of Storage shapes in PartNet.

A.4 Decoder Semantic Validity Checks

During the process of decoding a latent code, our generative network enforces the following semantic validity

conditions on its outputs:

¢ XYZ attachment coordinates are clamped between 0 and 1.0. Additionally, attachments to the bounding

box can only be at the top or bottom faces with an allowable error of .05.
* Cuboid dimensions are clamped between 0.01 and the corresponding bounding box dimension
* Bounding box cuboids can have no sub-programs

* Cuboids only attach at a single location. As an exception, cuboids are allowed to attach to both the top

and bottom faces of the bounding volume.
¢ The bounding box cannot be moved by an attach command

» Attachment orderings must be grounded. Upon terminating, any ungrounded cuboids instantiations are

discarded.
* Symmetries can only operate on grounded cuboids

* The ordering of Cuboid, attach, squeeze, reflect, and translate lines must be consistent with the SHA-

PEASSEMBLY grammar.

¢ Commands must keep cuboids within the bounds of the defined bounding volume with an allowable

error of 10%.

During generation, if our model predicts a non-semantic program line, we attempt to back-track until

we are able to find a semantically valid solution. For instance, if we predict a new line to be a reflect
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command, but no cuboids have been grounded, we pick a new command type for the line by zeroing out the
logits for the reflect command index.

In some cases, a combination of bad continuous parameters and program structure predictions produce
a violating line that cannot be easily fixed. During unconditional generation, we reject the sample if we en-
counter this behavior (this happens for 10% - 20% of our random samples across the categories we consider).
We run an ablation on this rejection sampling in Table 3.2. During interpolation, we never reject a sample.

Instead, we simply do not add lines to the predicted program for which we could not find a fix.

A.5 Shape Quality Metrics

We provide additional details about the metrics used in Table 3.2:

* Rootedness : We check if a connected path exists between the ground and all parts in the shape. We
judge two parts to be connected if they are separated by a distance no larger than 2% of the overall

shape’s bounding box diagonal length.

Stability : We convert generated 3D shape structures into rigid bodies and place them in a physical
simulation with gravity. A vertical force is applied to each shape proportional to its mass, along with
some other small random forces and torques. If the resting height of any connected component of the
shape changes by more than 10% after these perturbations we declare it unstable. Note that this is by
definition less than or equal to the percentage of rooted shapes, as a shape must be rooted in order to

be stable.

Realism: The percentage of test set shapes classified as “generated” by a binary PointNet classifier
trained to distinguish between generated shapes and shapes from the training dataset. The classifier is
trained on an equal amount of positive and negative examples for 300 epochs. We hold out a portion of
shapes from the test set, and measure the percentage of them incorrectly classified as “fake”. To reduce

fluctuation, the percentage is averaged over the last 50 epochs.



Appendix B

Additional Details and Results for PLAD

In Appendix B, we supply additional details for the PLAD method introduced in Chapter 4.

B.1 Details of Domain Grammars

2D CSG We follow the grammar from CSGNet [187]. This grammar contains 3 Boolean operations (inter-
sect, union, subtract), 3 primitive types (square, circle, triangle), and parameters to initialize each primitive

(L and R tuples). Please refer to the CSGNet paper for details.

S — E;

E — EET | P(L,R);

T — intersect | union | subtract;
P — square | circle | triangle;

L—[8:8:56]°; R— [8:4:32].
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3D CSG We design our own grammar for 3D CSG similar in spirit to the grammar of CSGNet. While CS-
GNet does contain a 3D CSG grammar, we find that it overly discretizes the possible spacing and positioning
of primitives. Therefore in our grammar, we allow each primitive to be parameterized at the same granularity
as the voxel grid (32 bins). In this way, each primitive takes in 6 parameters (instead of 2 parameter tuples),

where the 6 parameters control the position and scaling of the primitive.

S — F;

E — EET | P(F,F,F,F,F,F);
T — intersect | union | subtract;
P — cuboid | ellipsoid,

F— [1:32]
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ShapeAssembly ShapeAssembly is a domain-specific language for creating structures of 3D Shapes (Chap-
ter 3). It creates structures by instantiating parts (Cuboid command), and then attaching parts to one another
(attach command). It further includes macro operators that capture higher-order spatial patterns (squeeze, re-
flect, translate commands). To remain consistent with our CSG experiments, we further modify the grammar

such that all continuous parameters are discretized.

S — BBoxBlock; ShapeBlock;

BBoxBlock — bbox = Cuboid(1.0,z,1.0)
ShapeBlock — P Block; ShapeBlock | None
PBlock — ¢, = Cuboid(z,z,x); ABlock; SBlock
ABlock — Attach | Attach; Attach | Squeeze
SBlock — Reflect | Translate | None
Attach — attach(cubey, f,uv, uv)

Squeeze — squeeze(cube,, cube,, face, uv)
Reflect — reflect(axis)

Translate — translate(axis, m, )
f—right | left | top | bot | front | back
axis—> X | Y | Z

€ [1,32]/32.

uv € [1,10)%/10.

n € [0, 10]

m € [1,4]

B.2 Details of Synthetic Pretraining

2DCSG We follow the synthetic pretraining steps from CSGNet and directly use their released pretrained

model weights. Please refer to their paper and code for further details.
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3DCSG We generate synthetic programs for 3D CSG with the following procedure. First, we sample K
primitives, where K is randomly chosen between 2 and 12. To sample a primitive, we sample a center
position within the voxel space, and then we sample a scale, such that the scale is constrained so that the
primitive will not extend past the borders of the voxel grid. We then find if the bounding boxes of any
two primitives overlap in space (using the position and scale of each primitive). We then construct a binary
tree of Boolean operations by randomly merging the K primitives together, until only one group remains.
Each Boolean operation merges two primitive groups into a single primitive group. The type of semantically
valid Boolean operation depends on the overlaps between primitives of the two groups. When a group of
primitives A and a group of primitives B is merging: union is always a valid operation, difference is a valid
operation if each primitive in group B shares an overlap with some primitive in group A, and intersection is
a valid operation if each primitive in group A shares an overlap with some primitive in group B and each
primitive in group B shares an overlap with some primitive in group A. We can then unroll this binary tree
of boolean operations into a sequence of tokens from the CSG grammar, forming a synthetic program. We
sample 2,000,000 synthetic programs according to this procedure, that are used during supervised pretraining,
and we sample another 1000 synthetic programs that we use a validation set. We pretrain our model for 40
epochs, where each epoch takes around 1.5 hours to complete. At this check-point, the model had converged

to a reconstruction IoU of 90 on both train and validation synthetic data.

ShapeAssembly We generate synthetic programs for ShapeAssembly with the following procedure. We
first sample the number of primitive blocks K (PBlock), where K is randomly chosen between 2 and 8; note
that the number of cuboids created can be greater then K, when symmetry operations are applied. Each
PBlock is filled in with random samples according to the grammar syntax. First a cuboid is created, then
an attach block is applied, then a symmetry block is applied. An attach block can contain either one attach
operation, one squeeze operation, or two attach operations. A symmetry block can contain either a reflect
operation, a translation operation, or no operation. Command parameters are randomly sampled according
to simple heuristics (e.g. reflections are more common than translations) and in order to maintain language
semantics (e.g. attaches can only be made to previously instantiated cuboid indices). A final validation step
occurs after a complete set of program tokens has been synthetically generated; we execute the synthetic
program, and check how many voxels are uniquely occupied by each cuboid in the executed output. If any
cuboid uniquely occupies less than 8 voxels, the entire synthetic sample is rejected. We sample 2,000,000

synthetic programs according to this procedure, that are used during supervised pretraining, and we sample



162

another 1000 synthetic programs that we use as a validation set. We pretrain our model for 26 epochs,
where each epoch takes around 40 minutes to complete. At this check-point the model had converged to

reconstruction IoU of 70 on both train and validation synthetic data.

B.3 Experiment Hyperparameters

3D Experiments For 3D CSG and ShapeAssembly, we use the following model hyper-parameters.

The encoder for both cases is a 3D CNN that consumes a 32 x 32 x 32 voxel grid. It has four layers
of convolution, ReLU, max-pooling, and dropout. Each convolution layer uses kernel size of 4, stride of 1,
padding of 2, with channels (32, 64, 128, 256). The output of the CNN is a (2x2x2x256) dimensional vector,
which we transform into a (8 x 256) vector. This vector is then sent through a 3-layer MLP with ReLU and
dropout to produce a final (8 x 256) vector that acts as an 8-token embedding of the voxel grid.

The decoder for both cases is a Transformer Decoder module [209]. It uses 8 layers and 16 heads, with
a hidden dimension size of 256. It attends over the 8-token CNN voxel encoding and up to 100 additional
sequence tokens, with an auto-regressive attention mask. We use a learned positional embedding for each se-
quence position. An embedding layer lifts each token into an embedding space, consumed by the transformer,
and a 2-layer MLP converts Transformer outputs into a probability distribution over tokens.

In all cases we set dropout to 0.1 . We use a learning rate of 0.0005 with the Adam optimizer [106]
for all training modes, except for RL, where following CSGNet we use SGD with a learning rate of 0.01 .
During supervised pretraining we use a batch size of 400. During PLAD method fine-tuning we use batch
size of 100. During RL fine-tuning we use a batch size of 4, due to memory limitations (a batch size of 4
takes up 10GB of GPU memory). Early stopping on the validation set is performed to determine when to end
each round and when to stop introducing additional rounds. For deciding when to stop introducing additional
rounds, we use a patience of 100 epochs. For deciding when to stop each round, we use a patience of 10
epochs. In both cases we employ a patience threshold of 0.001 IoU improvement (e.g. we must see at least
this much improvement to reset the patience). Within each round of PLAD training, we check validation set
reconstruction performance with a beam size of 3; between rounds of PLAD training we check validation set
reconstruction performance with a beam size of 5; final reconstruction performance of converged models is
computed with a beam size of 10.

For RL runs, we make a gradient update after every 10 batches, following CSGNet. For runs that involve

VAE training (all Wake-Sleep runs), we add an additional module in-between the encoder and the decoder.
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Table B.1: Different ways to update PPF5T data structure. In the “Per round” row, the data structure is
cleared in between rounds. In the ”All-time” row, the data structure maintains the best program for each
input shape across multiple rounds.

PBEST mode ST LEST LEST+ST  LEST+ST+WS
Per round 0.881 1.011 0.853 0.845
All-time 0.841 0.976 0.829 0.811

This module uses an MLP to convert the output of the encoder into a 128 x 2 latent vector (representing
128 means and standard deviations). This module then samples an 128 dimensional vector from a normal
distribution described by the means and standard deviations, and further lifts this encoding into the dimension
that the decoder expects with a sequence of linear layers. For each round of VAE training, we allow the VAE
to update for no more than 100 epochs. We perform early-stopping for VAE training with respect to its loss,
where the loss is a combination of reconstruction (cross-entropy on token predictions) and KL divergence,

both weighed equally.

2D Experiments For 2DCSG, we follow the network architecture and hyper-parameters of CSGNet. All
training regimes use a dropout of 0.2 and a batch size of 100. PLAD methods use the Adam optimizer with
a learning rate of 0.001. For deciding when to stop introducing additional rounds, we use a patience of 1000
epochs. For deciding when to stop each round, we use a patience of 10 epochs. In both cases we employ a
patience threshold of 0.005 CD improvement. The parameters for the RL runs and VAE training are the same

as in the 3D Experiments.

B.4 P Best Update mode

During updates to PEFST we choose to update each entry in PPFST according to which inferred pro-
gram has achieved the best reconstruction similarity with respect to the input shape. The entries of this data
structure are maintained across rounds. There is another framing where the entries of this data structure are
reset each round, so that the best program for each shape is reset each epoch. This is similar to traditional
self-training framing.

We run experiments on 2D CSG with this variant of PBEST

update and present results in Table B.1.
When the best program is maintained across rounds (All-time, bottom row) each fine-tuning strategy reaches
a better converged reconstruction accuracy compared with when the best program is reset after each round

(Per round, top row).
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SpP LEST+ST+WS Target

Figure B.1: Qualitative examples of inferring 2D CSG programs for 2D icons. Both SP and LEST+ST+WS
fail to infer representative programs, but the reconstructions from LEST+ST+WS are even less accurate than
those from SP.

B.5 Failure to generalize beyond S*

As demonstrated by our experiments, PLAD fine-tuning methods are able to successfully specialize p(z|x)
towards a distribution of interest S*. Unfortunately, this specialization comes at a cost; the fine-tuned p(z|x)
may actually generalize worse to out of distribution samples. To demonstrate this, we collected a small
dataset of 2D icons from the The Noun Project'. We tested the shape program inference abilities of the
initial p(z|x) trained under supervised pretraining (SP) and of the fine-tuned p(z|x) trained under PLAD
regimes (LEST+ST+WS) and specialized to CAD shapes. We show qualitative examples of this experiment
in Figure B.l. While both methods fail to accurately represent the 2D icons, fine-tuning p(z|x) on CAD
shapes lowers the reconstruction accuracy significantly; the SP variant achieves an average CD of 1.9 while
the LEST+ST+WS variant achieves a CD of 4.1 Developing p(z|x) models capable of out-of-domain gener-

alization is an important area of future research.

'https://thenounproject.com


https://thenounproject.com
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B.6 Additional Qualitative Results

We present additional qualitative results comparing various fine-tuning methods in Figure B.2 (2D CSG),

Figure B.3 (3D CSG) and Figure B.4 (ShapeAssembly).
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Appendix C

Additional Details and Results for

VPI-Edit

In Appendix C, we supply additional details for the VPI-Edit method introduced in Chapter 5. In section C.1
we include more experimental results. We then provide additional details on our visual programming domains
(Section C.2), on our experimental design (Section C.3), on our editing operations (Section C.4), and on our

program corruption experiments (Section C.5).

C.1 Experimental Results

C.1.1 Performance on more challenging tasks

Our formulation employs a self-supervised finetuning scheme that specializes our inference networks towards
a target dataset of interest. But how do our networks fare on visual inputs that are outside of these distribu-
tions? For instance, one might hypothesize that the performance gap between our joint paradigm and the
one-shot paradigm might shrink when these approaches are given more challenging problems (e.g. when
there is a large distribution gap between training and testing data).

Note though, that as we focus on local edits, our edit networks learn how to solve a local problem: given
a current program and some visual target, we task our network with making any edit that would make the

current program more similar to the target. Our hypothesis is that this framing should actually scale better

169
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Table C.1: We evaluate reconstruction accuracy for ’challenge” tasks that come from concepts or categories
not present in the target training set. For both layout and 3D CSG, we observe that our joint paradigm that
integrates an edit network with one-shot models outperforms the alternative of using only one-shot models.

Layout cloU fy 3D CSG IoU 1

OS Only 75.8 60.8
OS + Edit 87.6 70.9

than the one-shot networks when the target scenes become more complex or when they are further out-of-
distribution from the training data.

Our intuition here, is that as the task complexity increases, it becomes more likely that the one-shot
network will make mistakes. The edit network is able to account for the mistakes of the one-shot network and
suggest local fixes that make improvements in a goal-directed fashion. When the target is out-of-distribution,
even if the edit network has not seen a similar example, it can still compare the current program’s execution
against the target scene. Reasoning over the differences between the two states admits a more local task (as
evidenced by our data efficient learning), and this property can aid in generalization.

To validate the above hypothesis, we set up an experiment to compare how our formulation (which uses
a one-shot and edit network jointly) performs against using only the one-shot network for more challenging
tasks in the Layout and 3D CSG domains. For the Layout domain, we evaluate the methods on scenes of new
“challenge” concepts (e.g. butterflies / snowmen) that were not seen in the training / validation sets. For 3D
CSG, we evaluate the methods on “challenge” shapes from other categories of ShapeNet (airplanes, knives,
lamps, laptops, motorbikes, mugs, pistols, skateboards, rifles, vessels) that were not part of the original
finetuning training set (chairs, tables, benches, couches).

Using the same models from Section 5.2.2, we compare the reconstruction performance for these chal-
lenge tasks. In Table C.1, we report the reconstruction performance over 192 challenge tasks for the layout
domain and 100 challenge tasks for the 3D CSG domain. As seen from both the quantitative and qualitative
comparisons (Figures C.1 and C.2), it’s clear that our approach, which utilizes both the one-shot and edit
networks, outperforms using only the one-shot network for these more challenging program induction tasks,

even when they are further outside the training distribution.

C.1.2 Comparison to large vision-language models

We ran an experiment to explore how well large vision-language models (e.g. GPT-4v) are able to perform

on our visual program induction tasks. We provide some qualitative results of using GPT-4v to predict visual
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Figure C.1: Qualitative reconstructions of “challenge” tasks for 3D CSG.

programs on examples from our layout domain in Figure C.2. These predictions were made with a relatively
straightforward prompt containing: a task-description, a description of the DSL, and the input image that
should be reconstructed (zero-shot, col 1). We then tried improving this prompt by adding an in-context
example of a (program, image) pair (one-shot, col 2). We also experimented with providing GPT-4v with a
program predicted from the one-shot network, along with this program’s execution, and asking it to edit the
program to make it more similar to the target image (col 3).

As can be seen, GPT-4v in this setting proved inferior to our proposed method (col 5). While we do
not include these results to say that these sorts of large vision-language models will not ever be of use for
this task, we do believe that these results showcase that this task is not easily solved with currently available

frontier models.

C.1.3 Method Ablations on 2D CSG domain

In Section 5.2.5 we presented results for an ablation experiment on the layout domain. We include additional

ablation results on the 2D CSG domain in Table C.2. Note that while some ablation conditions do come close
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GPT 4V GPT 4V (ICE) OS + GPT 4V OS Only OS + Edit (Ours) Target

Figure C.2: Qualitative reconstructions of “challenge” tasks for the layout domain. We compare against GPT-
4V in a zero-shot setting (column 1), when an in-content example (ICE) is provided in the prompt (column
2), and when the one-shot model’s predicted program is provided as input (column 3). Our approach (column
5) finds more accurate reconstructions of these out-of-distribution targets (column 6) compared with using
only the one-shot network (column 4).

Table C.2: Ablation study on our method for the 2D CSG domain.

Method Chamfer Distance |}
Ours (default) 0.111
No FT 0.321
No one-shot FT 0.230
No edit FT 0.123
No edit PT 0.145

to our default performance (e.g. no edit FT) these ablation conditions are also made possible by our contri-
butions, as they all use an edit network. When comparing our method against an alternative without an edit
network (OS Only, Table 5.1) we have consistently seen that our method offers a meaningful improvement.

Below we offer some additional commentary on these results.

No edit FT In this ablation condition the edit network is pretrained (with synthetic random data), but is then
kept frozen during the joint finetuning. As the task of the edit network is mostly local, we find that the edit

network is able to achieve impressive performance even when it does not get to finetune towards data in the
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target distribution. That said, the edit network is still very important in this ablation condition (if it’s removed
then this condition becomes OS Only). Even though the edit network remains fixed during finetuning, it still
helps to find better solutions during inner-loop inference (Alg 1, line 5), and this better training data leads to
a better one-shot network. However, once again, the performance of the system is maximized when the edit

network is also allowed to update during finetuning.

No one-shot FT This condition does impressively well for the layout domain. This is because even though
the one-shot network is much worse in this setting, the edit network can overcome almost all of its mistakes,
as layout is a relatively easier domain. Consider that for the layout domain, the default approach has a
starting cloU of 0.925 (initialized from the one-shot network, which is finetuned) which gets improved to
0.980 through improvements made by the edit network. However, the one-shot network of this ablation
condition drops the starting cloU to 0.88 (when it is kept frozen), and yet the edit network is still able to raise
this performance all the way to 0.972 (explaining the strong reconstruction score of this condition). That
said, when considering the 2D CSG ablation results in Table C.2, we see that for more complex domains it is
critical to also finetune the one-shot network, as this ablation condition achieves only a Chamfer distance of

0.230 compared with the Chamfer distance of 0.111 achieved by our default approach.



174

C.2 Domain Details

In this section we detail the domain-specific language used for each visual programming domain.

Layout DSL The layout domain creates scenes by placing colored primitives on a 2D canvas, optionally

transforming them, and finally combines them together.

START — UBlock;

UBlock — UNION(ShBlock,U Block) | ShBlock;

ShBlock — (SymBlock | CBlock | M Block | ScBlock); (PBlock | U Block)
SymBlock — SymReflect(axis) | SymRotate(n) | SymTranslate(n,z,y)
CBlock — Color(ctype)

M Block — Move(z,y)

SeBlock — Scale(w,h)

PBlock — Prim(ptype)

aris > X |'Y

ctype — red | green | blue

ptype — square | circle | triangle

n € (1,6)

xvyaw7h’ € [_1? 1]

In this domain, union is the only combinator operation that combines ‘shape’-typed inputs by layering
them on top of one another. SymReflect, SymRotate, SymTranslate, Color, Move, Scale are all transformation
operations that consume a single ‘shape’-typed input and apply some geometric logic to it. Prim is a special

command that produces a ‘shape’-typed output from only a parameter-type argument.
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2D CSG DSL  Our 2D constructive solid geometry domain assembles complex shapes using boolean set
operations. Following recent work [235] we find it useful to split each program into a set of positive sub-
expressions (POS) and negative sub-expressions (NEG). Each sub-expression is allowed to take an arbitrary
CSG expression, and then to form the final output all of the positive sub expressions are first unioned together,
all of the negative sub expressions are then unioned together, and this second group is differenced out from

the first group. This process well-matches typical procedural modeling workflows.

START — POS, NEG

POS — E,POS | 0

NEG — E,NEG | 0

E — BEE|TE|P

B — Union | Dif ference | Intersection

T — Move(F,F) | Scale(F, F) | Rotate(F) | Reflect(axis)
P — Prim(ptype)

ptype — square | circle | triangle

aris > X |Y

F = [-1,1]

In this domain, there are three combinator operations that combine multiple ‘shape’-typed inputs: union,
difference and intersection. Move, scale, rotate and reflect are all transformation functions that consume a
single ‘shape’-typed input and apply a geometric modification. Once again, Prim is a special command that

produces a ‘shape’-typed argument from only a parameter-type argument.
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3D CSG DSL  Our 3D constructive solid geometry domain generalizes the above 2D DSL.

START — POS, NEG

POS — E,POS| 0

NEG — E,NEG | 0

E— BEE|TE|P

B — Union | Dif ference | Intersection

T — Move(F,F, F) | Scale(F, F, F) | Rotate(F, F,F) | Reflect(axis)
P — Prim(ptype)

ptype — cuboid | sphere | cylinder

axis =X | Y| Z

F—[-1,1]
The split between combinator, transformation and primitive creating functions is the same as in 2D CSG.

Sampling L As previously discussed, we follow prior work and use a synthetic pretraining phase . In
this pretraining phase we randomly sample programs from the above grammars. We employ simple rejection
criteria to ensure these random samples are useful (e.g. no execution errors, outputs remain within the canvas,
etc.), and find it effective to build in some of this rejection logic during the sampling phase (to improve the
speed at which we can sample programs). All of the models we evaluate in our experiments train with the

same sampling logic.

C.3 Experimental Design Details

Network details For our 2D domains (2D CSG and Layout) we use a 2D CNN. The image size of both
domains is 64x64, but in 2D CSG there is only one input feature (occupancy) while in Layout there are
three channels (RGB). The network we utilize consists of four layers, each containing convolution, ReLU,
max-pooling, and dropout operations. Each convolution layer employs a kernel size of 3, a stride of 1, and

padding of 1, with channel dimensions of 32, 64, 128, and 256 respectively. The CNN’s output is a (4x4x256)
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dimensional vector, which we reshape into a (16x256) vector. This vector is then processed through a 3-layer
MLP with ReLU and dropout, resulting in a final (16x256) vector that serves as a 16-token encoding of
the visual input. For our 3D CNN model, we adopt a similar convolutional approach by extending all 2D
convolutions to 3D. We adjust the kernel size to 4, use padding of size 2. When processing voxel grids of size
323, this produces outputs of size (2x2x2x256). We pass these outputs through a 3-layer MLP to generate
eight 256-dimensional visual tokens.

Our transformer networks are standard decoder-only variants. We use learned positional encodings and
a hidden-dimension size of 256 and dropout of 0.1. We use networks with 8 layers and 16 heads. We set
the maximum program sequence length SL to 128, 164, 256 for the Layout, 2D CSG, and 3D CSG domains
respectively. We set the maximum edit sequence length EL to 32, 32, 48 for the Layout, 2D CSG, and 3D CSG
domains respectively. Each prediction head (edit type, location, parameters) is modeled with a three-layer

MLP with a dropout of 0.1.

Training details We implement all of our networks in PyTorch [158]. All of our experiments are run on
NVIDIA GeForce RTX 3090 graphic cards with 24GB of VRAM and consume up to 128GB of RAM (for 3D
CSG experiments). We use the Adam optimizer [106] with a learning rate of le-4. For p(z|x) pretraining we
use a batch size of 128/128/64, for p(e|z, ) pretraining we use a batch size of 128/128/32, for p(z|z) fine-
tuning we use a batch size of 20/20/20, and for p(e|z, z) finetuning we use a batch size of 128/128/32 for
Layout / 2D CSG /3D CSG domains respectively. We pretrain on synthetic programs until convergence with
respect to a validation set of synthetic program, for 34 / 17 / 18 million iterations, which takes 6 / 7 / 7 days
for p(z|z) and 70 / 30 / 25 million iterations, which takes 7 / 8 / 8 days for p(e|z, x) for the Layout, 2D CSG,
and 3D CSG domains respectively. We finetune each method for a maximum of 6 days or until convergence,
which took 40 / 40 / 30 bootstrap rounds for the Layout, 2D CSG and 3D CSG domains. For each finetuning

run we use a PG set of size 10000.

Inference Procedure For our test-time inference program search we use the following population size /
number of round parameters for each domain: Layout (32, 32), 2D CSG (32, 32), 3D CSG (80, 25). When
using the Os Only method, we keep the same population / mutation general logic, but each mutation is just
a randomly sampled program from p(z|x). In both cases, the best reconstructing program ever seen in any
round’s population is returned as the ‘chosen’ program. The settings for this method are: Layout (32, 10),

2D CSG (32, 10), 3D CSG (25, 25). We set these parameters so that the time spent on inference per shape is
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even between the two modes (5, 10, 60 seconds for the three domains). For our inner-loop inference step that
populates PBEST, we use a less expensive search time budget for both modes, approximately taking (2, 5, 10
seconds for each domain respectively). We sample programs from p(z|x) with top-p (.9) nucleus sampling.
We sample edits from p(e|z,x) with a beam search of size 3. Interestingly, we found that this sampling
strategy for Os Only outperformed a beam-search with a beam size set to the maximum number of tokens in

each L.

C.4 Visual Program Edits

C.4.1 Local Edit Operations

As described in Section 5.1, our network predicts local edit operations. We find it useful to constrain the set
of possible edit operations as described in Section 5.2.5.

In order to use these local edit operations, we require a few properties of the underlying DSL. We require
that it is a functional language, where each valid function has a ‘shape’ return type. Through a slight abuse-
of-notation, we refer to functions that implicitly consume a single ‘shape’-typed argument as transformation
functions (e.g. Move), and we refer to functions that consume multiple ‘shape’-typed arguments as combi-
nator functions (e.g. Union). Note that as described in Section C.2, there may also be special functions that
instantiate ‘shape’-types from only non-‘shape’-typed arguments (e.g. Prim functions).

Specifically, our formulation allows the network to predict one of the following edit operations:

* Modify parameters (MP): modifies the parameter values of a transform function. Note that this does
not modify the function type (unlike MT). Requires additional parameter predictions to set the new

values.

¢ Modify transform (MT): modifies a transformation function, by removing the transform and adding
in a new transform with new parameters. Requires additional parameter predictions to set the new

function and parameter values.

* Add transform (AT): adds a transform operator that is applied to the chosen location. Requires addi-

tional parameter predictions to specify the new function to be added and its parameters.

* Remove transform (RT): removes a transform operator and its parameter from the program. Does not

require additional parameters
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* Modify Combinator (MC): modifies a combinator function (e.g. changing difference to an intersec-

tion). Requires additional parameter predictions to set the new function.

* Remove Combinator (RC): removes a combinator operator (e.g. union) by specifying one input

branch of the function to be completed deleted (to all of this sub-expressions leaf nodes).

¢ Add Combinator (AC): adds a combinator operator under the chosen transformation. Adding a com-
binator (such as union) requires a sequence of additional predictions to fill in one of the ‘shape’-typed

branches of this operator that was not previously in the program.

We once again note that each of these edit operations has a local effect. For instance, as depicted in
Figure 5.1 adding a new transform function inserts a transform node into an already existing tree of func-
tions. Similarly, removing a transform functions simply results in forming a skip connection from the chosen
operator’s parent function to the chosen operator’s child function. Somewhat more arbitrary changes can be
enacted by removing or adding combinators, in order to produce or remove entire expression trees, though
these are inserted or removed from specific locations. While this framing does focus on local edits, and as
such our edit network makes local changes in program space, some of these changes can have dramatic effects
in the execution space. For instance, consider changing a boolean operation type in CSG from difference to

union.

C4.2 findEdits Algorithm

Given a starting program and an end program we develop an algorithm that analytically finds a set of edit
operations that would transform the starting program into the end program. This algorithm is used to source
data for the edit network, as we describe in the next section.

We design our findEdits algorithm to try to find the “minimal cost” set of edit operations that would
transform a start program to an end program. Our instantiation of the algorithm works over multiple vi-
sual programming domains for the set of edit operations we consider. However, there are many alternative
ways this algorithm could be instantiated, and such alterations could prove useful in helping our method
adapt for very different domains. As one extreme point, consider that for general purpose programming
languages, a simple “git-diff” command could be used to turn a (start, end) program pair into a set of local
insert/keep/delete edits.

Our implementation evaluates valid transformations in terms of program semantics (e.g. executions) not

just syntax (e.g. token matching), as there are many distinct programs in our domains that will produce
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equivalent execution outputs (e.g. note that the argument ordering of union for CSG languages does not
change the execution output). We hypothesize that using a findEdit algorithm alternative that does not con-
sider such ”semantic-equivalences” would result in a “worse” edit network (as the patterns in the training
data would be less consistent), but it would be interesting to explore how different algorithms would effect
system performance in future work.

There are two main steps to this algorithm. First considering two sub-expressions a and b, we need to find
an approximately minimal set of edit operations such that applying these edit operations to a would recreate
the visual output of b. With this logic in hand, we can consider two entire programs A and B, split them into
a set of sub-expressions, A = {aq, ..., ar} and B = {by, ..., b, }, and then solve a matching problem to see

how we should match each a; to each b; while accounting for domain-specific ordering requirements.

Finding edits for sub-expressions Given two sub-expression a and b from one of our DSLs, we find a set of
edit operations to convert a to b with the following recursive logic. If @ and b have no combinator operators
or order-dependant transformation functions (e.g. symmetry operations) then we can simply compare the
transform functions and their arguments to see which transforms in a need to be modified, added, or removed.
If both @ and b have a combinator operation, then we recurse this match on the respective sub-programs. If
only a has a combinator operation, we know that we need to remove one of a’s expression trees, so we check
which of the combinator’s input expression trees has the better match towards b. If only b has a combinator
operation, we know that we need to add an expression tree into a with an AC' edit operation. The cost of this
edit operation is just the length of all of the tokens of that expression tree; we evaluate the match between
a and each of the sub-expression within b to determine which sub-expression to add with the edit operation.
Any time an order dependant transform function differs between a and b we will either need to add, remove,
or modify this transform. Note that this type of edit operation may also introduce ordering dependencies for

later edit operations (which we keep track of).

Finding a minimal matching From the above procedure we know the edit operations and the edit cost of
transforming any sub-expression a into another sub-expression b. We design our DSLs so that it is possible
to break each program into a series of sub-expressions. For Layout this is done by splitting the top-level
UBlock into the top-level ShBlocks. For CSG this is done by splitting each POS block into E blocks and
each NEG block into E blocks. Note that there is some order dependency in this match: for CSG positive

sub-expressions must be matched to other positive sub-expressions, while negative sub-expressions must be
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matched to other negative sub-expressions. For the Layout domain, Union is not an order invariant operator as
it controls how primitives are layered on the canvas. Therefore we keep the order of Layout sub-expressions
fixed, although we allow each sub-expression to optionally match to an empty sub-expression (). A match
from a; to () implies that a; will be removed with a RC edit operation, while a match from () to b; implies
that b; will be added with a AC edit operation. We consider all valid possible ways to enact this matching
by calculating the cost of each sub-expression match and then extracting out a solution with the Hungarian

matching algorithm [111].

C.4.3 Converting edits operations to training data

From the above logic we find a set of edit operations ES given input programs A and B. As mentioned,
while there may be some ordering dependencies in this set that we keep track of (e.g. adding a transform
on top of newly added combinator function) this set of edit operations can be otherwise ordered arbitrarily.
While many formulations are possible here we choose to convert this set into paired data for our edit network
with the following procedure.

Say ES contains n independent edits. For each i starting at 0 and ending at n — 1 we first consider all
possible ways that we could have chosen i edits from FES . To avoid exponential blow-up, we sub-sample
from this set, and choose 5 previous edit sets for each . Then for each set of previous edits pe;, for each next
edite € ES and e ¢ pe;, we add the following triplet to the training data for our edit network: the input

program is pe;(A), the target visual target is E(B), and the target edit operation is e.

C.4.4 Generality of our framing

While we designed our edit operations with the task of visual program induction in mind, we believe that
these operations are quite flexible. Many other functional DSLs for visual programs (and for other program
synthesis tasks) could likely be subsumed directly under our framework, as long as these languages meet the
criteria described in Section C.4.1. For instance, this set of edit operations should be able to handle any DSL
expressible as a Context Free Grammar.

Under these assumptions, the edit operations we use are quite basic and make limited domain assump-
tions. For an input functional program, edits to transform functions allow for local edits (delete/insert/modify)
that don’t affect the branching factor, while edits to combinator functions allow for local edits (delete/insert)

that do affect the branching factor. We employ this formulation for a few reasons: (1) it is general enough to
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support any program-program transformation (under our assumption set) and (2) applying any of these local
edits creates a syntactically complete program that can be immediately executed.

That said, our framework and core contributions are not tied to this specific set of edit operations. Our
edit network and proposed training scheme could be easily integrated with any set of local edit operations
(assuming an analogous findEdits algorithm can be designed for this new set of edits). So while we believe
that the set of edit operations we introduce is quite general (as evidenced by their usefulness across multiple
difficult visual programming domains), we are also excited to see how our general learning-to-edit framework

could be extended to even more complex DSLs and edit operations.

C.5 Program Corruption

As we mention in Section 5.2.5 there are some high-level connections between the formulation we propose
and discrete diffusion models: both do iterative error-correction and learn in a self-supervised manner to ‘fix’
incorrect targets. To this end, we explored alternative formulations that ‘corrupted’ programs. As we wanted
to maintain the property that each intermediate step of the ‘corruption’ process is a valid program (e.g. it
would not cause an executor error) we designed a domain-specific corruption process for our Layout domain.
Unlike unconditional generative diffusion models that need to have strict requirements about the distribution
they noise towards, we did not find this necessary in our setting as our iterative error-correcting framing is
explicitly goal-directed in the form of a visual target. Specifically, our corruption process starts with an ‘end’
program and randomly samples ‘inverse’ edit operations for a random number of corruption steps. We then
replace our findEdits step in Algorithm 1 with this corruption logic, where the start program is ignored.
While this variant is not as a performant as our default version, it still sources useful training data for our
edit network. Our view is that, when possible, it is better to source these edit operations by considering start
program and end program pairs, but for domains where such edit difference scripts are hard to analytically
find, this corruption variant offers an alternative. While its possible that better corruption processes could
close this gap, designing them is non-trivial. Ideally, when we want to combine one-shot models and edit
networks at inference time, the corruption behavior we want should noise ‘end’ programs towards those pro-
duced by the one-shot model — this is exactly the distribution we get access to with the findEdits approach that
considers program-to-program transformations. Another benefit of this formulation, is that the distribution of
edit operations we train over is naturally allowed to evolve and keeps in sync automatically with the finetuned

one-shot model. Keeping this property with a corruption-based procedure would likely be impractical.



Appendix D

Additional Details and Results for

Template Programs

In Appendix D, we supply additional details for the Template Programs method introduced in Chapter 6. In
Section D.1 we provide additional experimental results. In Section D.2 we provide more information con-
cerning our various visual domains. In Section D.3 we provide details of our learned models. In Section D.4
we provide details on how we design our training procedure. In Section D.5 we provide further details of our
experimental design. Finally, in Section D.6 we describe implementation considerations of each alternative

we compare our system with.

D.1 Additional Results

D.1.1 Out-of-distribution Few-shot Generation

As discussed in Section 6.2.5, we designed the Layout domain so that we could evaluate the out-of-distribution
generalization capabilities of different approaches. We visualize few-shot generations that different methods
make for the layout domain for concepts that gradually get more and more out-of-distribution in Figure D.1.
From left-to-right, we present example few-shot generations for an easy, medium and hard concept. The easy
concept (a side facing chair) has a set of attributes that have all individually been seen in the training set, but
presents them in a new combination. The medium concept (a crab) introduces a new attribute not seen in

the training set: extended and vertical arms. The hard concept (a bookshelf) introduces a new meta-concept
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Figure D.1: Qualitative few-shot generation results that demonstrate our method’s ability to generalize to
out-of-distribution concepts, see Section D.1.1.

that was never seen in the training set. The second row of the figure show the input prompt set, where in
the top row we show the nearest neighbor in the training set to each image in the prompt, according to our
reconstruction metric. On the third row we show generations produced by the arVHE comparison condition,
while on the bottom row we show generations produced by our method. While arVHE does reasonably well
on the easy case, as the input prompts get more and more out-of-distribution it begins to generate nonsensical
outputs. On the other hand, our approach scales much better to out-of-distribution inputs, even though they

don’t match any images from the training set.

D.1.2 Method Ablation Study

We run an ablation study to validate different design decisions of our method. We compare our described
system against the following variants. Ours - rel is a variant of our method where we remove parameter
relationships from Template Programs. As by default we only support parameter relationships for argument
types that take on discrete values (i.e. categorical variables) we also investigate a variant of our system
that adds parameter relations (static assignment and reuse) for float-typed arguments: Ours + float rels. We
also compare against a version of our method where we remove HOLE tokens, so that instantiations from
Template Programs always use the same function call sequence: Ours - HOLE. Here, we task our network to
specify a single program structure that is applicable across the group without using HOLE tokens, and it is
still responsible for declaring parameter relationships. As there are no HOLE tokens, the ExpansionNet will
not be used, but the ParamNet will still be used to figure out how the instantiations of the Template Program
should be parameterized. Next we compare against a variant where we remove the Structural Expansion
step, so the ParamNet must produce a program from the Template Program directly. As it doesn’t see the

SE intermediary result, it must fill in HOLE tokens while figuring out how to predict parameter values. We
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Table D.1: Comparing ablated versions of our method to our default settings. Each metric is reported as a
percentage, with respect to the performance our default approach achieves. See Section D.1.2 for details.

Method FD MMD  Cov mloU (0]
Ours 100% 100% 100% 100% 100%
Ours - rels 78.5% 92.6% 96.8% 89.3% 95.8%

Ours + floatrels 93.9% 96.7% 98.2% 96.7% 95.3%
Ours - HOLE 96.3% 98.3% 97.6% 97.4% 98.0%
Ours - SE 80.3% 89.9% 94.3% 86.5% 94.7%
Ours - finetune 57.6% 80.5% 35.0% 70.7% 81.6%

call this variant Ours - SE. Finally, we compare against a variant of our base method without any finetuning,
where networks only get to train on synthetic data: Ours - finetune

We evaluate these ablation conditions on the 2D layout domain, and report results of our experiments in
Table D.1. We compare our method against these variants with respect to few-shot generation performance
(FD, MMD, Cov), co-segmentation performance (mloU), and how well the inferred results optimize our
objective O. For ease of interpretation, we report all results as a percentage of the performance reached with
respect to our default version (100%).

As shown, our default method achieves the best performance along all of these tracked metrics. The
variant without finetuning clearly does the worst, as these networks are not specialized for the target dataset.
The results of this experiment validate our parameter relations design: keeping relations for discrete-valued
parameters outperforms either no parameter relations or adding relations for float-valued parameters. Using
the HOLE construct improves performance quantitatively. Moreover this construct is needed to capture com-
plex input concepts that have more than a single expression mode. For instance HOLE tokens are required
to model the chair concept with armrests and either a regular or pedestal base shown in the bottom left of
Figure 6.2. Finally, this ablation experiment demonstrates that our decision to use Structural Expansions
simplifies the task of the ParamNet; we hypothesize this result is due to the fact that when attending over
a SE, in contrast to attending over the T'P, all of the functions and parameter-types that will be used in the

end instantiation are known.

D.1.3 Unconditional Concept Generation

As we mention in Section 6.2.5 our Template Program framework is able to sample novel concepts uncon-
ditionally. We visualize some concepts that our method is capable of producing in Figure 6.5. To produce

these visualizations, we use the networks trained during the wake-sleep phase of our finetuning process, pgen.
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Using the version of our TemplateNet from pge, that does not condition on visual information, we first sample
a Template Program. Then using the ExpansionNet and ParamNet from pg., that condition only on program
inputs, we sample five program instantiations from this Template Program. Each bottom row in the figure
shows the executed versions of these five samples, and above each sample we show the nearest neighbor

character in the training set according to our reconstruction metric.

D.1.4 Visual Concept Groupings

Typically, past concept learning approaches have assumed access to a dataset that is structured according
to visual concepts. For instance, systems like VHE or FSDM require the ability to sample groups of input
from the same visual concept during training. This is the same amount of dataset structure that our method
requires: during fine-tuning we randomly sample “tasks” according to these visual concept groupings. Note
that this requirement is less stringent than many inverse procedural modeling systems, and the BPL and GNS
systems, that additionally require per-object structural annotations.

The Omniglot dataset was designed with this kind of visual concept decomposition in mind: each ex-
ample data-point corresponds with exactly one character type. We design our layout domain in the spirit of
Omniglot: each image in the layout domain is associated with a single concept. Following past work, on these
domains we always assume “valid” input groups, such that each member is from the same visual concept.

However, this type of clean partition is not as easy to find for 3D shape structures. As there are no
known datasets that group shape structures into visual concepts, we propose a heuristic method for forming
approximate visual concepts out of shape structures (Appendix D.2.3). The concept groups we find under
this formulation have different levels of consistency among their members (where we say a less consistent
group forms a “harder” input problem).

For instance consider the examples shown in Figure 6.2. A chair with a regular base and vertical slats
(row 7, col 6) could be in one group with only chairs that also have regular bases and vertical slats (row 7,
col 7) or (like in the example we show) could also be grouped with chairs that have backs with horizontal
slats (row 7, col 8). In our paradigm, the group of visual inputs (along with our objective function) implicitly
defines the granularity of the target visual concept. In this case, the latter grouping is considerably harder to
handle for concept learning tasks, as it requires a method that is able to reason over input groups that partially
mismatch on structures.

Our Template Programs framework is capable of handling even difficult input groups; our partial program
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formulation allows our system to explicitly maintain the shared structural aspects of the group while leav-
ing HOLE tokens as responsible for representing the aspects of the input group that structurally differ. This
design allows us to successfully capture the visual concepts of the two chair groups in Figure 6.2. The left
chair group has filled in chair backs, arm-rests, but alternates between regular and pedestal chair bases. The
right chair group has regular leg bases, no arm-rests, but differs between chair backs with horizontal slats or
vertical slats. As can be seen in the “gen” row, our system is capable of synthesizing novel shape structures

that accord with the structural specifications implied by the input visual groups.

D.1.5 Reconstruction Performance

Our system learns how to amortize the difficult inverse search problem of finding a Template Program and
instantiations that correspond with a group of visual inputs. This search (our inference procedure) is guided
by our networks which are trained on a “training corpus” of visual concepts, separate from those we evaluate
on.

The “seg” rows in Figure 6.2 visualize the reconstructions (of the inputs on the top rows) that our method
produces. While these reconstructions do not exactly recreate the input, they usually create very good ap-
proximations. If reconstruction was our primary goal, it might even be possible to improve the fit through a
differentiable execution and refinement procedure.

To explore this phenomenon further, we provide the following reconstruction performance results across
our domains in Table D.2. We report the reconstruction fit for both the training set and test set visual concepts.
To show the benefits of our learning methodology we compare the reconstruction fit from the pretrained
version of our networks (that learn only on synthetic data) to the finetuned versions of our networks (that

finetune on visual concepts from training set). The metrics we use are (full descriptions in Appendix D.2):
* 2D Layout: color-based IoU (higher is better)

* Omniglot: edge-based chamfer distance (lower is better)

3D Shapes (primitive input): structural corner distance (lower is better)

3D Shapes (voxel input): IoU (higher is better)

As demonstrated, our solution is effective at solving this inverse visual program induction problem. For

both the training concepts and the held-out test concepts, our finetuning procedure meaningfully improves
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Table D.2: Comparing reconstruction performance across domains, concept sets, and model versions.

Domain Mode Train Recon Test Recon Test Recon (long)
2D Layout 1 Pretrain .822 .808

Finetune 972 .909 .937
Omniglot | Pretrain .658 .648

Finetune 468 .503 405
3D Shapes (prim)|  Pretrain .26 305

Finetune .05 .06 .05
3D Shapes (voxel) T Pretrain .601 .589

Finetune .865 .83 .851
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Figure D.2: When our method fails to find good reconstructions of an input concept, downstream task per-
formance worsens.

the reconstruction performance in all cases. For our downstream concept-related tasks we use a more ex-
pensive inference procedure (“long” - e.g. increase the beam size, Section 6.1.2) and this gives even better
reconstruction results for test-set concepts (see the numbers in the rightmost column of the table).

While our system offers strong reconstruction performance, it is likely that alternative methods could be
used to infer single visual programs that better reconstruct an individual visual input. In contrast, our system
learns to solve this visual program induction problem over a group of inputs by going through a shared
structural intermediary (a Template Program), which allows us to perform concept-related tasks like few-shot

generation and co-segmentation (which prior single instance VPI approaches are not suited for).

D.1.6 Failure Modes

Bad reconstruction A possible failure mode is that our inference networks can’t find a Template Program
whose instantiations well-capture an input visual group with respect to our objective function. In such cases,

the few-shot generation and co-segmentation results of our method are typically worse. For instance, consider
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Figure D.2. For two Omniglot examples, in the top row we show the input concept groups, in the middle rows
we show the reconstructions from our method, and in the bottom rows we show the few-shot generations from
our method. Because the same Template Program is used in both the reconstruction and few-shot generation
step, failure in one place often means failure in the other. While from one perspective this is a limitation,
a positive view of this phenomena is that our method can provide insight into cases where it is “unsure”
about its parse. For instance, it could use the objective function score of its reconstruction as a measure
of its confidence on how well it will perform on downstream tasks. Moreover, as we show in Table D.2,
reconstruction performance can improved by spending more time on inference, which can help to avoid this

limitation.

Bad Input Groups How would our system handle ‘bad’ input groups that contain outliers, or have no
commonality among their members? The job of the template network is to consume a group of visual inputs
and infer a Template Program that captures the common structure among all members. In such an adversarial
setting, it is possible (depending on random sampling) that there are no elements of structure common to all
members of the input grouping.

In this case, the “best” result of our system would be to return a “dummy” Template Program that consists
of a single HOLE token; this HOLE token would be able to be expanded into any arbitrary z to explain each
individual group member.

For typical visual concept groupings, this degenerate solution is discouraged by our objective function,
which penalizes description length differences between “full” programs and their corresponding Template
Programs. While finetuning our system with reasonable concept groups we have never observed the system
falling-back to this degenerate solution.

Exploring how to extend our framework to handle “noisy” input groupings would be a very interesting
direction for future work. This could potentially be approached by (i) extending our objective function to
account for outliers (if we want to ignore the distractors) or (ii) adding control flow operators into the DSLs
we learn over, which would give the Template Programs an opportunity to account for structural differences

without relying solely on HOLE tokens.
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D.2 Domain Details

In this section we provide additional details on the visual domains we experiment on. We describe the
domain-specific languages our method uses and reconstruction metrics that guide our finetuning objective O.

For the 3D shape domain, we additionally provide details on how we produce our target dataset. While we
have previously explained how we divide concepts between training and test sets for each of our domains, we
have not yet mentioned how we divide training examples into a validation set. We find that a simple approach
of taking a subset of training concepts with fixed exemplars as a ‘validation’ set works well in practice. This
validation set controls different early stopping components of our finetuning procedure, but otherwise these

concepts are not given special treatment (i.e. they are not removed from the finetuning training set).
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D.2.1 Omniglot

DSL  We use the following domain-specific language for drawing Omniglot characters, where we present

the notation with slight simplifications for ease of understanding.

START — GBlock;

GBLock — ONBlock | OFFBlock | M Block | END
ON Block — ON; S Block; GBlock

OFF Block — OFF; SBlock; GBlock

M Block — MOVE(si, mt, mf); GBlock

SBlock — Stroke | BOwW(bt,bf); Stroke | EMPTY
Stroke — DRAW(at, af, dt,df)

si € ]0,12]

dt €[0,8]/8

at € 360 % [0,8]/8

bt € 90 * [~2, 2]

mt € [0,4]/4

df € [~2,2]/40

af €9x*[—2,2]

bf €30 % [~1,1]

mf € [—1,1]/12

The ON and OFF commands lift a pen on and off a virtual canvas; each series of strokes begins with one
of these commands. The MOVE command brings the pen back to a previous stroke, specified by a stroke
index (si) and a length along this stroke to travel specified by (mf, mf). The DRAW command moves the
pen at an angle specified by (at, af) for a distance of (dt, df). The trajectory of each DRAW command can
be controlled by a BOW command which optionally pushes the trajectory inwards or outwards according to

(bt, bf) parameter. Even if making a curved stroke through the BOW operator, the end location of the pen is
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entirely controlled by the parameters of the DRAW command.

We draw attention to the fact that each real-valued parameter in this language is represented with a pair
of arguments. One member of each pair (those with ) controls the coarse behavior, while the other member
of the pair (those with f) add a fine-grained delta to the initial coarse value (i.e. their values are combined
through summation during execution). This representation promotes consistency as close values will match
on coarse binning token indices. We further find it useful to treat these ‘coarse’ real-valued parameters
as categorical variables for the purposes of defining parameter relationships in the declaration of Template
Programs, but we don’t observe similar benefits when fine-grained values are included in this categorization
(see ablation in Section D.1.2). HOLE tokens are allowed to take place of any function.

Reconstruction Metric For our reconstruction metric M , we use an edge-based Chamfer distance [187].
This allows us train our networks without access to stroke data, as we can compute this metric directly from
binary images.

Representational Capacity The maximum complexity of characters that our method is capable of rep-
resenting is bounded by (i) the maximum number of tokens that our inference networks can handle and (ii)
the maximum number of strokes we sample in the synthetic programs used in the pretraining step. This latter
value is set to 12 in our sampling scheme, although through the introduction of HOLE tokens in Template
Programs, some of the synthetic programs may end up using more than 12 stroke primitives. While the syn-
thetic pretraining distribution will inform the behavior of the inference networks, this distribution will change
over the course of bootstrapped fine-tuning and specialize towards “real” Omniglot examples.

While we observe that these settings allow our model to reliably capture the majority of Omniglot char-
acters, there are some very complex characters that might be hard to fit under these constraints with our
top-down inference procedure. It should be possible to relax the constraints of both (i) and (ii), although the
cost would be a larger GPU memory footprint and more complex pretraining data, which might require more

training time and/or inference networks that use more parameters.
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D.2.2 2D Primitive Layout

DSL We use the following grammar for creating layouts of 2D colored primitives. We present a slightly

simplified representation of this language for clarity.

START — U Block;

UBlock — UNION(ShBlock,U Block) | ShBlock;

ShBlock — (SymBlock | CBlock | M Block | ScBlock); (PBlock | U Block)
SymBlock — SymReflect(axis) | SymRotate(n) | SymTranslate(n,zt, zf, xt,yf)
CBlock — Color(ctype)

M Block — Move(xt,zf,yt, tf)

SeBlock — Scale(wt,wf, ht, hf)

PBlock — Prim(ptype)

aris > X |'Y

ctype — red | green | blue

ptype — square | circle | triangle

n € (1,6)
wt € [3,3]/4
yt € [~3,3]/4

wt € .35 % [1,6] — .15
ht € .35 % [1,6] — .15
of €[-2,3]/20 — 0.025
yf € [~2,3]/20 — 0.025
wf € [~3,3]/20

hf € [-3,3]/20

Our language uses a UNION combinator to assemble a collection of primitives on a 2D canvas. Primitives
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can take three types: squares, circles and triangles. They are consumed by MOVE and SCALE operators,
where similar to our Omniglot domain, we make a distinction between the coarse and fine parts of each real-
valued argument. Once again, we distinguish the coarse values with ¢ endings and the fine values with f
endings. Our motivations for adopting this tiered representation for real-values are identical to the Omniglot
setting. Instantiated primitives are colored grey, but can change color when passed through a COLOR operator.
Our DSL also supports symmetry operations: SymReflect creates a reflectional symmetry group over a
specific axis. SymRotate creates n copies of its input argument about the origin. SymTranslate creates
n copies of its input argument in a direction that is parameterized by a distance in the same way as MOVE.
Reconstruction Metric For the layout domain we use a color-based intersection over union metric. Given
two images, we first identify all of the occupied pixels, and which of our four colors each occupied pixel is
filled in with. We then calculate the ‘intersection’ numerator between these two images by counting the
number of pixels that are both occupied with the same color. We calculate the ‘union’ denominator between
these two images by counting any pixel in either image that is occupied. Our final value M is calculated by

dividing the numerator by the denominator. HOLE tokens are allowed to take the place of any function.
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D.2.3 3D Shape Structures

DSL  We use the following domain-specific language for 3D shape structures, which is adapted from Sha-

peAssembly (Chapter 3). We present a slightly simplified representation of this language for clarity.

START — BBoxBlock; ShapeBlock;
BBoxBlock — bbox = Cuboid(z,x,x)
ShapeBlock — (PBlock; ShapeBlock) | FILL | END
PBlock — CBlock; Attach; S Block

CBlock — ¢, = Cuboid(x,z,x) | ¢ = START
Attach — attach(cubey,, f, uv, uv)

SBlock — Reflect | Translate | None

Reflect — Reflect(axis)

Translate — Translate(axis, m, )

f = right | left | top | bot | front | back
axis— X | Y | Z

x € [0, 40] /40.

uv € [0,20]%/20.

n € [0, 4]

m € [1,5]

This DSL creates shape structures by defining cuboids, and arranging them through attachment. Cuboids
are instantiated with the Cuboid command. Each Attach command moves one command to connect to
previous part, indicated by cube,, at a location specified by the other parameters of the command. This lan-
guage supports the creation of reflectional symmetry groups (Reflect) and translational symmetry groups
Translate. Of note, we allow the DSL to expand hierarchically, so that Cuboids can become the bounding

volume of their own sub-program (represented above with the return to the START block). These nested
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sub-programs are allowed to be set to a completely filled mode (FILL) or instead expand into empty space if
immediately followed by the END operator. Differing from other languages, we only allow HOLE tokens to
replace these START tokens that define sub-program structures, to better match the hierarchical processes by

which manufactured shapes are commonly modeled.

Recon Metric We employ different metrics for this domain dependant on the visual representation. When
we operate over 3D voxel fields, we simply use the voxel occupancy intersection over union as our met-
ric M. When we operate over primitive soups, i.e. unordered collections of primitives, we use the following
matching procedure: we first calculate the pairwise distance between each primitive by calculating the bidi-
rectional Chamfer distance on the sets of corner points that form each cuboid. Assuming the two shapes we
are comparing contain N and M cuboids, we converted these distances into a NxM array, and find an optimal
matching through the Hungarian matching algorithm. Our metric M is then calculated as the mean value
of the entries of the matrix that form this assignment. When N | = M, we convert the distance array into a
square matrix using the larger dimension, filling in the ‘non-matched’ entries with a high default value that

penalizes structural mismatch.

Target Data 'We source input shape structures by leveraging the structural annotations provided in the Part-
Net dataset [141]. As our DSL supports only axis-aligned parts, we filter out any shape structures that require
other kinds of oriented cuboids. We then make use of ShapeAssembly’s parsing procedure to heuristically
find ShapeAssembly programs, under the original DSL formulation, that correspond with these input shapes.
We try converting these programs into our DSL formulation, and check the geometric similarity between this
execution and the original PartNet shape, as a sanity check to see if this shape structure could be modeled
under our procedural language.

At the end of this preprocessing stage, we are left with over 10,000 shapes from the chair, table and storage
classes of PartNet. We use the corresponding parsed ShapeAssembly programs to group these shapes into
concept groups. We differentiate the internal group consistency along 2 axes: whether or not the group would
likely require a HOLE token and whether or not the group would have a consistent application of attachment
commands. We parse concept groups under all four combinations of these difficulty settings, choosing 25
concept groups from each setting to populate our test set, where each concept is ‘formed’ according to a
grouping of 10 exemplars. We treat all other shapes not in the test set as training shapes, and during finetuning

we randomly sample concept groupings from this set according to the same concept identification procedure.
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D.3 Model Details

D.3.1 Architecture Details

All of our auto-regressive networks are implemented as standard Transformer decoder-only models [209].
We use learned positional encodings, these cap the maximum sequence lengths for the various networks.
There are three positional encodings for various sequences: the Template Program sequence, the Structural
Expansion sequences, and parameter instantiation sequences. For the layout domain we cap these at sizes:
(64, 16, 72), for the omniglot domain we cap these at sizes (64, 16, 64), for the shape domain we cap these at
sizes of (64, 24, 80).

Visual Encoders We employ encoder networks that convert visual inputs into latent codes, see Figure 6.1.

For the layout domain we use a standard CNN that consumes images of size 64x64x3. It has four layers
of convolution, ReLU, max-pooling, and dropout. Each convolution layer uses kernel size of 3, stride of 1,
padding of 1, with channels (32, 64, 128, 256). The output of the CNN is a (4x4x256) dimensional vector,
which we transform into a (16 x 256) vector. This vector is then sent through a 3-layer MLP with ReL.U and
dropout to produce a final (16 x 256) vector that acts as an 16 token encoding of the visual input. The omniglot
CNN is identical, except it uses one fewer convolution layer, a padding size of 2 in the final convolution layer,
and its 3-layer MLP consumes features of size (16x128) and transforms them into size (16x256). In this way
for Omniglot we also convert each input image into 16 visual tokens.

For the shape domain we have two different encoders depending on the input modality. For our 3D
voxel model we follow a similar convolutional paradigm, extending all 2D convolutions to be 3D, changing
the kernel size to 4, using padding of size 2, and adding an extra fifth convolution layer. When consuming
voxel grids of size 64x64x64 this produces outputs of size (2x2x2x256), we send this through a 3-layer
MLP to produce a (8x128) feature, that we reformat to be (4x256) in dimension. In this way, 3D shapes are
represented with four visual tokens.

When we consume a primitive soup of input, we use a different architecture based on a Transformer
encoder [209]. We assume that each primitive is a cuboid with 6 dimensions that describe its 3D position
and size. We linearize these primitive attributes, and lift each of them to dimension 16 with a 2-layer MLP.
Following this we add a learned positional encoding to each attribute based on its attribute type. We then

have another ‘positional encoding’ that is produced by concatenating all of the attributes of each primitive
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(in the lifted dimension) and sending this feature through a 2-layer MLP that outputs an embedding of the
same size as the lifted dimension, which then gets summed back into each attribute. This scheme allows
us to avoid worrying about how the primitives are ordered, while still allowing the attention scheme of the
network to differentiate which attributes belong to which primitives. We send this tokenized representation
through a standard Transformer encoder network, where we prepend the sequence with four ‘dummy’ tokens.
Each token attends to every other token, and we treat the representations output in the indices of the four
‘dummy’ tokens as the visual tokenization. These dummy tokens build up a representation that attends of the
entire input in much the same way as [CLS] tokens have been employed. Note that this encoder assumes a
maximum number of primitives as input, which we set to 20. If the input scene does not have 20 primitives,
we leave these entries as zeros, and then don’t attend over those corresponding positions in the sequence

while encoding.

D.3.2 Location Encoding scheme

We adopt the location encoding scheme from [166] for predicting how to file in HOLE tokens, while pre-
dicting each SE', and parameter values, while predicting the complete z. Specifically, we use their notion of
‘sentinel’ tokens to identify any locations in the linearized function sequence that need to be filled in autore-
gressively. Then during each autoregressive step, we ‘prompt’ the network to predict for a specific location
by repeating the sentinel token. We depict examples of this process in Figure 6.1. We treat each sentinel
token as an independent token in our language, this limits the number of HOLE and parameter tokens we
can predict. We set the max number of HOLE location encoding tokens to be 5, and the max number of
parameter location encoding tokens to be 64. Assigning a reuse parameter relationship in the 7P also uses
similiar location encoding tokens: we allow for up to 4 of these shared tokens: when multiple instances of
any of these shared tokens appear in the TP , we constrain instantiations of the 7' P to assign these slots with

matching parameter values.

D.3.3 Generative Networks

Unconditional Generative Networks We use unconditional generative networks to produce paired data
during our wake-sleep step of fine-tuning. Specifically these networks are unconditional with respect to visual
inputs, but they still condition on programmatic elements. These networks can also be used for unconditional

concept generation, see Section D.1.3. The networks we use for this process have an identical architecture to
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our inference networks. In fact, at the beginning of our fine-tuning process we initialize the weights of these
networks with the weights of the inference networks that have undergone supervised pretraining. They differ
from the inference networks by simply masking out (i.e. setting to 0) all of the visual latent codes that are
used to condition the generation of the Template Program, the Structural Expansion and the final program. In
this way, these networks only condition on token sequences, or in the case of the TemplateNet, don’t attend
over any prefix conditioning information. Our training scheme for these networks uses the same losses as our

training scheme for the inference networks, assuming we have paired data

Few-Shot Generative Networks For few-shot generative tasks, we want a network that has conditioning
information in between our inference networks (that condition on latent codes specific to visual inputs in an
input group) and our unconditional generative networks (that don’t condition on visual inputs). To address this
point, we train variants of our inference networks that condition on a mean-pooled latent encoding (i.e. we
average the 5 visual latent codes that come from an input group). Note that this only affects the ExpansionNet
and the ParamNet, as the TemplateNet already is designed to attend over an input visual group. Once we
create this mean-pooled latent encoding, the training procedure is undergone in the same fashion, except
the shared latent code is used as conditioning information for all of the instances of the (T'P%,Z%) pair.
In this way, we task the network with learning to solve a one-to-many modeling problem: from the same
conditioning information, the network has multiple valid targets.

This network is trained on the same paired data as our inference networks (the batches of data created
by our ST, LEST and WS procedures). While its possible to train this network during finetuning alongside
the inference network, we instead cache all of the training data our inference network consumes during
finetuning, and then train this few-shot generative network in a separate process after our inference model
has converged. All of the few-shot generative results we demonstrate are sampled from these networks (after

a Template Program describing an input group has been inferred).

D.4 Training Details

We implement our networks in PyTorch [158]. We run all experiments on a NVIDIA GeForce RTX 3090
with 24GB of GPU memory, and 64 GB of RAM. During pretraining we set the batch size to max out GPU
memory, this amounts to sizes of 32 for the 2D layout domain, 40 for Omniglot domain, 32 for the shape

domain with a primitive soup input and 16 for the shape domain with voxel inputs (of size 643). Note that
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this batch size is effectively multiplied by 5 for the ExpansionNet and ParamNet as we train on visual input
groups of size 5. During fine-tuning we set the batch size to 20 for all methods, except for the shape-voxels
variant, which we set to 10 to avoid maxing out VRAM.

We use the Adam optimizer to train our networks [106] with a learning rate of le-4. We pretrain our
networks on synthetic data sampled from each domain until we converge with respect to a validation set of
similarly sampled synthetic paired data. This takes approximately ~ 700k batches for the layout domain,
~ 600k batches for the shape domain, and ~ 300k batches for the Omniglot domain.

We finetune our inference networks with the procedure described in Section 6.1.3. For each concept in
the training set, we sample a group of visual inputs (at random) from the concept, and record our inference
results to produce the LEST and ST dataset. In this way if there are K concepts in X*, the size of the ST and
LEST data on each training step will also be K. Differing from this, in the wake-sleep step of our finetuning
procedure we can generate an arbitrarily large number of paired data by sampling our generative model. We
find that sampling a large number of ‘dreams’ is helpful for our finetuning procedure, so we set the number of
example 7T'P to sample in each training step to 30,000. This typically takes between 1 and 2 hours, differing
slightly for each domain. To encourage the ‘dreams’ we sample to cover a wide-distribution, we design a
negative rejection step where we resample any ‘dream’ that either creates an already generated 7P or X©.
We find this rejection criteria is triggered at relatively infrequent rates (~5% of the time).

Once we’ve created the ST, LEST and WS datasets, we use them to finetune our inference networks
with cross entropy loss. We train over this datasets for multiple ‘epochs’, where every 5th epoch we run
our updated inference networks over concepts from the validation set. We use the Objective O from this
validation inference to decide when to break out of the training step, and return to the inference step. This
early stopping inference procedure always backtracks to the version of the inference network that achieved
the best O measure on the validation set. We use a patience of 10 epochs, and finetune for at most 50 epochs.

Overall, we run our finetuning procedure to convergence for 25, 17, 32 inference-training loops for the
layout, omniglot and shape domains respectively. This corresponded with 565, 450, 620 finetuning ‘epochs’
for these domains. For the weights of our objective function O, we normalize each reconstruction metric to
values typically between 0 and 1, and then we set A\; to 1.0 and A, to 0.001. Moreover, when calculating the
divergent description length between each Template Program and its respective program instantiations, we
discard counting any parameter-types for which we don’t support parameter relations. For instance, as we
don’t allow float variables to use parametric relations (see Section D.1.2), we do not penalize these variables

under O, because the T'P has no opportunity to constrain them.
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D.4.1 Token Sequence Formatting

Given a paired (XY, TP%, Z%) triplet we can produce training data for our inference networks. We train
under a teacher-forced autoregressive paradigm, where we make a single pass through the autoregressive
network for each training batch. The input for the TemplateNet is a linearized sequence of visual latent
codes; these are randomized as we randomly order the visual inputs. The target for the TemplateNet is the
linearized sequence of tokens that describe the Template Program, where we use prefix notation to convert
expression trees into flat sequences. From 7'P and z pairs, we can derive targets for the ExpansionNet and the
ParamNet. To find targets for the ExpansionNet, we simply identify mismatches in the functions that are used
in the T'P versus the functions that are used in z: any expression tree in z that is not found in the T'P must be
the result of filling in a HOLE token. Similarly, we scan the TP to identify any parameter relationships that
have been defined, either in the form of specifying parameter arguments (static assignment) or using shared
tokens. As we know the final expression tree of the z from its linearized form, we then use these declarative

relationships to reformat the z to replace all free parameters with sentinel tokens (Section D.3.2).

D.5 Experiment Details

D.5.1 Few-shot Generation

Task design In the few-shot generation task we employ the following set-up. For each concept in the test
set of a particular domain, we take 5 examples from the concept, pass them as input into a method, and then
ask the method to synthesize 5 new generations. We then compare these 5 generations to a separate set of 5
examples from same test-set concept (i.e. a reference set). As the layout domain is procedurally generated,
we can sample more examples per concept, therefore in this domain we do the above procedure 5 times for
each test set concept. In this way for layout, our metrics compare sets of size 25 generations to 25 reference

images (where these 25 generations came from 5 prompts).

Metrics We quantitatively evaluate few-shot generative capabilities (Table 6.1) with a series of metrics
common to recent generative modeling approaches [2]. Though these metrics are typically designed to oper-
ate over much larger sets, we think the trends they exhibit are indicative of few-shot generative performance
(and their ordering is largely consistent internally).

Some of these networks directly compare the generated samples to a reference set for each concept.
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Frechet Distance (FD) [73] measures the distributional similarity between two distributions of encodings.
Minimum Matching Distance (MMD) measures the average minimum distance of each member of the ref-
erence set to any member of the generated set. Coverage (Cov) measures the percentage of reference set
members who are the nearest neighbors to at least one member of the generated set.

We calculate all of the above metrics with respect to a latent space that is domain-specific. To this end, for
each domain, we train a visual auto-encoder to learn how to reconstruct ‘random’ scenes from that domain.
For the layout domain these are randomly placed primitives. For Omniglot, these are randomly placed strokes.
For shapes, these are randomly place cuboids primitives. We train each of these networks to convergence on
500,000 random scenes with a small bottleneck layer size (e.g. 100).

For the layout and omniglot domain we train simple classifier networks to learn a K-way classification
over all of the concepts present in the domain. For Omniglot, we train on 19 examples from each of the
1623 characters in the dataset, and hold out one example from each concept as a validation set. Our classifier
achieves a 82.4% validation accuracy after convergence. For layout, we train over 95 examples from each
concept in a 20-way classification task over meta-concepts; we reach 99.9% validation accuracy on a held out
set of 5 examples per concept. The class confidence metric (Conf) is then computed by taking each generated
output, running it through the classifier, and then recording the probability that the classifier predicts for the

index of the input concept. Note that this metric is not dependant on the reference set of examples.

D.5.2 Perceptual Study

We design a perceptual study to evaluate our method’s few-shot generative capabilities. Our study was
designed as a two-alternative forced-choice questionnaire. We recruited 20 participants, who made decisions
about which set of few-shot generations better matched a reference concept.

We show an example of our perceptual study interface in Figure D.3. The middle row of each question
shows the input prompt examples. The bottom/top row are populated by the few-shot generations of compet-
ing methods based on the prompts shown in the middle row. We randomize which method is shown on top
vs bottom, and randomize the order of all examples within the row.

Participants were either shown 50 Omniglot character comparisons or 25 shape comparisons. We visual-
ized shape comparisons with a simple rendering style of the primitive outputs produced by each method (for
time considerations).

From our 20 participants we record 900 judgements of our method against three other conditions: ours vs

arVHE for Omniglot (381 judgements), ours vs GNS for Omniglot (369 judgments) and ours vs arVHE for
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Figure D.3: A visualization of the interface we use in our two-alternative forced-choice perceptual study.

3D shapes (150 judgements). We report the quantitative results from this study in Table 6.2.

D.5.3 Co-segmentation

We formulate the co-segmentation task as follows. We are given 5 examples as input, exactly one of these
examples comes with a reference segmentation. The goal of each method is to propagate the labeling from
this reference segmentation to the other members of the input group that lack a reference segmentation. We
show an example of this task in Figure 6.4.

We compare the produced segmentations against ground-truth annotations for each member of the in-
put set. To quantitatively evaluate performance on this task we use a mean intersection over union metric
(mloU) [141]. This metric calculates the intersection over union for each label that appears in the ground-

truth annotation, and then averages these values.

Ground-Truth Segmentations Here we describe how we source ground-truth segmentations for each do-
main.

For 2D layouts, we produce these as a part of the way we design our meta-procedures. Each primitive
group in these specifications is given a semantic label. We evaluate over all concepts in the test set.

For 3D shapes, we record the PartNet hierarchy annotation for each primitive of each shape structure we
use [141]. Then within each test-set concept, we search for a group of S inputs that use the same semantic

parts in their shape structures. If we find such a group, then this is the group from the concept we use during



204

co-segmentation tasks. From our 100 test set groups, we find such co-segmentation inputs for 94 of them.
We make use of Omniglot stroke data to produce the ground-truth segmentations for characters. We treat
each stroke pattern broken by ‘BREAK’ annotations as a separate segment [116]. Then, as humans vary in
the ways that they order strokes to draw characters, for each test set character we run a clustering procedure
to try to find valid and consistent segmentation groupings. We first filter for finding groups of characters that
use the same number of strokes, and more than a single stroke (otherwise the co-segmentation task is trivial).
Then we encode each stroke with a 4 dimensional feature: its length, its angle, its starting x position, and its
starting y position. We run an unsupervised clustering algorithm over this feature representation [43], identify
if there is any cluster with more than 5 character members, and then take 5 characters from this cluster as
a co-segmentation task (where our feature-wise distance creates a correspondence across the strokes of this
group). This automatic process generates 306 co-segmentation tasks from the 659 concepts in the Omniglot
test set. We manually inspect the generated tasks, and filter out 22 cases where our clustering identified a
group that did not have consistent stroke expression. This leaves us with 284 cosegmentation tasks that we

use in our experiments.

Group Parsing Template Programs: Template Programs support parsing by inferring instantiations from
a shared TP that explain a group of visual inputs. As each instantiated program z uses the function call
structure specified by a Template Program, we can find correspondences in the visual outputs. We create
a corresponding group for each primitive type that the Template Program defines: these are created by the
PRIM command for the layout domain, the DRAW command for Omniglot and the Cuboid command for 3D
Shapes. Note that HOLE tokens are always treated as a construct that creates primitive types. Any command
that operates over this primitive type will inherent their corresponding part index (e.g. symmetry operations),
excluding combinators like Union.

BAE-NET: BAE-NET creates corresponding group parses by performing an argmax over the last layer of
an implicit network that is trained to solve occupancy tasks. This implicit network can be run over any spatial
position, and assign this input point to one of its part ‘slots’.

BPL and GNS: The BPL and GNS methods perform one-shot parsing of input characters into an ordered
collection of strokes. This parsing is guided by their learned prior, which models how people produce char-
acters. Conscripting these methods to perform our co-segmentation task is a slight abuse of design, but as
their output parses partition space in a consistent fashion, we think it a worthwhile comparison to make. Our

method does not learn from any human demonstrations, so we are unable to solve the character parsing task
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Label Propagation The parses we get from the above logic are consistent, but might not exactly recreate
the input examples (if they do not achieve perfect reconstructions). We thus employ a procedure, on a domain-
by-domain basis, that propagates the parse from the reconstruction to its input example. For the layout domain
we first take the part index of each occupied pixel to match the primitive that last ‘covered it’. Then for any
non-occupied pixels, we assign them to the closest instantiated primitive according to the distance from that
pixel’s center to the primitive. For the shape domain, we take a similar approach, calculating the distance
from voxel centers to each cuboid. For any voxel center that is occupied by more than one cuboid, we assign
it to the occupying cuboid smallest in volume. For Omniglot, we sample 200 points on each primitive stroke
group. Then for five query points evenly spread out within each pixel location, we find the three closest points
sampled from any stroke group. We tally up these votes for each pixel, and then each pixel is assigned to
the primitive stroke group which recorded the most votes. Note that we employ this same procedure for our
method, BPL, and GNS. BAE-NET doesn’t need to employ this logic, as its parsing strategy operates over
arbitrary input points by construction.

After we have this consistent parse for each region of the input group the procedure is almost done. We
use the partitions from the labeled example to assign each parsed region a label. Finally, we propogate this

region-to-label mapping to all of the other examples in the input group.

D.6 Comparison Method Details

We provide details on the methods we compare against.

D.6.1 BPL

We use the author’s released Matlab implementation: https://github.com/brendenlake/BPL. For five charac-
ters from each test-set concept we infer a parse, and use that parse to synthesize 1 new generation (in this way
we create 5 few-shot generations from each group of 5). We wrapped this Matlab procedure with a python

script, and ran it sequentially on a single machine, which took around 2 weeks.
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D.6.2 GNS

We use the author’s released implementation at https://github.com/rfeinman/pyBPL. We follow the same
procedure as in BPL, inferring a parse for five characters from each test-set concept, and then using each

parse to synthesize 1 new generation.

D.6.3 FSDM

We follow the author’s implementation, released at: https://github.com/georgosgeorgos/few-shot-diffusion-
models. Unfortunately, the provided code was incomplete, and did not work out of the box. We made a
best-effort attempt to fix these issues and run the model with the same procedure as described in the tech-
nical report. We observed that this model was able to effectively produce few-shot generations for training

characters, but struggled greatly on test-set concept generalization.

D.6.4 VHE

We attempted to use the author’s implementation, released at: https://github.com/insperatum/vhe. Unfortu-
nately the Pixel CNN variant for Omniglot did not converge under training, we reached out to the authors, but
they were unable to offer suggestions on how to fix these training issues.

Using the provided code as reference, we re-implemented the system with a simple CNN architecture,
following the VAE framing as described in [180]. Though we spent a fair amount of time tuning hyper-
parameters, as evidenced by the quantitative results in Table 6.1, we were unable to achieve competitive

performance.

arVHE In an attempt to improve the performance of our VHE comparison condition, we implemented a
related method that combines autoregressive models with the spirit of the VHE approach. Specifically, we
break down this few-shot generation modeling task into two separate stages. First we learn a domain-specific
discretized representation. For pixel and voxel input representations we use 2D and 3D CNNs in a vector-
quantization scheme [208], so that we can convert each visual input into a sequence of discrete tokens.

We list the details of our VQ-VAE training: for Omniglot we convert 28x28x1 images to a 7x7 grid of
codes, under a dictionary of 64 codes with hidden dimension of 32. For layout we convert 64x64x3 images
to a 7x7 grid of codes, under a dictionary of 200 codes with hidden dimension of 100. For shapes we convert

64x64x64 voxels to a 4x4x4 grid of codes, under a dictionary of 128 codes with hidden dimension of 64. We
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try to use the smallest code-book size that can achieve near-perfect reconstructions for each domain.

Once we have trained this VQ-VAE for each domain, we can learn our arVHE model. Like the VHE
model, and our system, it learns by sampling random visual groups from the same concept. Following the
procedure described in the VHE paper and code, we encode these visual concepts with a visual encoder, take
a mean embedding, then use this embedding to condition an autoregressive generation process, where the
goal is to predict a sequence of VQ-VAE tokens that correspond to another input example from the same
concept. We train this network with cross-entropy loss, on the discretized VQ-VAE tokens. For an apples-
to-apples comparison against our method, the arVHE baseline uses the same visual encoders that our method
uses (Section D.3). For predicting 3D shapes as a sequence of primitives, we instead just task the VQ-VAE
model with predicting discretrized versions of each primitive attribute, where the primitives are randomly
ordered (this allows us to skip the VQ-VAE step in this setting).

We note that this arVHE variant is a strong baseline method, outperforming VHE and FSDM in terms of

quantitative metrics (Table 6.1).

D.6.5 BAE-NET

We follow the author’s implementation released at: https://github.com/czq142857/BAE-NET. We take their
architecture and training procedure and adapt it for each of our domains. BAE-NET has model implementa-
tions for 2D binary images and 3D voxel grids, so for these settings we directly use the method as described.
For the layout domain we have colored images that can adopt 4 color values (red, green, blue, or grey). In
the default version of BAE-NET, it uses an MLP where the second to last layer is size NUM_SEGS and the
last layer is size 1; this 1 dimensional output learns a binary occupancy prediction for locations in space. We
modify the 2D BAE-NET version so that instead, the second to last layer is still size NUM_SEGS, but the
last layer is size 4; in this way we task BAE-NET to solve four binary occupancy problems at once, one for
each of our colors. In the layout domain, we still take the part segmentation from BAE-NET by choosing the

slot in the second to last layer that activates with the highest potential.



Appendix E

Additional Details and Results for

ShapeMOD

In Appendix E, we supply additional details for the ShapeMOD method introduced in Chapter 7.

E.1 Modified ShapeAssembly Grammar

Table E.1 shows the modified grammar for ShapeAssembly that we use. We make the following changes
from the ShapeAssembly version presented in Chapter 3. Instead of having separate blocks where all cuboids
are defined, then all attaches are defined, and then finally all symmetry operators are defined, we interleave
the attach / symmetry commands with the cuboids they move. Specifically a program starts with defining a
bounding volume, and then is followed with a series of PBlocks. Each PBlock defines a Cuboid, attaches it
to at least one previous cuboid (or the bounding volume), and optionally applies a symmetry operation to it.
We find that this ordering permits the discovery of more interesting and useful macros, as otherwise macros
would mostly be made up of only Cuboid definitions or only attachments (instead of a mix of operators). As a
by-product of this new ordering, we assume that all non-Cuboid operators (attach, squeeze, reflect,
translate) always operate on the last defined cuboid, and so in this way we remove one cuboid index

parameter from each of these functions.
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Table E.1: Modified ShapeAssembly grammar of ShapeAssembly.

Start — BBoxBlock; ShapeBlock;

BBoxBlock — bbox = Cuboid(w, h,d, True)
ShapeBlock — PBlock ; ShapeBlock | None
PBlock — ¢, = Cuboid(w, h,d, a) ; ABlock; SBlock
ABlock — Attach | Attach ; Attach | Squeeze
SBlock — Reflect | Translate | None

Attach — attach(cn,, z1, Y1, 21, T2, Y2, 22)
Squeeze — squeeze(cn,, Cny, f, U, V)

Reflect - reflect(axis)

Translate — translate(axis, m, di)

f —right | left | top | bot | front | back
axis— X | Y| 2

w, h,d € RT

x,Y, 2, u,v,di € [0,1]?

a € [True,False]

n,m € Z+

E.2 Baseline Method for Macro Operator Discovery

Designing a baseline for ShapeMOD is non-trivial, because there do not exist any existing methods that are
able to find macro operators over datasets of programs written in imperative languages that contain continuous
parameters. Thus, we present a naive single-pass algorithm that mimics a simplified version of ShapeMOD’s
core logic. It starts by choosing one order for each program in the dataset. Specifically, the most canonical
order (Section E.5.3). Then it records all subsequences of functions that appear in the resulting program
lines. If any subsequence is observed in more than 10% of programs in the dataset, then it is turned into a
macro function. Parameters of this macro function can be converted from free parameters to constants if at
least 90 % of the parameterizations of this subsequence across the dataset had the same value (for discrete
parameters) or were within .05 range of the mean value (for continuous parameters). Once these macros
have been discovered, we use the best program finding step from ShapeMOD to create a dataset of programs
expressed with macros discovered by the baseline method. As shown throughout the results section, the
macros discovered by ShapeMOD outperform the macros discovered by this baseline method, for every task

we consider.

E.3 A Network Architecture for any library

After running our procedure to generate a library L, we want to design a neural network that is able to

generate programs using the functions of L. As our procedure is able to produce many different libraries L,
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depending on which macro operators it discovers, our network architecture must be flexible enough to model
any set of discovered functions. To demonstrate that this is achievable, we generalize the neural network
from ShapeAssembly (Chapter 3) so that it is able to learn how to generate programs expressed in any L
discovered through our procedure, and validate this works in later experiments.

The base model is a hierarchical sequence VAE. The encoder branch ingests a hierarchical program and
embeds it into a high dimensional latent space. The decoder branch converts a code from this latent space
into a hierarchical program. Originally, the underlying library was fixed to ShapeAssembly, so the network
architecture and input representation could be tailored to one set of functions.

We design a generalized version of this network architecture that is customized based on the library of
functions L discovered by our procedure. The parts of the architecture that had to be generalized were the
tensor line representation and the sub-networks in the line decoder module.

In our new line representation, the dimension of the line tensor and meaning of each index changes
depending on L. The first |L| + 2 indices of the tensor correspond to a one hot vector denoting the function
type of each line (notice we add special START and STOP tokens). Then for each type of discrete parameter,
pa, we find its number of valid values, py_s;.e, and maximum number of py free parameters in any function
of L, pq_free. We then reserve pg_gree slots of size pg_si.e in our tensor for py, where each slot corresponds
to a one hot vector whenever p, is required by a function. Finally, for any function f € L that takes in a set
of continuous parameters, f., we reserve a slot in our tensor of size | f|.

The number and structure of sub-networks in our new line decoder model also depends on L. The Mty
module is responsible for predicting the line’s function, and therefore has |L| + 2 possible outputs (the
functions of L and the special START and STOP tokens. For each f € L, for each of its free discrete
parameters fq_;, we add a sub-network M 4 ; responsible for predicting the ith discrete parameter of f. Then,
for every f that has free continuous parameters, we add a sub-network My . for predicting the continuous
parameters of f.

We implement each sub-network as a 3 layer MLP. The network is trained in a teacher forcing paradigm
with a cross entropy loss for all discrete predictions and an 11 loss for all continuous predictions. Parameter
sub-networks are invoked, and tensor slots in each line are filled, depending on the function type predicted in

each output line. Otherwise we use the same hyper-parameters as ShapeAssembly.
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Figure E.1: Samples generated from generative models of ShapeAssembly programs with ShapeMOD macros

(blue) and without macros (green).

E.4 Shape Generation Qualitative Comparison

We share some interesting representative shape programs output by learned ShapeAssembly generative mod-

els in Figure E.1. Outputs by the model trained with ShapeMOD macros are shown in blue. Outputs by the
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model trained on the No Macros programs are shown in green.

These qualitative results enforce the trends of our earlier quantitative experiments from Section 7.4.2. The
best generations from Chairs and Tables are qualitatively similar, although across entire shape collections we
calculated that programs with ShapeMOD macros were more plausible. For storage, the qualitative difference
is more pronounced, as the generations that use ShapeMOD macros are able to create output shapes that are

much closer in distribution to the target shape collections.

E.5 Creating A Dataset of Shape Programs

As input, ShapeMOD consumes a dataset of shape programs. To source such a dataset we need find a collec-
tion of shape programs composed of program line and orderings of those lines, that when executed, faithfully
recreate the target geometry. Instead of working with complete hierarchical ShapeAssembly programs, we in-
stead run ShapeMOD on the flat sub-programs that together compose complete PartNet shapes. For instance,
while running ShapeMOD we might have different programs for a single PartNet chair’s back, base or root
level programs. Re-composing flat programs back into hierarchical ones, after ShapeMOD has discovered

the most useful macros, is trivial.

E.5.1 Parsing

Following the parsing method proposed in ShapeAssembly, our method starts with a collection of part graph
hierarchies from PartNet [141]. We use a geometric procedure to turn this part graph hierarchies into Sha-
peAssembly program lines. At the end of this process, for each shape in our dataset of part graph hierarchies,
we have all of its cuboid dimensions, know which parts attach together and where, know which attachments
could instead be expressed as squeeze operators, and which cuboids should have symmetry operators ap-
plied over them. This is enough information to form the program lines required by a ShapeAssembly shape

program.

E.5.2 Finding Valid Orderings

Given these lines we still need to figure out how they can be ordered, as not every line ordering will recreate
the target geometry, or even result in a valid ShapeAssembly program (i.e. that adheres to the grammar).
There are three ordering components that must be considered for ShapeAssembly programs that adhere to

the grammar we introduce for ShapeMOD: (i) ordering of cuboids, (ii) orderings of each attach a cuboids
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makes, and (iii) deciding which cuboid is making each attach, and which cuboid is being attached to. The
combinatorial space of these orderings makes searching over all orderings prohibitive; thus we define a series
of heuristics to narrow the exploration space.

First, we create a graph where each node is a cuboid and an edge between nodes indicates that they attach.
We then find the shortest distance from each node to the bounding box node (call this distance the level of the
cuboid). We then enforce (1) that cuboids must only attach to cuboids in a lower level, or the same level and
(2) that all cuboids must be declared based on their level ordering (although notice that multiple cuboids can
be in the same level still). We further place a strict preference on attachment directions that attach from the
center of a face. Whenever a cuboid makes multiple outgoing face attachments we order them by (bot, top,
left, right, back, front), and afterwards continue with any non-face attachments.

So far, we have limited the search space we must consider, but we haven’t enforced that the resulting
ordering will actually recreate the geometry we care about. For an ordering of ShapeAssembly lines to
recreate the target geometry, three conditions must hold: (i) it must be a valid program under the grammar,
(i) no cuboid should be moved after it has been attached to and (iii) each cuboid should have enough outgoing
attachments to specify its orientation. We satisfy (i) by construction as we only consider lines orderings that
would be valid under the grammar. (ii) is satisfied based on the level ordering logic from the above paragraph.
For (iii) to be satisfied, different conditions must be met depending on if the part is aligned or not aligned to
its parent’s bounding box in the target shape. If the part is aligned, it only needs one attachment (as all cubes
in ShapeAssembly start off as aligned). If the parts is not aligned, it will require at least two attachments.
For any ordering of cuboids/outgoing attachments/attachment directions, if they satisfy (i), (ii) and (iii) we
consider them to be a valid ordering. To improve the run-time of the algorithm, we place a strict limit on
the number of orderings for any one program to be 10000. This limit is surpassed by around 3% of chair
programs, around 5 % of table programs and around 10 % of storage programs. In case a program has more
than 10000 valid orderings, we return the first 10000 valid ones ranked by their canonical order (detailed in

next section).

E.5.3 Canonical Ordering

At various points in our procedure, multiple program orderings will be ‘equally good’ and so we will need
some criteria to consistently differentiate between them. To accomplish this, we borrow the canonical or-
dering logic from ShapeAssembly, where during parsing each cuboid is given an index, and then we prefer

orders where lower indexed cuboids are defined first, and attached to first (all else equal).
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E.6 Details of applying ShapeMOD to ShapeAssembly

E.6.1 Choosing Parameters for an Abstracted Program

When we are finding an abstracted program that can represent an entire cluster of programs, there might
be multiple ways to parameterize the abstracted program. Here we detail the preference ordering we iterate
over in order to form the abstracted program. Recall that the abstracted program we find must create a valid
program for at least p = 70% of programs in the cluster.

For discrete variables, we first see if the cluster can be explained by a constant, if it can then we use the
constant. We next see if the cluster can be explained by the parameter values of a previously used discrete
variable (i.e. re-using a free variable in multiple parameter slots), if it can then we re-use the variable. If both
of these fail, then we introduce a new free parameter.

For continuous parameters we employ a similar strategy over the following ordered list of expression
types. Note that for all macros, we assume that they have access to the dimensions of the bounding box in

which they were created.

* select constants that are known to frequently occur - (0, 0.5, 1.0) for Shape Assembly
e directly using a dimension of the bounding box
* directly using a previously defined free variable

* using a fixed linear combination of 1 and any bounding box dimensions, where the weights are from
[(17 1)7 (_17 1)7 (13 _1)]

* using a fixed linear combination of 1 and any previously defined free variable, where the weights are

from
[(17 1)’ (_17 1)3 (17 _1)]
* using a fixed linear combination of any previously defined free variable and any bounding box dimen-

sion, where the weights are from
[(17 1)7 (_17 1)7 (la _1)]
* using a fixed linear combination of any two previously defined free variables, where the weights are

from
[(1’ 1)7 (*1’ 1)7 (1a 71)]

* ascaled version of any previously free variable
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We find that this preference ordering produced macros for the ShapeAssembly language that were more
semantically interpretable. We also tried experimenting with more complex parametric relationships between
parameters, such as arbitrary linear combinations of constants / bounding box parameters / past free parame-

ters, but found that this led to slightly worse compression metrics.

E.6.2 Valid Candidate Macro operators

When proposing candidate macros in the proposal phase of ShapeMOD, we choose to optionally make some
potential macros ineligible in order to avoid local minima, and limit the number of candidate macros we need
to consider for any integration round. The criteria we use are:
* The macro must be four or less lines. Notice that as macros can use macros discovered in previous
rounds as sub-routines, a single macro is still able to cover more than four lines of the base Sha-

peAssembly programs
¢ A multi-line macro shouldn’t end with a Cuboid line.

* A multi-line macro should only include a Cuboid line, if it starts with a Cuboid line. Notice that it can

both start with a Cuboid line, and then include subsequent Cuboid lines afterwards

The first requirement helps to speed up the algorithm. The impetus for the last two requirements is that
each macro should not cover the partial attributes of any part, it should instead try to build up abstractions that
represent an entire part fully, or even a group of parts. We also observed empirically that these requirements

helped to encourage macros that developed hierarchical structures.

E.6.3 Candidate Macro Frequencies

The frequency with which a macro was found during the proposal phase influences the gain ranking of that
macro during integration. However, whenever we update the library with a new macro, frequencies for all
other macros should be updated because the macro that was added might have covered the same program
lines (and so double counting these would result in an overly optimistic estimate of the future gain). Thus,
whenever M is added into £, we update the line coverage statistics of all other candidate macro operators, so
that each line that M covered is no longer used to calculate the frequency score p of future candidate macros
during ranking. However if M is not added into £, then we find all reachable candidate macro operators in
the the generalization graph starting from the M node, and remove them from future consideration during

candidate macro operator ranking (in the current round). This is done so that if a group of macros appear to
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have a high gain, but are not actually helpful in decreasing f, we only need to consider one such function in

each round of integration.

E.7 Details about Generative Modeling Metrics

* Rootedness : We directly use the rootedness calculation from ShapeAssembly

« Stability : We use the stability simulator from ShapeAssembly, with one small modification. Instead
of the object starting on the ground, and having it be perturbed upwards and to the side, we just drop
the object from a small height. We found this to be a more reliable measure of stability that produced

stability simulations which more closely matched our intuition.

e FD: We use the feature space of a PointNet model trained on a 16 way classification task on shapes
from ShapeNet [16]. Each FD calculation takes up to 1000 meshes from two sets, and samples their
surfaces to form point clouds with 2500 points. During training, we compare generated meshes against
the training set to choose the epoch of the model. For all metrics reported in the results section, we run

FD on a held-out set.

* Realism: We follow the realism procedure outlined in ShapeAssembly, with a small modification.
In ShapeAssembly, the % fool is calculated over a held out portion of shapes from the training set
(although not seen by the real versus fake classifier). We instead report % fool statistics calculated over

a set of shapes from the validation set.

E.8 Analysis of Variability

To check how macros impact the variability of a generative model we look at the same metrics as in Sha-
peAssembly, using Chamfer Distance on point cloud samples (1024 points) from the surfaces of generated
objects (Table E.2). Generalization measures the nearest neighbor distance from the generated set to the train-
ing set. Coverage measures the nearest neighbor distance from the validation set to the generated set. Variety
measures the nearest neighbor distance from shapes in the generated set to any other shapes in the generated
set. Compared with no macros, ShapeMOD performs slightly worse on the generalization and variety met-
rics, but slightly better on the coverage metric, across the three categories we look at. The results of baseline

macros illustrate how these metrics are tricky to interpret; Baseline macros does the best on Generalization
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Table E.2: Using Chamfer Distance (CD) and Program Edit Distance (ED), we check how well generative
models generalize from the training set, cover the validation set, and have variability within their own set.

Generalization
NND to Train } NND from Val {} NND to Self {}

Coverage

Variety

Category Method CD CD CD
No macros 0.114 0.122 0.116
Chair Baseline macros 0.115 0.121 0.115
ShapeMOD 0.111 0.121 0.114
No macros 0.103 0.106 0.110
Table Baseline macros 0.112 0.110 0.115
ShapeMOD 0.101 0.105 0.108
No macros 0.132 0.129 0.125
Storage  Baseline macros 0.144 0.136 0.126
ShapeMOD 0.127 0.122 0.121

Table E.4: Metrics comparing samples from learned Generative Models

Table E.3: Program Dataset Compression

Category Method f L] t(P*) d(P*) £(P*) b(P*)
No macros 411 5§ 29.8 17.8 844 113
Chair ShapeMOD 260 17 21.0 6.4 58.1 8.6
ShapeMOD (CC) 256 17 17.1 69 600 9.0
No macros 356 5 256 16.3  70.7 9.6
Table ShapeMOD 214 15 174 51 487 5.6
ShapeMOD (CC) 205 17 144 49 484 70
No macros 453 5 304 216 922 11.7
Storage  ShapeMOD 283 17 21.1 7.6 689 4.0
ShapeMOD (CC) 280 17 18.2 7.8 70. 10.0

Category Method

% fool ) FD || # Parts {} % rooted /| % stable 1}

No Macros 21.2 17.8 7.6 93.9 82.3
Chair ShapeMOD 25.6 16.7 8.6 92.7 79.5
ShapeMOD (CC) 17.8 19.4 8.8 94.5 80.8
No Macros 27.7 26.0 8.0 88.8 76.1
Table ShapeMOD 29.2 23.2 7.8 93.2 84.3
ShapeMOD (CC)  26.8 21.8 7.1 93.2 85.2
No Macros 4.9 70.0 6.0 92.4 85.5
Storage  ShapeMOD 11.1 38.1 7.7 95.1 90.5
ShapeMOD (CC) 9.3 47.4 7.7 94.7 91.1

and Variety, but at the expense of high coverage scores. This suggests that baseline macros is doing well on

generalization and validation precisely because it is failing to capture the target shape distribution as well as

the other two methods.
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Table E.5: Metrics on program inference task from a point cloud

Category Method CD |} F-Score 1} % rooted 1} % stable 1}
Chai No macros 442 54.8 93.7 83.6
4 ShapeMOD 417  56.1 96.9 88.0
ShapeMOD (CC) 42.1 55.7 95.9 89.3
Tuble No macros 41.1 64.0 92.8 78.2
ShapeMOD 36.7 68.7 95.2 88.5
ShapeMOD (CC) 37.9 67.9 96.3 87.1
Storace No macros 56.5 41.1 95.0 87.7
& ShapeMOD 47.0 53.0 97.6 92.6
ShapeMOD (CC) 48.7 51.6 98.1 90.7

E.9 Additional Cross-category Macro Discovery Results

We experimented with running ShapeMOD on multiple categories of PartNet objects at once. In this section
we report the quantitative effect that using the macros discovered through this procedure had, versus using
macros that were discovered when running ShapeMOD on a single category.

We refer to this condition as ShapeMOD (CC). Table E.3 show compression statistics. Table E.4 shows
generative metrics. Table E.5 shows reconstruction metrics. Interestingly, in terms of program compression
ShapeMOD (CC) outperforms ShapeMOD for every category. This does not translate fully to down-stream
task performance though, as ShapeMOD’s unconditional generations are more plausible then those from
ShapeMOD (CC) and using ShapeMOD leads to better reconstruction metrics over ShapeMOD (CC) on our
visual program induction task. Shape validity (rootedness/stability) remains close for both methods across
these different experiments. On the whole, while this approach performs slightly worse compared with
discovering new macros for each individual dataset of shape programs, for the metrics we care most about

(physical plausibility and reconstruction accuracy) it still leads to a dramatic improvement over no macros.
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Additional Details for ShapeCoder

In Appendix F, we supply additional details for the ShapeCoder method introduced in Chapter 8.

F.1 Shape Grammar

3D Shape Grammar Below we detail our 3D shape grammar:

START — SHAPE

SHAPE — Union(SHAPE, SHAPE) |
SymRe f(SHAPE, AXIS) |
SymTrans(SHAPE, AXIS, INT, FLOAT) |
Rotate(SHAPE, AXIS, FLOAT) |
Move(SHAPE, FLOAT, FLOAT, FLOAT) |
Cuboid(FLOAT, FLOAT, FLOAT);

AXIS — AX | AY | AZ;

INT — [1, 6];

FLOAT — Prim;; |-1]0| 12|
AdA(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)
Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

We italicize all non-terminal parts of the grammar, and explain what the terminal operators in the language

do (non-italicized). Union combines two sub-shapes together. SymRef is a symmetry reflection across an
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axis. SymTrans is a symmetry translation over an axis, that creates a specified number of copies, up to
a specified distance. Rotate specifies an Euler angle rotation about an axis. Move moves a cuboid by a
specified amount. Cubo1id instantiates a cuboid with the specified dimensions. Axes can be either the X, Y,
or Z axis. Ints can be an integer between 1 and 6. Floats can be either be sourced from a primitive parameter

of an input scene (Prim;;), be a constant, or the result of a parametric operation.

2D Shape Grammar Below we detail our 2D shape grammar:

START — SHAPE

SHAPE — Union(SHAPE, SHAPE) |
SymRe f(SHAPE, AXIS) |
SymTrans(SHAPE, AXIS, INT, FLOAT) |
Move(SHAPE, FLOAT, FLOAT) |
Rect(FLOAT, FLOAT);

AXIS — AX | AY ;

INT — [1, 4];

FLOAT — Prim;; |-1]0| 12|
AdA(FLOAT, FLOAT) | Sub(FLOAT, FLOAT)

Mul(FLOAT, FLOAT) | Div(FLOAT, FLOAT);

This is a simplified version of our 3D grammar, where the rotation command has been removed, and all

3D parameterizations are replaced with 2D parameterizations.

F.2 Implementation Details

We provide implementation details for ShapeCoder below. For all experiments in Section 8.5 we set N4 =

20 and Np = 10000.

F.2.1 Objective Function Weights

We use the following weights for A in ShapeCoder’s objective function (Section 8.1.1): float tokens are 2.0,
shape-returning function tokens are 1.0, float-returning function tokens are 0.1 (i.e. parametric operations),

and categorical tokens (including integers) are 0.5 . Additionally we set the geometric error weight, \., to be
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10.

For the function weighting scheme w, described in Section 8.1.1 and ablated in Section 8.5.4, ShapeCoder
employs the following logic. The base cost of adding a new abstraction f into £ is 0.25, but this value can be
modulated within the range of 0.125 to 0.5 based on properties of f. The presence of parametric expressions
in f decrease w. Too many input parameters in f increases w, where more than 6 parameters starts to incur
penalties, and abstractions with more than 10 input parameters are rejected outright. We decrease w for
doubleton abstractions (those that use multiple sub-functions), and increase w for singleton abstractions that
use a single sub-function. Finally, if f is found to be used very infrequently over P, less than 1% observation

rate, then we also reject f outright.

F.2.2 Geometric Error Function

The objective function (Section 8.1.1) uses a geometric error function err that compares how closely an
executed expression e from £ matches a target shape d. As this error function is used extensively in the wake
phase (Section 8.2.3), it checks for partial solutions. Say executing e creates a set of primitives prim., and d
contains primitives primg. First our geometric error functions finds an optimal mapping from primitives in
prim, to some primitive in primg. Mechanically, we construct a distance matrix of size |prim.| x |prima],
that calculates a domain-specific distance metric between each pair of input and target primitives (explained
later). For any pair of primitives whose distance is above a user-defined maximum error threshold, we set
their paired distance to an arbitrarily high value (10000). We use the Hungarian matching algorithm to find
an optimal match over this distance matrix. If none of the paired matches between prim. and primg have
distance over 10000, then the match is valid, and the total error incurred by e for d is simply the sum of all
entries in the distance matrix involved in this optimal match.

During the integration phase (Section 8.3.2), we can modify this approach to check for a program zthat
explains d, by enforcing that the distance matrix must be square. Whenever this condition is not met, it means
that there is a mismatch in the number of primitives created by z, and the number of primitives expected in

the target shape d, so z is invalid.

2D geometric distance Each primitive (rectangle) is represented as 4 parameters: width, height, x position,
and y position. To find the distance between two primitives, we take the average of the absolute differences

between each parameter slot. The maximum allowable error threshold is set to 0.05.
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3D geometric distance Each primitive (cuboid) is represented as 9 parameters: dimensions, position, Euler
angle rotations. To find the distance between two primitives, we calculate the corner positions of each cuboid,
and record the Hausdorff distance between the two sets of points. The maximum allowable error threshold is

setto 0.1 .

F.2.3 Recognition Network

Our recognition network uses a Transformer decoder backbone architecture with causal masking. We allow it
to condition on up to 16 primitives (where each primitive will contribute K tokens), and fix its max prediction
length to be 32. It uses 2 attention blocks, with 8 heads in each block, and a hidden dimension of 128. Training
uses a batch size of 64, dropout of 0.5, and a learning rate of .0001. Each dream phase (Section 8.2.2) trains
the recognition network for a maximum of 300 epochs, where early stopping is performed on a validation set

of held-out dreams (10% of samples).

F.2.4 Dream Creation

Sampling library functions During the dream phase (Section 8.2.2), ShapeCoder randomly samples in-
stantiations of library functions to train the recognition network. Some dreams are visualized in Figure 8.6.
For each discrete decision needed to parameterize a function f, we find all tokens in £ that type-match, and
uniformly sample from this distribution. Float-typed tokens are represented as mixtures of Gaussians distri-
butions (max 3 mixture components). These distributions are designed to broadly reflect reasonable values
for certain parameter slots in the base DSL. For instance, the first float parameter slot in the ‘Move’ operator
is associated with x-axis positioning, so we design a trimodal mixture distribution with the following prop-
erties: it has a O-centered dominant component, and then two minor components placed to the left and right
of the origin. These distributions don’t meaningfully change the performance of the recognition model, as
it gets to trains on a massive amount of samples, but it does speed up the rate at which we can find valid
dreams under our rejection criteria (explained below). When sampling dreams for abstraction functions, the

parameter inputs in the abstraction inherent the distributions of their child sub-functions.

Dream rejection criteria We use simple checks to validate that randomly sampled dreams produce mean-
ingful training data, and reject any dreams that don’t meet the following criteria. All primitives must have pos-
itive dimensions. The corners of all primitives must be within the allotted scene bounding volume [—1, 1],

with a 10% leniency threshold. At least 50% of each primitives area must be visible (i.e. not contained
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within another primitive). Each primitive must be bigger than a specified threshold: 0.005 area of 2D, .00025
volume for 3D. Dreams cannot contain more than 16 primitives. Dreams cannot use redundant operations,

for instance, applying two Move commands in a row.

Forming composite scenes ShapeCoder’s recognition network trains on composite scenes, that are formed
by sampling function-specific dreams and combining them together. To form a composite scene, we sample
a random integer k from [1,4], sample k functions from the set of all library functions that have not been
represent in Np dreams, and choose a random dream from each chosen function. Additionally, with 50%
chance, we add distractor primitives into the composite scene. Distractor primitives are sourced by randomly
sub-sampling primitives found in some d € D. To encourage the recognition network to be position invariant,
we optionally sample a Move operation (with 50% frequency) and apply it over the primitives created by
a function-specific dream. Note that this Move operation is not included in the target expression, so the

recognition network must become invariant to where the target primitives show up in the composite scene.

F.2.5 Combining Wake Programs

As discussed in Section 8.2.3, programs discovered in round r’s wake phase need to be combined with
programs discovered in rounds before r. Here we detail how combine is implemented.

Assume we are in the wake phase of round 7, 7 > 0. For some d € D there is currently some program
entry in P, z.. Using a split function, that recursively removes combinator operations from a program, we
can convert z. into a set of expressions in L:
split(ze) = E, = {°,...,el”"I}. When executed, each e’ will create a set of primitives, prim, that is a
subset of the primitives in d. ShapeCoder keeps track of all such previous expressions associated with d in a
data-structure ()4, sourced from either the wake or integration phases.

The wake inference procedure uses the recognition network to prediction a new program in round 7,
zy, for d. We decide what program zshould be kept in P by constructing 4 program variants, and keeping
the one that minimizes F. The variants we consider are as follows. (i) Use z.. (ii) Use z, (note this
variant will always be chosen if » = 0). (iii) Greedily merge z, into z.. To do this, we first compute
split(z,) = B, = {e, ..., e‘TE“‘}. Then for each e, we find prim!, and see if there is a set of matching
instances in E,, M, such that prim’ = {prim? for j € M}. If M exists, then we compare the cost under F
of el versus the sum of each e/ (with | M| — 1 combinator calls): if e’ improves JF then each ¢/ is removed

from E,, and e is added into E.. (iv) Greedily construct an entirely new program from Qg. First E,. is
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added into Q4. Then Q4 greedily creates a new program by initializing F,, (to be empty) and repeating the
following steps: find the cost of each e in @4, take the minimum cost expression e* and add it into F,,, and
temporarily remove all other entries of ()4 that have nonzero overlap with prim;. This is repeated until E,,
contains expressions that cover all primitives in d.

After these four program variants have been created (where in (iii) and (iv) combinator operations are
applied over E. and F,, respectively), the variant with the minimum score under F is kept in P. Finally, we
note that some extra logic is required to ensure that ()4 and z. are kept up-to-date. Whenever the integration
phase tries removing a function f from L, all expressions in ()4 that use f are temporarily removed. Moreover

if f appears in z., then the greedy search in (iv) is used to find replacement expressions for z.

F.2.6 Preference Ordering of Parametric Relationships

The proposal phase (Section 8.3.1) generates candidate abstractions using a greedy search. These candidate
abstractions contain parametric expressions. Below we detail the preference ordering we use to search for
matching parametric expressions with respect to a sampled cluster.

The choice of which parametric expression to propose is always made in the context of a cluster, that
contains a structure and a group of parameterizations. As we are filling in slots for the candidate abstraction,
we may have already instantiated free variables that were used in previous slots. To find a possible expression
for the current parameter slot, we reason over the free variables previously instantiated. We iterate through
a preference ordering that considers increasingly complex parametric expressions over previous variables:
expressions with only constants, then one variable expressions, two variable expressions, and finally three
variable expressions. The set of all expressions under £ that contain n variables can be found by calculating
the cross-product of (i) all parametric operator combinations that would require n variables with (ii) all
ordered sequences of n previously instantiated variables. To avoid overfitting, we limit the possible constants
we consider (just O for our shape grammars). For each expression, we check which members of the cluster are
covered by that expression. Once we find a set of expressions that collectively cover all instances within the
cluster, we break out of this loop early. This procedure creates a large set of possible expressions (visualized

in Figure 8.4), from which one is chosen according to the score function.
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F.2.7 E-graphs

Our refactor operation (Section 8.4), implements e-graphs using the Egg library [218]. Egg provides support
for defining a DSL, rewrite operations, and a cost function, that can be used by an extraction operation.
Egg provides an interface for defining rewrites that reason over conditional logic, but they cannot be directly
applied for our use case. Our version of conditional rewrites requires that each rewrite has access to a shared e-
class-to-real-value mapping, so we build out this feature. Maintaining this mapping requires dummy rewrite
operations, that check for structural matches for various parametric operations, and update the mapping,
without changing the structure of the e-graph. When we first instantiate an e-graph, we apply dummy rewrites
that match on each float variable, V;, and adds an entry for V; into the mapping. Then, during each rewrite
round, after applying all semantic and abstraction rewrites, we apply all dummy rewrites, to ensure the
mapping is up-to-date (this handles the blue Mul e-class from Figure 8.5). For each domain, we provide
Egg with a set of semantic rewrites that express domain-specific semantic preserving transformations. There
are 25 such rewrites for 3D, and 16 such rewrites for 2D. We ablate the importance of including these semantic

rewrites in our ablation experiment (Section 8.5.4).

F.2.8 Unsupervised Primitive Decomposition

As described in Section 8.5.5, we make use of an unsupervised cuboid decomposition method, so that we can
apply ShapeCoder to shapes from datasets that contain only meshes. We use the approach described by [230],
using their released pretrained models to predict cuboid decompositions over chairs from their test set. We
compile a dataset of 400 such predictions, and parse these output predictions into a primitive representation
compatible with our method. This conversion procedure performs a few minor filtering steps, rejecting scenes
that contain more than 12 cuboids (we found these often were noisy predictions) and snapping cuboids to be

axis-aligned whenever their Euler angles were within a 0.05 threshold of 0 or 2.

F.2.9 Generative Model for Programs

We provide details for the generative model described in Section 8.5.6. This model is capable of synthesizing
novel 3D shapes. We implement our generative model as a Transformer decoder, with causal masking. It
uses a CNN to encode a shape voxelization into an embedding vector, which conditions the Transformer
that autoregressively predicts tokens from L£. The network starts with a blank scene, iteratively predicts

an expression e from £, and adds it back into the scene (which will be encoded by the CNN in the next
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time-step). This process is repeated until a special ‘STOP’ token is predicted.

We source training data for this model by running our post hoc inference procedure (Section 8.5.3) over
a dataset of 3600 chairs, to form a program dataset P. For each epoch, we randomize expression ordering
by applying split (Section F.2.5) to each z€ P, shuffling the expressions found by split, and treating every
(previous expressions, next expression) tuple as an independent training example. We use teacher-forcing
and maximum likelihood updates to train the generative model. We train the model for 4000 epochs. It has
8 Transformer layers, 16 heads, a hidden size of 256. We train with a batch size of 64, dropout of 0.1, and
a learning rate of 0.0005 . At inference time, we use nucleus sampling (top 90%) to predict expressions
from the networks probabilities. The ‘without abstractions’ version we compare against has exactly the same
setup, except the post-hoc inference procedure was run using the starting £ version (not the one discovered

by ShapeCoder).

F.3 Toy 2D Grammar Experiments

Before moving to 3D domains, we evaluated ShapeCoder’s ability to discover abstractions on a more basic
2D dataset. We designed a 2D shape grammar (Section F.1) and manually designed a sampling procedure
for this grammar that would produce ‘chair-like’ output scenes (combinations of rectangles) — see our public
code release for details. The sampling procedure was, in fact, implemented as a single abstraction function,
that takes a fixed amount of input parameters and outputs a program using functions from the base DSL.
These input parameters controlled both shape parameters (e.g. chair height or width) along with control flow
decisions (e.g. should the back have vertical or horizontal bars). This paradigm can be considered as an
‘oracle’ best-case abstraction for this 2D domain, e.g. what a manually designed abstraction would look like.
We evaluate how ShapeCoder was able to improve JF on this dataset, compared with this oracle, in the below

table.

Method Fl

Input Prims 65.3
No Abstraction 48.6
ShapeCoder 27.3
Oracle 22.7

The oracle single abstraction (that takes in 7 categorical variables, and 9 float variables) is able to
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achieve the best compression metric. However, ShapeCoder is able to come reasonable close to this tar-
get on this toy domain, and improves F significantly over using either the input primitives, or when only the
dream+wake phases are used (No Abstraction). Of note, the oracle abstraction function actually has access
to DSL components we don’t provide to ShapeCoder (control flow Switch and If/Else operators). Cur-
rently ShapeCoder is not able to discover abstractions that introduce different control flow decisions, as these

types of operators would never be inferred during the wake phase.

F.4 DreamCoder Experiments

DreamCoder [42] is an inspiring system capable of generalizing across many domains. It makes no assump-
tions over its input data, which creates a difficult program induction problem. It solves this issue by gradually
building up a library of discovered abstractions tailored to the input domain. Dreamcoder’s program infer-
ence step (i.e. its wake phase) performs enumerative search guided by a library version; when solutions to
the program induction task are more compact under a ‘good’ library version, solutions will be found more
quickly in this search process. A downside of this framing is that there is an implicit assumption that the
input data contains a curriculum of tasks, that is needed to bootstrap this procedure. Specifically, some tasks
in the input set need to have relatively high probability under the base DSL: if enumerative search does not
find any solutions to the ‘simple’ tasks, then no abstractions can ever be discovered, that are necessary to help
solve the more ‘complex’ tasks.

Complex visual programming datasets, like manufactured 3D shapes, don’t typically contain a curriculum
of tasks. In some cases, a curriculum can be created, but this typically requires access to detailed shape
annotations (e.g. a semantic part hierarchy). As such, due to the lack of a curriculum, combined with the
complexity of the 3D shape program inference problem, when we attempted to run DreamCoder over PartNet
data we observed it did not find any solutions.

Beyond this observation, we also argue that DreamCoder, as a general program induction system, is
not as well-suited for visual programming domains, compared with ShapeCoder. Critically, DreamCoder
has no mechanism that reasons over parametric relationships between continuous variable, which is of great
importance for many visual programming domains (including manufactured shapes, where part-to-part rela-
tionships are spatially constrained). While DreamCoder does show success on simple 2D visual domains,
it discretizes continuous variables and treats parametric operators as standard functions in the base DSL. To

test if DreamCoder has an inductive bias to discover abstractions with parametric relationships under these
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assumptions, we designed a toy experiment, that we explain below.
We design a very simple shape grammar for the toy 2D language. Where between 1 and 3 primitives are
combined together, and where each primitive is created by an abstraction that takes in two input parameters

(so two degrees of freedom are constrained). We write this grammar as:

START — ABS |

Union(ABS, ABS) |

Union(ABS, Union(ABS, ABYS)) ;
ABS — Move(Rect(a, a+b), b, a-b)

ab—re(0,1)

Where real-values (e.g. a and b) are discretized into 20 values between 0 and 1. The ABS function is easily
identifiable by ShapeCoder, because it explicitly checks for these types of parametric relationships during the
proposal phase, and this relationship is present in every input scene. We ran DreamCoder over a dataset
of 100 samples from this grammar with a budget of 24 hours wall-clock time. To match the computational
requirements of ShapeCoder, we used a single workstation with a Intel i7-11700K CPU, and a python-based
executor implementation. Under these conditions, DreamCoder did not discover the ‘correct’ abstraction
with the proper parametric pattern. Moreover, even for this simple grammar, DreamCoder only discovered
solutions for around 50% of the tasks (and none of the tasks with 3 Union operations). While these results
might be improved by making better use of computational resources (running enumerative search over a
cluster of machines, designing a faster executor, increasing the wall-clock budget), we believe this example

illustrates why DreamCoder is not particularly well-suited for complex visual programming domains.



Appendix G

Additional Details and Results for

ShapeLib

In Appendix G, we supply additional details for the ShapeLib method introduced in Chapter 9.

G.1 Additional Method Details

G.1.1 Objective Function

When searching for programs that explain shapes, we need an objective function to guide the search. We take
inspiration from ShapeCoder (Chapter 8) and formulated an objective function as a weighted average of two
terms. One of these terms counts up the number of degrees of freedom in the program representation, for
simplicity we treat every token in the program as a degree of freedom with the same weight (1.). Another
term ensures that the produced geometry does not deviate too far from the target structure. We calculate the
geometric error (more on this in the next paragraph), and add that into our objective function with a weight
of 10.

The geometric error function we use takes in two sets of unordered primitives. For every pair of primitives
from the predicted to target set, we calculate the maximum minimum distance between any two corners from
one primitive to the other. We then use a matching algorithm to assign a stable pairing between the two
sets. If any of the distances is above a threshold (0.25, where shapes are normalized to lie within the unit

sphere), then we say that there is infinite geometric error. Otherwise, the geometric error is an average of the
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maximum minimum corner distance (MMCD), calculated according to the best match.

G.1.2 Network Design

We implement all of our networks in PyTorch [158]. All of our experiments are run on NVIDIA GeForce
RTX 3090 graphic cards with 24GB of VRAM. We use the Adam optimizer [106] with a learning rate of
le-4. We implement our recognition network as a Transformer decoder. Our network has 4 layers, 4 heads,
model dim of 256, and a full feature dim of 1024.

This network has full attention over the conditioning information: each primitive in the input shape is
quantized and treated as a discrete token. We order the primitives according to their x-y-z positions, as we do
not know how they should be ordered otherwise. Programs are similarly tokenized, and our network is trained
through teacher forcing. We use learned positional encodings, these cap the maximum sequence lengths and
primitive amounts our network can reason over: 20 primitives and programs of up to length 64. We train
with a batch size of 128. For point cloud inputs, we replace the primitive token encodings with an embedding
produced by a PointNet++ [163] network. For voxel inputs, we replace the primitive token encodings with
an embedding produced by a 3D-CNN. We train our networks for between 4-12 hours, depending on the

category and task.

G.1.3 Synthetic Data Sampler

We perform two rounds of automated feedback for each ‘sample_shape’ function generated by the o/ LLM
model. This iterative approach aims to refine the sampler’s outputs by addressing discrepancies and im-
proving alignment with respect to seed set patterns. In each round of feedback, we evaluate the function
by sampling a diverse set of shapes and assessing various aspects of its behavior. We examine whether all
functions in the library were used, whether all parameter types were employed, and whether all output struc-
tures described in the function’s documentation were produced. These checks are performed automatically.
Additionally, we analyze the structures generated by the sampled functions and determine their similarity to
those observed during the validation stage. If significant deviations are detected, measured in the parameter
space of each function, the sampler is instructed to update its logic to produce outputs closer to the expected

structures.
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G.2 Additional Experimental Details

G.2.1 Cost and Timing

We provide detailed estimates for how expensive it is (from a time and API monetary expense perspective)
to use our system to discover libraries of shape abstraction functions. To produce 20 shape descriptions from
images using gpt-4o: 10 cents and 1-2 minutes. To create library interfaces from textual descriptions with
olmini: 25 cents, 2-4 minutes. To propose function applications over (20) shapes with (1) olmini call and
(4) gpt-4o calls: $2-3 and 15-25 minutes. To propose (4) implementations for each function with olmini:
$2-4 and 15-30 minutes. To propose a single program sampler with ol: 50 cents and 1 minute. In total, this
amounts to $5-8 and 30 minutes to 1 hour.

Notice that by default we use olmini, but sometimes deviate based on our developmental experience.
Making function applications without knowing function implementations is a ‘guess-based’ exercise, so we
are fine with the increased error rate that 4o produces in this step. For the most complex tasks, like imple-
menting a synthetic data sampler, we turn to ol as we are able to provide enough task guidance and directives

to make use of its ‘reasoning’ capabilities.

G.2.2 Data

Collections of example shapes in the seed set are chosen by an expert user who has a design intent in mind
(they also express this intent in natural language in the function descriptions). Specifically, we have the
user select 20 partNet shapes and put them in a list, and then we can automatically produce the rest of the
structured data from the partNet annotations.

After we have selected these two shapes, we create separate ‘training’ and ’validation’ sets of shapes
by randomly splitting up Partnet object instances. We run all experiments over validation shapes, unless
otherwise stated, and use the training shapes to get paired data for the visual program induction step that maps
from unstructured geometry to a shape abstraction program. The size of these train/val sets is 4000/1000 for

chairs, 1216/400 for storage, 4000/1000 for tables, 434/400 for faucet, and 2625/656 for lamps.

G.2.3 LLM-Direct Baseline

The LLM-direct is an ablated version of our method that relies on only the prior of the LLM and the design

intent of the expert user in the form of function descriptions. We compare against it to validate the need for
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using the seed set of shapes alongside the natural language specification.

This baseline, is equivalent to our method modulo a few critical changes. The interface creation step
is exactly the same. After this step though, it immediately implements each function, without using any
input/output guidance about how this function should constructed. As it has no seed set, it assumes that
the LLM has perfectly implemented each function, and next advances to the synthetic sampler design stage
where it prompts the LLM to produce a ‘sample_shape’ function from its constructed library. Then, like
the full ShapeLib system, we can train a recognition network on data produced by this random sampling

procedure.

G.2.4 ShapeCoder

In our comparisons against ShapeCoder we use the officially released implementation. The only change we
make is removing the rotation operation from the base ShapeCoder language, as we focus on structures of
axis-aligned primitives in our experiments. We develop ShapeCoder’s library of abstraction over the same
seed set of 20 shapes, which is much smaller than the large datasets used in the original ShapeCoder system
(400 shapes). Nevertheless, we find that ShapeCoder can generalize (in terms of compression, at least) fairly
well even from these 20 shapes.

We experiment with discovering ShapeCoder libraries over a larger seed set of 400 shapes, and find that
compression improves slightly on validation shapes, but not by a huge margin (Obj goes from 52.1 to 46.1,
while the average library size grows from 19 to 24). Despite learning this library over a large collection of
shapes, we still observe that this ‘ShapeCoder-400’ variant does not find more semantically aligned function
applications over validation structures. In fact, its semantic entropy performance worsens (chair: 1.67 to 1.84,
table: 1.578 to 2.16, storage: 2.07 to 2.08, lamp: 1.7 to 1.9, faucet: 2.1 to 2.3) We view this result as lending
our framing additional support: compression alone (even over a large dataset) is not enough to develop good

shape abstraction libraries, top-down semantic guidance is also required.
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